Definition of an Increasing Function and of a Decreasing Function

<u>Def.</u>: A function *f* is *increasing* on an interval if for any two numbers x_1 and x_2 satisfying $x_1 < x_2$,

<u>Def.</u>: A function *f* is *decreasing* on an interval if for any two numbers x_1 and x_2 satisfying $x_1 < x_2$,

Relationships Between a Function and Its First Derivative

Theorem: Let *f* be a function that is continuous on the closed interval $a \le x \le b$ and that is differentiable on the open interval a < x < b.

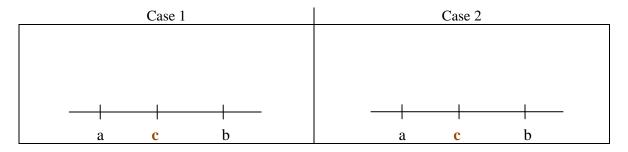
1. If $f'(x) > 0$ for all x satisfying $a < x < b$, then f is	on $a \le x \le b$.
2. If $f'(x) < 0$ for all x satisfying $a < x < b$, then f is	on $a \le x \le b$.
3. If $f'(x) = 0$ for all x satisfying $a < x < b$, then f is	on $a \le x \le b$.

First Derivative Test for Relative Maxima and Minima

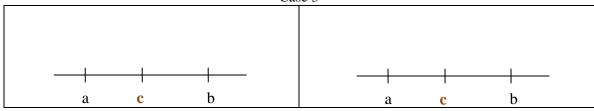
Theorem: Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on I, except possibly at c, then the point (c, f(c)) can be classified as follows.

1. If $f'(x)$ changes from negative to positive at <i>c</i> , then <i>f</i> has a <i>relative</i>	at (c , f(c)).
2. If $f'(x)$ changes from positive to negative at <i>c</i> , then <i>f</i> has a <i>relative</i>	at (c , <i>f</i> (c)).

3. If f'(x) is negative on both sides of *c* or positive on both sides of *c*, then (*c*, f(c)), is neither a relative minimum nor a relative maximum.



Case 3



Exercise 1: Determine the critical points of $g(x) = 2x^3 + 3x^2 - 36x + 1$, and use the *First Derivative Test* to **classify** them (as relative **maximums**, **minimums**, or neither.)

First, determine the critical number(s) by solving g'(x) = 0 for *x*.

$$g'(x) = = 6(x^2 + x - 6) = = 0$$

critical numbers: x = critical points: (-3, g(-3)) =

$$x = (2, g(2)) =$$

Next, test the critical numbers using a *sign chart*.

test x:

g'(x):

sign of g'(x):

From the g'(x) information, we **conclude** the following by the *First Derivative Test*:

There is a relative maximum at $x =$	because $g'(x)$ changes from

and a relative minimum at x = because g'(x) changes from

* * The sign chart also grants us the following information.

g is increasing on

and decreasing on

Exercise 2: Determine the critical points of $h(x) = x^3 - 6x^2 + 12x - 3$, and use the *First Derivative Test* to **classify** them (as relative **maximums**, **minimums**, or neither.)

First, determine the critical number(s) by solving h'(x) = 0 for *x*.

h'(x) =

critical number: x = critical point:

Next, test the critical number using a *sign chart*.

test x:

h'(x):

sign of h'(x):

From the h'(x) information, we **conclude** the following by the *First Derivative Test*:

* * We can deduce the following from the sign chart and the existence of a single critical number:

Exercise 3 (#60): Restrict the domain of f(x) = x + 2sin(x) to $0 < x < 2\pi$. Determine the open interval(s) on which *f* is increasing or decreasing, and apply the *First Derivative Test* to identify all relative extrema.

First, determine the critical number(s) by solving f'(x) = 0 for x.

critical numbers on $0 < x < 2\pi$: x = critical points:

x =

Next, test the critical numbers using a *sign chart*.

test x:

f'(x):

sign of f'(x):

From the f'(x) information, we **conclude** the following by the *First Derivative Test*.

There is a **relative maximum** at x = because f'(x) changes from

and a **relative minimum** at x = because f'(x) changes from

* * The sign chart also grants us the following information.

f is increasing on

and decreasing on