LAB 8: IDENTIFICATION OF BACTERIA THROUGH
BIOCHEMICAL TESTING

This assignment must be completed prior to attending this lab!

Before attending this lab you must:

1. View the following YouTube videos.

2. Complete the Lab 8 Assignment Quiz found on your Brightspace site.

This quiz will be part of your core points for this lab. Quizzes must be completed at least 2 hours prior to the start of your lab. The purpose of the videos and the quiz is to prepare you for performing this lab. Therefore, late quizzes are not accepted.

Video 1: Aseptic Technique Tips

Video 2: Aseptic Technique: Inoculation of broth tubes, slant tubes, and stab tubes

Video 3: How to Interpret the Results of Starch Hydrolysis

Video 4: How to Interpret the Results of Casein Hydrolysis

Video 5: How to Interpret the Results of Carbohydrate Fermentation

Video 6: How to Interpret the Results of SIM Medium

Video 7: How to Interpret the Results of the Catalase Test

 

INTRODUCTION

DISCUSSION

In the three previous labs we examined bacteria microscopically. Staining provides valuable information as to bacterial morphology, gram reaction, and presence of such structures as capsules and endospores. Beyond that, however, microscopic observation gives little additional information as to the genus and species of a particular bacterium.

To identify bacteria, we must rely heavily on biochemical testing. The types of biochemical reactions each organism undergoes act as a "thumbprint" for its identification. This is based on the following chain of logic:

When identifying a suspected organism, you inoculate a series of differential media (see Lab 3). After incubation, you then observe each medium to see if specific end products of metabolism are present. This can be done by adding indicators to the medium that react specifically with the end product being tested, giving some form of visible reaction such as a color change. The results of these tests on the suspected microorganism are then compared to known results for that organism to confirm its identification.

Lab 7 will demonstrate that different bacteria, because of their unique enzymes, are capable of different biochemical reactions. It will also show the results of the activity of those enzymes. In later labs we will use a wide variety of special purpose differential media frequently used in the clinical laboratory to identify specific pathogenic and opportunistic bacteria.

In general, we can classify enzymes as being either exoenzymes or endoenzymes. Exoenzymes are secreted by bacteria into the surrounding environment in order to break down larger nutrient molecules so they may enter the bacterium . Once inside the organism, some of the nutrients are further broken down to yield energy for driving various cellular functions, while others are used to form building blocks for the synthesis of cellular components. These later reactions are catalyzed by endoenzymes located within the bacterium.