

1. What is the dilution of the last petri plate?

A. 1/100,000 or 10⁻⁵
B. 1/1,000,000 or 10⁻⁶
C. 100,000 or 10⁵
D. 1,000,000 or 10⁶

2. What is the dilution of the 4th test tube?

A. 1/10,000 or 10⁻⁴
B. 1/100,000 or 10⁻⁵
C. 10,000 or 10⁴
D. 100,000 or 10⁵

3. How many bacteria per ml in the original sample?

A. 16,100,000 or 1.65 X 10⁷
B. 161,000,000 or 1.65 X 10⁸
C. 46,300,000 or 4.63 X 10⁷

4. Is this a useful plate to use for the plate count method?

A. Yes, the colonies are well separated.B. No, there are less than 30 colonies.

5. When measuring absorbance with a Spectrophotometer, _____

A. the greater the bacterial concentration the lower the absorbance.

B. the greater the bacterial concentration the greater the absorbance.

6. The volume held in a 1 ml pipette from the bottom tip to the "0" is _____.

A. 1.0 ml B. 0.1 ml C. 10 ml 7. One ml of *E.coli* is mixed with 1ml of dye. A drop of this dilution is placed on a Petroff-Hausser counting chamber. Five large, double-lined squares, each containing a volume of 1/1,250,000 cc, are counted giving the following results: 61, 74, 78, 63 and 64 bacteria.

How many bacteria are there per cc in the original sample?

- A. 170,000,000 *E. Coli* per cc
 B. 85,000,000 *E. Coli* per cc
 C. 1,700,000,000 *E. Coli* per cc
- D. 850,000,000 *E. Coli* per cc