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Section 0 – An Introduction 

I think my happiest day professionally was in the late 1990s.  After explaining a conceptual 
question to one of my Physics I students (a former lawyer), he responded with an emphatic “I don’t 
believe you!”  While I can not take credit for instilling his skepticism, it is the attitude I would 
hope all of my students, indeed all students, would possess.  I have worked at some institutions 
where standards were maintained with the goal of providing excellent, but not necessarily pleasant, 
educational experiences for students, including one with a totally constructivist course, challenging 
from both sides of the lecture desk.  I had heard the aphorism that learning occurs at the edge of 
student frustration, and so I set about making my courses just the right amount of frustrating.  
Luckily, I have been fortunate to have many patient and hard-working students along the way who 
have, mostly unwittingly, helped me to adjust and modify the presentation of material in this 
course. 

What is the purpose of a PHYS I course?  Most Physics professors would say that the purpose is 
to teach students Physics, whatever that means.  Let’s try to break that down: 

1) ‘Students who plan to become scientists and engineers need to know this stuff.’  Well, you 
may need to know it for a couple of years while you learn your actual profession.  My 
experience with some physicists who publish prolifically in their specialized fields but 
don’t know Phys I material bears me out on this. 

2) ‘Students who plan to become health care professionals need to know this stuff.’  Even less 
true.  You may need to know some of this as you complete your biology courses, but you’re 
going to forget it soon enough. 

3) ‘Students in general need to know how the world works.’  Anecdotal evidence suggests 
that students revert to their original non-Newtonian way of thinking once the course ends. 

4) ‘Students should get a taste of what science is like.’  Like most things worth doing, science 
is hard.  Ideas must be discussed, calculations made, and theories tested against reality.  It 
is not a spectator activity; a course comprising thirty minutes of demonstrations and ten 
minutes of lecture is not a Physics course. 

And so, this brings us to the purpose everyone talks about but few bother to realize: critical 
thinking.  This buzz word permeates mission statements for most colleges.  I contend that, for 
beginners, the hard sciences, Physics and Chemistry in particular, are the best start on this path.  It 
is not my intention to denigrate the humanities; in many perhaps non-obvious ways, this course is 
modelled on a traditional humanities writing course.  We start from a premise, make and justify a 
series of logical arguments or steps until a conclusion is reached, and analyze that conclusion.  We 
have an advantage over the humanities, though, in that our arguments can be made with steps that 
are quite clearly correct or falsifiable, and our conclusions can be checked against an objective 
reality.  It is these skills that we hope students will carry on with them through life. 

This is not a textbook.  It was a set of class notes written up after each lecture in the fall of 2000 
to augment the assigned textbook, rewritten and expanded in 2020.  When I started these notes, 
algebra-based Physics textbooks were still written in a style that encouraged memorization over 
thinking.  As a quick example, many books started their impulse-momentum sections by defining 
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momentum, pointing out that it is conserved in some situations, and then moving on to examples.  
This approach avoids the effort of developing an idea from observation, confirming it with 
experimentation, and understanding how it fits in with all the other notions that have been 
discussed.  These notes make a perhaps awkward attempt to introduce notions from guided 
discussions and demonstrations, each usually leading to a derivation and a useful result, which are 
of course only tentative until tested by lab experiences. In deference to my lawyer acquaintance, 
the idea here is to justify, within reason using special cases, any assertions made.  Wider examples 
of less-special cases are left to more advanced courses. 

So, with the exception of parts of Section 14, this course is run in a manner similar to a traditional 
high-school Geometry class with two column proofs.  In Euclidean Geometry, there are five 
axioms, things which are assumed to be true.  From these five notions, with the use of some 
definitions, all of Euclidean Geometry can be constructed.  There is some leeway in choosing what 
the five axioms are, but a proper combination of five will do the job.  In Physics also, we have 
chosen an open and consistent logical system; we have axioms, although we call them laws. Laws 
are ideas that we think are true because we have never seen them not to be true.  This course is 
based on two such laws; everything else follows from those two.     

These notes are intended for an algebra-based PHYS 101 course.  Sections that extend beyond the 
norm for such a course are marked with an asterisk.  Several alternative methods for solving 
problems normally treated with calculus are presented as demonstrations of ‘out of the box’ 
thinking.  It is expected that students will still possess a textbook or at least a workbook of 
additional problems.  With luck, notes for Physics 2 and Physics 3 will follow. 

______________________________________________________________________________ 

I wish I could tell you how to succeed in Physics.  I can make some suggestions based on what 
other people have told me. 

1) Go to class.  Sit in the front row if you can. 
2) Ask a question (if your institution’s model allows it) if something is not clear.  Do it 

immediately.  Do not assume that you will be able to go home and figure it out on your 
own. 

3) This course is NOT a jumble of unrelated facts.  Especially in Physics I, everything is 
related to everything else through the two axioms.  Try to see how.  You will find many 
derivations in these notes which start with something you know and end with some new 
notion. 

4) Most of your Physics time will be spent problem solving, whether for in-class examples, 
homework, practice, or exams.  There is a generally accepted model for solving problems, 
as well as a generally accepted level of effort required.  These include 
a) a figure.  Figures tend to get complicated and eventually three-dimensional.  You will 

want to color code the different quantities.  In these notes, when necessary, forces are 
red, components of anything are blue, displacements are green, and other quantities 
some random color. 

b) a statement of what is known. 
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c) a statement of which principle of physics is being used to solve the problem. 
d) a sufficient amount of written effort that illustrates the steps taken. 
e) a result, including units. 
f) any other information requested, such as “What is the physical significance of your 

result?” 
5) Learning to solve physics problems is much like any other difficult endeavor, like playing 

the piano or competing in Sportsball.  ‘Don’t practice until you get it right; practice until 
you never get it wrong.’  You will need to start out easy and work your way up to more 
difficult situations.  The difficulty of the problems assigned ramps up.  In-class examples 
are generally fairly easy in order to illustrate a point.  In-class assignments (the Exercises) 
are usually a bit more difficult.  For reasons too complicated to discuss here, homework 
problems are of varied difficulty.  You should continue to try more and more difficult 
practice problems from your workbook.  Right before the exam, try the sample exam.  Note 
that the sample exams provided here do not have a question for each topic; they are 
included to give you an idea of the types of questions that will appear.  You should attempt 
as much as you can on your own, but… 

6) Forming study groups is a useful way to test yourself by discussing the material with your 
classmates.  Unless your class is run on a strict curve system, there is no disadvantage to 
you to help other students.   

7) I’ll add this little bit regarding exams.  Most questions on an exam will be standard type 
problems, although they will not be rehashed homework problems.  Often, there is a ‘twist’ 
to the question, but if the usual procedure is followed, the solution should still pop out.  
Some questions are derivations; for many students, this is the memorization part of the 
exam, although I contend that if you really know the material, you can simply do it and not 
waste that part of the brain.  Some questions are essays.  My experience is that students 
have the most trouble with the multiple choice questions.  Often, there are ulterior purposes 
for asking these.  Some are straight-forward, some are logic problems, some do not expect 
you to find the correct answer but instead to eliminate the incorrect ones.  It’s worth 
spending a moment to ask yourself,’ what is this question really asking me?’ 

Best of luck!   

D. Baum 
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Section 1 - Background 

Introduction 

In this semester, we will study 
what is now known as Newtonian 
mechanics.  The laws we shall 
discuss are unfortunately only 
approximately true, special case 
limits of the actual laws of the 
universe.  However, they are 
sufficiently correct to agree to high 
precision with reality so long as 
certain conditions are met.  The 
diagram shows a rough breakdown 
of the approaches necessary to a 
given situation.  So long as the speed of an object is less than about 10% of the speed of light, and 
the object is roughly larger than an atom but smaller than a star, we will probably be alright.  In 
the future, as you study these other regimes of physics, you will see that each type will begin to 
agree with its neighbor as it approaches the boundary.  For example, the equations of motion in 
special relativity and those for Newtonian physics look very different, but as the relativistic ones 
are applied to slower and slower objects, they begin to resemble the Newtonian relationships.  This 
is known as the correspondence principle. 

 

Dimensional Analysis 

Since, unlike most fields of academic inquiry, the conclusions of physics must agree with objective 
reality, we must be prepared to make measurements of various physical properties.  Modern 
physicists have determined that any physical quantity can be constructed from some combination 
of only seven basic, fundamental quantities or dimensions, the choice of which is somewhat 
arbitrary but currently standardized:  
 
[Length]  
[Mass]  
[Time]  
[Electrical Current]  
[Number of Particles]  
[Thermodynamic Temperature]  
and  
[Light Intensity].  
 
When we talk about the dimension of a quantity, we don’t mean dimension in the sense of the 
width, length, and height of a box.  Each of these specific measurements is a [Length].  The 
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dimension of the volume of a box is [Length]3.  Although we haven’t defined it yet, you probably 
have an idea of the meaning of speed; the dimension of speed is [Length]/[Time]. 
 
So, for example, next semester you will encounter the electric potential, which has the dimensions 
of [Mass][Length]2/[Current][Time]3.  Note that this construct is independent of the actual units 
used.  For example, this quantity is often called the voltage, since the volt is the standard unit for 
electric potential, but of course other units could just as easily be used instead.  The unit might 
change, but the dimension will remain the same.  
 

DISCUSSION 1-1 

Dimensional analysis can be a useful tool for gaining insight into the relationships among 
quantities that determine the behavior of a system.  For example, can we make a prediction for 
the dependence of the period (P, the time to complete one cycle) of a simple pendulum without 
knowing much physics?  On what parameters of the system could this depend?  What are the 
dimensions of these quantities?  

EXAMPLE 1-1 

A list of such quantities would perhaps include the length l of the string, the mass m of the 

bob, the amplitude of oscillation (A, the angle through which the bob swings), and perhaps 
the earth's gravity g, whatever that is.   

period T = [Time]  
mass m = [Mass]  

string length l = [Length]  

amplitude A = [1] (dimensionless, the radian is the ratio of two distances)  
gravitational field strength g = [Length]/[Time]2 (O.K., I had to give you this one).  

Since we’re looking for an expression for the period, whatever combination of parameters we 
decide on must have dimension of [Time].  Let’s suppose that  
 

P ∼  mୟ gୠ 𝑙௖  θ୅
ୢ   , 

 
where a, b, c, and d are powers of their respective variables and are to be determined.  Then, 
looking at the dimensions, 
 

ሾTሿଵ ൌ ሾMሿୟ ൬
ሾLሿ
ሾTሿଶ

൰
ୠ

ሾLሿୡሺ1ሻୢ  ൌ  ሾMሿୟሾTሿିଶୠሾLሿୠାୡሺ1ሻୢ    . 

 
If we’re going to have an equation, clearly both sides of the equation must have the same 
dimension.  We see that there is no [Mass] on the left side, so a = 0.  Continuing, 
 
a = 0; 
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1 = -2b  →  b = -1/2; 
0 = b + c → b = -c = +1/2; 
d can not be determined. 

The angle, being measured in dimensionless radians,1 can’t be determined.  But, if we try a 
little experiment, we find that A in fact has no effect on the period, so d = 0.  Our final result 
is that we expect the period of a simple pendulum to go as  

P ∼  gି
ଵ
ଶ 𝑙

ଵ
ଶ   ൌ ඨ

𝑙
g

    . 

The correct answer, as we'll see at the end of the course after much toil is  

P  ൌ 2πඨ
𝑙
g

    . 

Since 2 is a dimensionless quantity, this method could not detect it.  Even so, we got a good 
idea of how the period depends on the parameters of the system with relatively little effort.  

EXERCISE 1-1 

If we drop a marble from a height H above a table, it takes a certain amount of time to fall 
through distance H to the table.  Work out roughly the relationship between the time t and the 
height H. 

Units 

DISCUSSION 1-2 

Which weighs more, a pound of rocks or a pound of feathers? Which weighs more, an ounce 
of gold or an ounce of potatos?  Which weighs more, a pound of gold or a pound of potatos?  

Making measurements requires that we develop units for the measurements, and standards for 
these units, so that we may all understand what the measurements mean.  In the example above, 
an ounce of gold actually weighs more than an ounce of potatos, because gold, being a precious 
metal, is measured in troy ounces, which are larger than the avoirdupois ounces used for food.  On 
the other hand, a pound of potatos weighs more than a pound of gold, because there are 16 
avoirdupois ounces in an avoirdupois pound but only 12 troy ounces in a troy pound.  So, not only 
do we need to define units, we need to define which particular system of units they are associated 
with. 
 

                                                 
1 The radian is defined as the ratio of two distances. 
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In this class, we shall use the système international, also known as the MKSA system (for meter, 
kilogram, second, ampère).2,3  You are probably much more familiar with the U.S. Customary 
Units System, which is a patchwork of bizarre quantities and units.  Only three nations in the world 
have avoided an official change to the SI; in the U.S., the conversion was to have been 
accomplished by 1970.  Metric road signs are in use on some federal highways in Ohio, Kentucky, 
Tennessee, Arizona, Vermont, New Hampshire, Maine, and New York (some New York signs are 
also in French!), and exits are numbered by km on Rte 1 in Delaware. Here is a partial list of units 
used to measure distance in the United States:  
 
inch;  
foot; 1 foot = 12 inches  
yard;  1 yard = 3 feet  
fathom; 1 fathom = 2 yards  
rod; 1 rod = 16 2/3 ft  
ell; 1 ell = 2 ft  
mil; 1000 mils = 1 inch  
furlong; 1 furlong = 220 yards  
chain; 1 chain = 66 feet  
link; 100 links = 1 chain  
mile; 1 mile = 5280 feet = 1760 yards = 8 furlongs  
league; 3 miles = 1 league 
hand; 1 hand = 4 inches 
span; 1 span = 9 inches 
palm; 1 palm = 3 inches 
finger; 1 finger = 7/8 inch 
digit; 1 digit = 1/16 foot 
shaftment; 1 shaftment = 6 inches 
 
Do you know any others? 

When we describe the distance from one point to another, we usually like to use units for which 
the number is of a reasonable size.  What I mean is, if I describe the distance between my stapler 
and my computer, I would say, 21/2 feet, not 4.7x10-4 miles.  The distance between Catonsville and 
D.C is 39 miles, not 3120 chains.  However, the conversion factors between units are quite 
unwieldy.  The structure of the SI makes conversion between large and small units much more 
convenient.  There is a small number of basic units, and all other units with the same dimension 
are some power of ten larger or smaller, usually specified with a Latin or Greek prefix:  

giga = 109  
mega = 106  
kilo = 103  
milli = 10-3  
micro = 10-6  

                                                 
2 There is more than one metric system, so we need to be specific.   
3 The metric system survives as one of the innovations of the First Republic (the calendar was not so lucky, but then 
how would we know when not to eat oysters?).  
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nano = 10-9  
et c.  

For example, the meter is the basic unit for length, and other units include the kilometer (1000 m), 
the milllimeter (1/1000 m), et c. So, I would express the distance from Catonsville to D.C. as 62 
kilometers, not as 62,000 meters. 

The definitions of each unit are also well specified, although many of the definitions have 
evolved.  For example, the meter was initially defined in the 1790s as 1/10,000,000 of the distance 
from the equator to the North Pole along the meridian passing through Paris.4  Since this is not an 
easy standard to use, it was redefined in 1889 as the distance between two scratches on a platinum-
iridium bar, kept just outside Paris.  Since taking a long trip to compare measurements with the 
bar is inconvenient, a number of other nations were provided with their own bars (ours is in 
Gaithersburg).  As the necessity of making more precise measurements increased, the definition 
of the meter was changed so that anyone with the proper equipment could reproduce the standard; 
in 1960, the definition was changed to the distance covered by a 1,650,763.73 wavelengths of a 
particular orange emission line generated by 86Kr.  Finally, the definition of the meter was changed 
again in 1983 to be the distance traveled by light in 1/299,792,458 of a second.  

Although it seems as if the progressive definitions of the metre are making it more difficult to 
compare our measurements to the standard, it is actually the reverse; by liberating the standard 
from a particular piece of matter and basing it more on the laws of the nature, which are universal, 
anyone with the appropriate equipment can reproduce the standard  in the comfort of his own 
laboratory.   

Students often find converting units difficult.  The factor label method is useful and 
straightforward; one only need multiply by one. 

EXAMPLE 1-2 

Suppose that we wish to find out how many seconds X there are in 3 years:  

X seconds ൌ 3 years   . 

Note that the units are different on each side, but that the dimensions are the same, [Time].  
We'll multiply the right hand side of the equation by a quantity equal to one; we do that 
because multiplying a number by one does not change its value.  The quantity we choose to 
multiply by is (12 months/1 yr).  Since the numerator equals the denominator and since both 
have dimensions of [Time], the quotient equals one, and the right hand side is still equal to 
three years.  We cancel the units and see  that :  

X seconds ൌ 3 years ൬
12 months

1 year
൰ ൌ 36  months  . 

                                                 
4 The current 2°20′14.03″ meridian. 
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Continuing, a complete calculation would look like this: 

X seconds ൌ 3 years ൬
12 months

1 year
൰ ൬

30 days
1 month

൰ ൬
24 hours

1 day
൰ ൬

60 minutes
1 hour

൰ ൬
60 seconds

1 hour
൰

ൌ 9.33 ൈ 10଻seconds. 

EXERCISE 1-2 

A meter is 100 centimeters.  Find the volume in cubic centimeters of a box with a volume of 
one cubic meter.  

HOMEWORK 1-1 

The interior of a typical ranch-style home may measure 50 ft x 24 ft x 8 ft.  What is the volume 
of this home in cubic ft?  Convert this result to cubic inches and to cubic centimeters. 

Coördinate systems 

As we shall soon see, we'll need a way of keeping track of the positions of objects, as well as other 
quantities.  In one dimension, that's fairly easy; we 
use the equivalent of the 'number line' we learned 
back in third grade, with some arbitrary point 
chosen as the origin (and usually chosen to 
maximize our convenience).  
 

When we go to two dimensions, there are quite a 
number of systems, but the two most useful are 
the rectilinear or Cartesian system and the polar 
system.  In the first, two 'number lines' are set up 
at right angles with the origins at the same spot 

and with equal unit spacing.  We must however 
realize that these are not necessarily the x and y 
axes, but for now, let's say that they are.  
 
The location of an object in two dimensions can 

The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.
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be specified uniquely by reporting two numbers in an ordered pair in the form (a, b).  The meaning 
is to start at the origin, move 'a' units in the x-direction and 'b' units in the y-direction; in this 
example, the location is (3, 2).  The position can also be specified as a direction (usually reported 
as the angle measured counter-clockwise from the x-axis) and the distance from the origin, (r, ).  
A negative angle is interpreted as being measured CW from the x axis.  Conversion between these 
systems is possible through the use of the trig functions and the Pythagorean theorem: 
 

sin θ ൌ  
opposite

hypotenuse
ൌ

y
r

  →   y ൌ r sinθ 

 

cos θ ൌ
adjacent

hypotenuse
ൌ  

x
r

  →   x ൌ r cosθ 

 

tanθ ൌ
opposite
adjacent

ൌ  
y
x

  →   θ ൌ arctan ቀ
y
x
ቁ
∗
 

 

hypotenuseଶ ൌ  oppositeଶ ൅ adjacentଶ  → r ൌ  ൅ඥxଶ ൅ yଶ  
 
Note that r is never negative. 
 
EXERCISE 1-3 
 

Find r and theta for the point (3, 2) as shown in the figure above. 
 
Now, we usually think of the lengths of the sides of a triangle as being positive numbers, which is 
why I introduced these relationships in the first quadrant.  I assert, however, that with one small 
warning, these are valid in all four quadrants.  
 
DISCUSSION 1-3 
 

Keeping in mind that r is never negative, in which quadrants is x/r positive and where is it 
negative?  Where is cos θ positive and where is it negative? Do these match up?  What about 
y/r and sin θ? 
 
Now, here is why there is an asterisk next to the arctan function.  Get your calculator and find 
the arctangent of (2/3).  Which quadrant is 33.7o in?  Now find the arctangent of (-2/-3).  In 
which quadrant should the answer be? 

 
The problem is that your calculator does the division first, then the arctangent.  It doesn’t know 
the distinction between (-2/-3) and (2/3).  Your calculator will always give you an angle between 
-90o and +90o; it’s up to you to fix this each time.  Here’s my suggestion.  If the angle is in fact in 
Quadrant I or IIII where x is positive, then the angle your calculator gives you is already correct, 
so you do nothing.  On the other hand, if the angle is in II or III where x is negative, you must add 
180o.  So, the easiest test is to look at x.  If x is positive, you’re good.  If x is negative, that’s bad, 
and you need to fix it.  I require this: if no correction is necessary, you must still indicate that you 
checked to see if one was necessary.  I’ll be happy with a √ Q on your paper. 
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EXERCISE 1-4 

Find the polar coördinates for the cartesian location (-3, -1).  

Find the cartesian coördinates for the polar location (4, 120o) 

HOMEWORK 1-2 

How far from the origin is a point located at (1 m, 4 m)? 

Scalars and Vectors 

In this course, we deal with two types of quantities, scalars and vectors.  There are other types of 
quantities, such as tensors, that thankfully we will not need to worry about.  A scalar is a quantity 
that possesses only a size or magnitude.  A vector possesses a magnitude and a direction. 

DISCUSSION 1-4 

Consider the evening weather report.  Which quantities are vectors and which are scalars? 

The notation for vectors is to use bold type or to place a half arrow above the symbol:  A or Aሬሬ⃑ .  
The magnitude only is written as A or less ambiguously as หAሬሬ⃑ ห.  During this course, we will 
sometimes drop the arrow and rely on your sense of context to know which quantities are vectors. 

We often represent vectors with arrows drawn on for example a paper sheet.  Arrows also have 
two properties we can make use of: they have direction and they have length.  We can make the 
directions be the same, and make the length of the arrow be proportional to the magnitude of our 
vector. 

We want to investigate some properties of vectors.  To do so, let’s jump the gun a bit and introduce 
the vector displacement.  The displacement represents the movement of an object.  We can think 
of it as pointing from the starting position to the final position. This makes the visualization a bit 
easier at the start.  Later, vectors will represent much more abstract quantities, such a momentum, 

magnetic fields, or isospin.  We do 
need to be careful; once a vector is 
defined, it has only two properties, 
magnitude and direction.  We can 
move the vector around as much as 
we wish so long as those two 
properties remain constant.  For 
example, in the figure, vector Aሬሬ⃑  was 
constructed to represent the 
displacement from the START to the 
FINISH, but all of the other vectors 
drawn are just as validly vector Aሬሬ⃑ . 
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We can visualize adding vectors in terms of displacements: Aሬሬ⃑  + Bሬሬ⃑  says that we should start at our 
origin and travel A meters in a direction given by A, then from that intermediate destination, travel 
B meters in the direction given by B.  Conceptually, this is known as the tail-to-tip method of 
addition.5  The red vector is the sum, or resultant, of Aሬሬ⃑  + Bሬሬ⃑ .  Now, look at the bottom diagram.  If 
we were to perform the motion described by Bሬሬ⃑  first, then perform Aሬሬ⃑ , we would wind up in the same 
place.  That means that vector addition is commutative.  The order of addition doesn’t matter: 

Aሬሬ⃑ ൅ Bሬሬ⃑ ൌ Bሬሬ⃑ ൅ A ሬሬሬ⃑   . 

An alternate, but equivalent, method of addition is the 
parallelogram method.  This helps explain the 
contention of commutativity; the two long sides are 

each A and the 
two short sides 
are each B.  The 
resultant will be 
the diagonal of 
the parallelo-
gram. 

 

When more than two vectors are added graphically, we 
must do one at a time, so 

Aሬሬ⃑ ൅ Bሬሬ⃑ ൅ Cሬ⃑ ൅ Dሬሬ⃑ ൌ ቀ൫Aሬሬ⃑ ൅ Bሬሬ⃑ ൯ ൅ Cሬ⃑ ቁ ൅ Dሬሬ⃑  

Vector addition is also associative: 

Aሬሬ⃑ ൅ ൫Bሬሬ⃑ ൅ Cሬ⃑ ൯ ൌ ൫Aሬሬ⃑ ൅ Bሬሬ⃑ ൯ ൅ Cሬ⃑  

 

EXERCISE 1-5 

Make an argument that vector addition is associative.  Try a graphical solution with three 
vectors.  

HOMEWORK 1-3 

                                                 
5 Well, O.K. it’s actually called the tip-to-tail method, but that makes no sense.  Let’s make it a thing. 
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Anne walks a certain distance due north, then turns due east and walks twice as far.  At the end 
of her trip, she is 450 meters from her starting point, as the crow flies.  What is the length of 
each leg of the trip?  What is the direction of her displacement relative to north? 

I have no idea how to subtract vectors, but I know a trick from grade school.  When I learned to 
add, for example 5 + 2, I started at the origin of the number line and moved five to the right, then 
another two to the right.  To subtract, say 5 – 2, I moved five to the right, then two to the left, that 
is, I did 5 + (-2).  Let’s try this: 

Aሬሬ⃑ െ Bሬሬ⃑ ൌ Aሬሬ⃑ ൅ ൫െBሬሬ⃑ ൯ . 

The question is then, what is -Bሬሬ⃑ ?  I think we would want to require  

𝐵ሬ⃑ ൅ ൫െ𝐵ሬ⃑ ൯ ൌ 0ሬ⃑   , 6 

That is, -B must have the same magnitude as B, but point in 
exactly the opposite direction 

Comparison to the parallelogram method reveals that Aሬሬ⃑  – Bሬሬ⃑  is 
the other diagonal of the parallelogram (as is Bሬሬ⃑  – Aሬሬ⃑ , the same 
diagonal but pointing in the other direction).  

Once again, to add vectors graphically, one would take paper, 
ruler and protractor, choose a scale, and draw arrows to represent the vectors such that the length 
of each is proportional to the magnitude of the corresponding vector.  To find the resultant, 
measure the length of the resultant with the ruler and back convert to find the magnitude, and use 
the protractor to find the direction. 

Well, we really don’t want you adding vectors with 
rulers and protractors for the rest of the semester.  Let’s 
investigate an analytic method.  Now that we can add 
vectors, we can also see that any given vector (shown 

in black) can be written as the sum of 
two (or more) other vectors.  In the 
diagram, you can see that the black 
vector is the sum of the two red vectors, 
but it is also the sum of the two green 
vectors as well as the sum of the two 
blue vectors.  If that's true, we might as 

                                                 
6 Technically speaking, this zero is also a vector, the null vector. 
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well choose two vectors that will be convenient for us.  If we make the two vectors perpendicular, 
we might be able to use trig relationships to suss out some info.  
 
Ax is called the x-component of A and Ay is the y-component of A, that is, how much the vector 
points in each direction.  Ax and Ay are actually scalars, although they can be positive or negative 
or even zero.  We convey the directional information through the use of the unit vectors ı ̂ (x 
direction), ȷ ̂(y direction), and k෠ (z direction).  Unit vectors have length one and are dimensionless 
(that information is carried in the components).  Sticking with two dimensions for now, we can 
write that Aሬሬ⃑  = Axı ̂ + Ayȷ.̂  From trig, we see that Ax = AcosA and that Ay = AsinA.  Note that if 
we measure A CCW from the x axis, that the signs of the trig functions correctly give the signs 
of the components.   
 
EXAMPLE 1-3 

 
Let Aሬሬ⃑  be 15 m at A= 120o, which is in the second quadrant.  We find that  
 

A୶ ൌ A cos θ୅ ൌ ሺ15 mሻ cos 120୭ ൌ  െ7.5 m      
A୷ ൌ A sin θ୅ ൌ ሺ15 mሻ sin 120୭ ൌ  ൅13 m    

 
So, Aሬሬ⃑  ൌ  െ7.5 ı ̂  ൅  13 ȷ ̂meters   . 
 
and the signs of these components match what we know about the direction of Aሬሬ⃑ .  
 

HOMEWORK 1-4 

The direction of a vector is 127o measured from the x-axis, and its y-component is 12.0 
units.  Find the x-component of the vector and the magnitude of the vector.  

Now, we have an alternate manner of adding vectors using the components.  Let Cሬ⃑  = Aሬሬ⃑  + Bሬሬ⃑ .   
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I hope it’s clear that Cx = Ax + Bx and Cy = Ay + By.  We might say that the components of the 
sum are the sums of the components.  Once we have the components of Cሬ⃑ , we can convert them 
back to a magnitude and a direction angle. 

EXAMPLE 1-4 

Let Cሬ⃑  = Aሬሬ⃑  + Bሬሬ⃑ .  Find the magnitude and 
direction angle of Cሬ⃑ .   
 
A = 7 m    θA = 35o 
B = 12 m  θB = 155o 
 
First, we find the components of Aሬሬ⃑  and Bሬሬ⃑ : 
 
A୶ ൌ A cosθ୅ ൌ ሺ7 mሻ cos 35୭

ൌ  ൅5.73 m 
A୷ ൌ A sinθ୅  ൌ ሺ7 mሻ sin 35୭

ൌ  ൅4.02 m 
B୶ ൌ B cos θ୆ ൌ ሺ12 mሻ cos 155௢ ൌ  െ10.88 m 
B୷ ൌ B sin θ୆  ൌ ሺ12 mሻ sin 155௢ ൌ  ൅5.07 m   .    
 
Then we do with the components what we’re asked to do with the vectors: 
 

C୶ ൌ A୶ ൅ B୶ ൌ 5.73 ൅ ሺ-10.88ሻ ൌ-5.15 m  
C୷ ൌ A୷ ൅ B୷ ൌ 4.02 ൅ 5.07 ൌ 9.09 m   .  

 
Then, we reconstitute the components of Cሬ⃑  back into a magnitude and direction: 
 

C ൌ ൅ටC୶ଶ ൅ C୷ଶ ൌ ඥሺ-5.15ሻଶ ൅ 9.09ଶ ൌ 10.45 m  , 

θେ ൌ arctan ൬
C୷
C୶
൰

*

ൌ arctan ൬
9.09
-5.15

൰  ൌ arctanሺ-1.76ሻ ൌ -60.47୭  . 

 
Are we done?  No, we need to check the quadrant of the angle to see if the calculator’s answer 
is correct.  In this case, it is not.  Because Cx<0, we need to add 180o to the result.  So 

 
θେ  ൌ  െ60.47 ൅ 180 ൌ 119.53୭   . 

HOMEWORK 1-5 
 
Vector Aሬሬ⃑  has magnitude 8.0 units at an angle of 60o from the x-axis.  Vector Bሬሬ⃑  has magnitude 
6.0 at an angle of -30o from the x-axis.  Find the magnitude and direction of vector Cሬ⃑  = Aሬሬ⃑  + Bሬሬ⃑ . 

 
Vector Multiplication 
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There are a number of ways vectors can be multiplied; we’ll deal with three.   
The first type of multiplication is perhaps familiar from grade school.  Let’s multiply Aሬሬ⃑  by a scalar, 
3, and call that Cሬ⃑ :   
 

Cሬ⃑ ൌ 3 Aሬሬ⃑   . 
 
This type of multiplication is repeated addition.   
 

Cሬ⃑ ൌ Aሬሬ⃑ ൅ Aሬሬ⃑ ൅ Aሬሬ⃑  . 
 
We can see that Cሬ⃑  is in the same direction of Aሬሬ⃑  but with three times the magnitude.  It should be 
easy to see that we could expand this notion to non-integer multiples as well.  It’s a little more 
complicated when the scalar is not a dimensionless number, but the notion is the same; the value 
and dimension of the magnitude will change, but the direction will remain the same.7 
 
Next, we will define the scalar product (also called the inner product or the dot product) of two 
vectors Aሬሬ⃑  and Bሬሬ⃑  to be: 
 

𝐴  ∙ 𝐵ሬ⃑ ൌ  ห𝐴หห𝐵ሬ⃑ ห cos 𝜃஺,஻  , 
  

that is, the magnitude of Aሬሬ⃑  times 
the magnitude of Bሬሬ⃑  times the 
cosine of the angle between them 
if they were placed tail to 
tail.  The dot product is defined to 
be a scalar.  One interpretation of 
this definition is that we are 
multiplying the magnitude of Aሬሬ⃑  
by the component, or projection,8 

of Bሬሬ⃑  that lies in the direction of Aሬሬ⃑ :  
 

Aሬሬ⃑  ∙ Bሬሬ⃑ ൌ  A B|| ൌ A ሺB cos θ୅,୆ሻ ൌ  หAሬሬ⃑ หหBሬሬ⃑ ห cos θ୅,୆  , 
 
as shown in the figure on the left.  Clearly, though, we could just as well think of it as the magnitude 
of Bሬሬ⃑  times the projection of Aሬሬ⃑  on Bሬሬ⃑ : 
 

หAሬሬ⃑ หหBሬሬ⃑ ห cos θ୅,୆ ൌ B ሺA cos θ୅,୆ሻ ൌ  B A|| ൌBሬሬ⃑  ∙ Aሬሬ⃑    . 
 
The dot product is therefor commutative. 
 

                                                 
7 Looking way ahead, the momentum p of an object is given by the mass times the velocity v. Momentum and velocity 
are in the same direction, but they have very different dimensions. 
8 You can think of a projection as analogous to a shadow, the shadow that Bሬሬ⃑  casts on Aሬሬ⃑ . 
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Keep in mind that there is nothing magical about the dot product.  It is simply a shorthand way of 
writing a particular process; as the course progresses, we’ll see that we are often interested in how 
much of one vector is in the direction of another. 
 
DERIVATION 1-1* 
 
Alternatively, we can write the vectors Aሬሬ⃑  and Bሬሬ⃑  in terms of the unit vectors ı ̂, ȷ,̂ and k෠.  Remember 
that ı ̂ ∙ ı ̂ ൌ ȷ̂ ∙ ȷ̂ ൌ k෠ ∙ k෠ ൌ 1 and ı̂ ∙ ȷ̂ ൌ ȷ̂ ∙ k෠ ൌ k෠ ∙ ı ̂ ൌ 0.  Then, 
 

Aሬሬ⃑  ∙ Bሬሬ⃑ ൌ  ൫A୶ı̂൅ A୷ȷ̂ ൅ A୸k෠൯ ൉ ൫B୶ı ̂ ൅ B୷ȷ̂ ൅ B୸k෠൯
ൌ A୶B୶ı ̂ ∙ ı ̂ ൅  A୶B୷ı ̂ ∙ ȷ̂ ൅ A୶B୸ı ̂ ∙ k෠ ൅ A୷B୶ı ̂ ∙ ȷ̂ ൅ A୷B୷ȷ̂ ∙ ȷ̂ ൅  A୷B୸ȷ̂ ∙ k෠ 

൅ A୸B୶ı ̂ ∙ k෠ ൅ A୸B୷ȷ̂ ∙ k෠ ൅  A୸B୸k෠ ∙ k෠  
ൌ A୶B୶ ൅ A୷B୷ ൅ A୸B୸  

 
Another type of vector multiplication is the vector product or the cross product, which we define 
in two parts.  We define the magnitude of the cross product to be 
 

หAሬሬ⃑ ൈ Bሬሬ⃑ ห ൌ  หAሬሬ⃑ หหBሬሬ⃑ ห sinθ୅,୆  . 
 
that is, we’re taking the magnitude of A and multiplying by the 
component of B that is perpendicular to A.  One interpretation of the 
cross product's magnitude is that it is the area of the parallelogram 
formed by the vectors A and B when they are placed tail to tail.  
Using an argument like the one for the dot product, we see that 
 

หAሬሬ⃑ ൈ Bሬሬ⃑ ห ൌ หBሬሬ⃑ ൈ Aሬሬ⃑ ห   . 
 
However, there is a second part to the cross product, direction.  We 
define the direction of Aሬሬ⃑  × Bሬሬ⃑  to be perpendicular to the plane that 
contains Aሬሬ⃑  and Bሬሬ⃑ .  That leaves two possible directions, for example, in the diagram, into the page 
or out of the page.  We define the direction sense using the right-hand-rule (RHR).  Point your 
index finger of your right hand in the direction of Aሬሬ⃑  and your middle finger in the direction of Bሬሬ⃑ ; 
your right thumb then points in the direction of the cross product.  You can then see that 
 

Aሬሬ⃑ ൈ Bሬሬ⃑ ൌ െ Bሬሬ⃑ ൈ Aሬሬ⃑    . 
 
DERIVATION 1-2* 
 

Alternatively, we can write the vectors Aሬሬ⃑  and Bሬሬ⃑  in terms of the unit vectors ı ̂, ȷ,̂ and k෠.  
Remember that ı ̂ ൈ ı ̂ ൌ ȷ̂ ൈ ȷ̂ ൌ k෠ ൈ k෠ ൌ 0 and ı̂ ൈ ȷ̂ ൌ k෠, ȷ̂ ൈ k෠ ൌ ı ̂, and k෠ ൈ ı ̂ ൌ ȷ.̂  Then, 
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Aሬሬ⃑  ൈ Bሬሬ⃑ ൌ  ൫A୶ı ̂ ൅ A୷ȷ̂ ൅ A୸k෠൯ ൈ ൫B୶ı ̂ ൅ B୷ȷ̂ ൅ B୸k෠൯
ൌ A୶B୶ı ̂ ൈ ı ̂ ൅  A୶B୷ı ̂ ൈ ȷ̂ ൅ A୶B୸ı ̂ ൈ k෠ ൅ A୷B୶ȷ̂ ൈ ı ̂ ൅ A୷B୷ȷ̂ ൈ ȷ̂ ൅  A୷B୸ȷ̂ ൈ k෠ 

൅ A୸B୶k෠ ൈ ı ̂ ൅ A୸B୷k෠ ൈ ȷ̂ ൅  A୸B୸k෠ ൈ k෠  
ൌ ൫A୷B୸ െ A୸B୷൯ ı ̂ ൅  ሺA୸B୶ െ A୶B୸ ሻ ȷ̂ ൅  ൫A୶B୷ െ  A୷B୶൯ k෠ . 

 
There is a quick way of remembering how to do this.  Arrange 
the components into a table as seen in the top figure.  Rewrite 
the first two columns at the right of the table, as shown in the 
middle figure.  Lastly, multiply the quantities along each 
diagonal as shown.  If the diagonal is to the down and to the 
right (red), add the product and if it's to the left (blue), subtract. 

 
HOMEWORK 1-6* 
 

Given that  
 

Aሬሬ⃑ ൌ 3ı ̂ െ 4ȷ̂ ൅ k෠    and Bሬሬ⃑ ൌ  െı ̂ ൅ 3ȷ̂ ൅ 2k෠     ,  
 
find Aሬሬ⃑ ∙ Bሬሬ⃑  and Aሬሬ⃑ ൈ Bሬሬ⃑   . 

 
It is also sometimes useful to combine successive multiplications.  Consider the scalar triple 
product.  We’ll be using this for one problem only, but this seems like the appropriate time to 
introduce it.  Consider three vectors, not all in the same plane.  The scalar triple product has an 
interesting useful property: 
 

Aሬሬ⃑ ∙ ൫Bሬሬ⃑ ൈ Cሬ⃑ ൯ ൌ Bሬሬ⃑ ∙ ൫Cሬ⃑ ൈ A൯ ൌ Cሬ⃑ ∙ ൫Aሬሬ⃑ ൈ Bሬሬ⃑ ൯  . 
 
DERIVATION 1-3* 
 

The three vectors Aሬሬ⃑ , Bሬሬ⃑ , and 
Cሬ⃑ , when paced tail to tail to 
tail, are the edges of a 
parallelepiped solid.  As 
discussed above, the 
magnitude of the cross 
product of Aሬሬ⃑  and Bሬሬ⃑  gives the 
area of the parallelogram-
shaped base of the solid.  
The volume V of the solid 
will be the base area times 
the height, H: 
  

𝑉 ൌ 𝐻หAሬሬ⃑ ൈ Bሬሬ⃑ ห   . 
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The height H is the projection of Cሬ⃑   on Aሬሬ⃑ ൈ Bሬሬ⃑ , so  
 

𝑉 ൌ Cሬ⃑ ∙ ൫Aሬሬ⃑ ൈ Bሬሬ⃑ ൯   . 
 
Now, we do need to be a little careful, in that Cሬ⃑  should be on the same side of the AB plane as 
Aሬሬ⃑ ൈ Bሬሬ⃑ ; if not, then we get the negative of the volume instead.   
 
Now, imagine that we were to roll the solid onto its BC face.  The volume would be 
 

𝑉 ൌ Aሬሬ⃑ ∙ ൫Bሬሬ⃑ ൈ Cሬ⃑ ൯   . 
Rolling it over again onto its AC side, 
 

𝑉 ൌ Bሬሬ⃑ ∙ ൫Cሬ⃑ ൈ Aሬሬ⃑ ൯   . 
 
Since rolling the solid over doesn’t change its volume, we have a useful relationship: 
 

Aሬሬ⃑ ∙ ൫Bሬሬ⃑ ൈ Cሬ⃑ ൯ ൌ Bሬሬ⃑ ∙ ൫Cሬ⃑ ൈ A൯ ൌ Cሬ⃑ ∙ ൫Aሬሬ⃑ ൈ Bሬሬ⃑ ൯  . 
 

Lastly, let’s consider the vector triple product, Aሬሬ⃑ ൈ ൫Bሬሬ⃑ ൈ Cሬ⃑ ൯.  I assert that 
 

Aሬሬ⃑ ൈ ൫Bሬሬ⃑ ൈ Cሬ⃑ ൯ ൌ  ൫Aሬሬ⃑  ∙ Cሬ⃑ ൯Bሬሬ⃑ െ  ൫Aሬሬ⃑  ∙ Bሬሬ⃑ ൯Cሬ⃑   . 
 
DERIVATION 1-4* 
 

The straightforward path is to write each vector in terms of the unit vectors ı ̂, ȷ,̂ and k෠, then 
perform the operations required on each side of the equation.  Let’s try to see if we can do it in 
a less tedious way.9 
 
The vector Bሬሬ⃑ ൈ Cሬ⃑  is of course perpendicular to the plane containing both Bሬሬ⃑  and Cሬ⃑ .  When we 
cross Aሬሬ⃑  with that vector, the result is perpendicular to Bሬሬ⃑ ൈ Cሬ⃑ , which means it lies back in the 
B-C plane.  Therefore, we can write the triple product in terms of some additive combination 
of Bሬሬ⃑  and Cሬ⃑ : 
 

Aሬሬ⃑ ൈ ൫Bሬሬ⃑ ൈ Cሬ⃑ ൯ ൌ  α Bሬሬ⃑ ൅  β Cሬ⃑    , 
 
where alpha and beta are real numbers.  The triple cross product must for this same reason also 
be perpendicular to Aሬሬ⃑ , so  
 

Aሬሬ⃑ ∙ ൫α Bሬሬ⃑ ൅  β Cሬ⃑ ൯ ൌ 0 , 
 

α Aሬሬ⃑ ∙ Bሬሬ⃑ ൌ  െ β Aሬሬ⃑ ∙ Cሬ⃑     . 
                                                 
9 Ercelebi, Atilla, “A×(B×C).pdf,” accessed 12/4/2020, www.fen.bilkent.edu.tr/~ercelebi/Ax(BxC).pdf. 
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This requires that  
 

α ൌ γ Aሬሬ⃑ ∙ Cሬ⃑      and     β ൌ െ γ Aሬሬ⃑ ∙ Bሬሬ⃑    , 
 
with gamma some presently unknown number that will cancel out upon substitution back into 
the previous equation.10  This relationship should be correct for any vectors, so let’s see if we 
can determine gamma by applying these relationships to a specific set of vectors, ı ̂, ȷ,̂ and k෠: 
 

ı ̂ ൈ ሺı ̂ ൈ ȷ̂ሻ ൌ  α ı ̂ ൅  β ȷ⃑   , 
 

ı ̂ ൈ k෠ ൌ  ሺγ ı ̂ ∙ ȷሻ̂ ı ̂ ൅  ሺെ γ ı ̂ ∙ ı ̂ሻ ȷ⃑   , 
 

െȷ̂ ൌ  ሺ0ሻ ı ̂ ൅  ሺെ γሻ ȷ⃑   , 
 

γ ൌ 1  . 
 
Now we have that  
 

Aሬሬ⃑ ൈ ൫Bሬሬ⃑ ൈ Cሬ⃑ ൯ ൌ  α Bሬሬ⃑ ൅  β Cሬ⃑ ൌ  ൫Aሬሬ⃑ ∙ Cሬ⃑ ൯ Bሬሬ⃑ െ ൫Aሬሬ⃑ ∙ Bሬሬ⃑ ൯ Cሬ⃑   . 

 

 
EXERCISE 1-1 Solution 

What quantities might affect the time and what are their respective dimensions?  Well, we have  

height H = [Length]  
time t = [Time] 
mass m = [Mass] 
gravitational field strength g = [Length]/[Time]2  

We might guess that  
 

t ~ Hୟmୠgୡ  . 
 

ሾ𝑇ሿଵ ൌ  ሾ𝐿ሿ௔ሾ𝑀ሿ௕ ൬
ሾ𝐿ሿ
ሾ𝑇ሿଶ

൰
௖

ൌ ሾ𝐿ሿ௔ା௖ሾ𝑀ሿ௕ሾ𝑇ሿିଶ௖  .  

 
Then, 
 
0 = a+c; 
b = 0; 
                                                 
10 In other words, α = AꞏC, β = AꞏC is not the only possible solution; α = 6.7 AꞏC, β = 6.7 AꞏB would fit as well.  We 
need an unambiguous solution. 
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1 = -2c → c = -1/2; 
a = -c = +1/2. 
 

t ~ Hଵ/ଶgିଵ/ଶ ൌ  ඨ
𝐻
𝑔

  . 

 
The correct relationship, as we will see in the next section, is 
 

t ൌ  ඨ
2𝐻
𝑔

  . 

 
 
EXERCISE 1-2 Solution 
 

X cmଷ ൌ 1mଷ ൬
100 cm

1 m
൰  ൬

100 cm
1 m

൰ ൬
100 cm

1 m
൰ ൌ  10଺cmଷ  . 

 
Note that you must cancel each of the three meters in the original value. 
 
EXERCISE 1-3 Solution 
 

θ ൌ arctan ቀ
y
x
ቁ
∗
ൌ arctan ൬

2
3
൰ ൌ  33.7୭ 

 

r ൌ  ൅ඥxଶ ൅ yଶ  ൌ  ൅ඥ3ଶ ൅ 2ଶ ൌ 3.61 
 
EXERCISE 1-4 Solution 
 
x = -1, y = -3 (There were no units.) 
 

r ൌ  ൅ඥxଶ ൅ yଶ ൌ  ൅ඥሺെ3ሻଶ ൅ ሺെ1ሻଶ ൌ  √10 ൌ 3.16 
 
Be sure to square the negative signs! 
 

θ ൌ arctan ൬
െ3
െ1

൰
∗

ൌ  arctanሺ3ሻ∗ ൌ  71.6୭ 

 
But, x is negative, so we need to add 180o to get 251.6o as the correct answer. 
 
For the second part of the exercise, we have r = 4, θ = 120o.  In this direction, there’s no ambiguity. 
 

x ൌ r cos θ ൌ 4 cos 120଴ ൌ  െ2 
 

y ൌ r sinθ ൌ 4 sin 120୭ ൌ 3.46 
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EXERCISE 1-5 Solution 

 
This is a demonstration, not a proof: 
 
The green vector is the sum of 𝐴, 𝐵ሬ⃑ , and 𝐶, and 
can be written as (𝐴+𝐵ሬ⃑ ) + 𝐶, or as 𝐴+ (𝐵ሬ⃑ +𝐶). 
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Section 2 - Kinematics in One Dimension 

Kinematics is the study of the motion (same root as cinema) of an object, without regard to the 
causes of that motion.  Most of this section involves defining a number of terms. 

Displacement and Distance 

We'll need first of all to be able to define the location of an object.  In one dimension, we can 
consider the 'numberline' axis discussed in the last section and use the variable 'x' to label the 
position relative to the origin in meters, so that statements such as 'x = +3 m' and 'x = -7.46 m' 
mean that the object is 3 m from the origin in the positive direction (not necessarily to the right of 
it, though!) and 7.46 m from the origin in the negative direction, respectively.  
 
We also need to be able to describe the change in location of an object.  We define the displacement 
x of an object which started at initial position xi and ended up at final position xf as  
 

∆x ൌ  x୤ െ  x୧   . 
 
Note that, according to this definition, the displacement depends only on where the object started 
and ended, not on the path taken.  
 
DISCUSSION 2-1 

 
Suppose that an object starts out at xi = 3 m and ends at xf = 5m, and makes that trip smoothly 
and without reversing direction.  What is the displacement?  Now, suppose instead that the 
object travels from x = 3 m to x = 15 m, then back to x = - 8 m, then on to x = 5 m.  What is 
the displacement in that case?  
 
Suppose instead that the object moved from x = 5 m to x = 3 m.  What then would be the 
displacement?  Is the displacement a scalar or vector quantity? 1 
 
Suppose that Object 1 moves from x = 5 m to x = 9 m, while Object 2 moves from x = 7 m to 
x = 11 m.  Which object had the larger displacement? 
 

In the first two cases, the displacements are the same at +2 m.  As was mentioned, the path is not 
relevant to the displacement.  In the third case, the displacement is -2 m.  Since there is a difference 
between the motion 2 meters to the right and motion 2 meters to the left, displacement must be a 
vector.  Finally, both Objects 1 and 2 have the same displacements. In the next few sections, we 
will let the sign of a vector indicate its direction. 
 
Distance (s) is the term we use for the length of the path taken.  As a rough analogy, think of the 
distance as the number of steps one takes getting from A to B.   
 
                                                 
1 So, if displacement is a vector, it follows that position must technically also be a vector.  But how can an object be 
described as being at x = 5 m in any particular direction?  I think we must consider position as being relative to the 
origin, somewhat awkwardly, as a virtual displacement. 
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DISCUSSION 2-2 
 

What relationship exists between the distance and the magnitude of the displacement?  Suppose 
that I walk the 7 meters from the desk to the back of the room.   What is the magnitude of my 
displacement?  What is my distance?  Now, however, I walk from the front of the room to the 
rear, then back to the front, then return to the rear.  What is the magnitude of my overall 
displacement?  What is my overall distance?  Can you explain why these results are different? 

 
No matter what I do, any motion adds to my distance travelled (I’m taking steps).  On 
the other hand, if walking toward the rear of the room is positive displacement, 
walking toward the front is negative displacement that cancels the first part of my trip, 
and eventually I return to the front from where I started for a total displacement of 
zero.  Similarly, if I travel along a circular arc path, the distance and the magnitude of 
my displacement will be different.  So long as the direction of motion doesn't change, 
the distance is the same as the magnitude of the displacement. 
  
EXERCISE 2-1 
 

Suppose that an object starts out at xi = 3 m and ends at xf = 5 m, and makes that trip smoothly 
and without reversing direction.  What is the distance?  Now, suppose instead that the object 
travels from x = 3 m to x = 15 m, then back to x = - 8 m, then on to x = 5 m.  What is the 
distance in that case?  

Velocity and Speed 

Often, we want to know how quickly an object gets from one location to another.  If we say that 
the object is at position xi at time ti, and arrives at position xf at time tf , then we can define the 
average velocity to be the displacement per unit time, or  
 

v୅୚୉ ൌ  
x୤ െ  x୧
t୤ െ  t୧

   . 

 
DISCUSSION 2-2 

 
Is the average velocity a vector or a scalar?  

 
EXAMPLE 2-1 
 

Find the average velocity in each of the cases below.  You can assume that the motions start at 
t = 0 seconds. 
 
Suppose that an object starts out at xi = 3 m and ends at xf = 5 m, and makes that trip smoothly 
and without reversing direction in 3 seconds.  
 
Suppose instead that the object travels from x = 3 m to x = 15 m, then back to x = - 8 m, then 
on to x = 5 m, all in 3 seconds. 
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For the first case,  

vሬ⃑ ୅୚୉ ൌ  
𝑥⃑୤ െ  xሬ⃑ ୧
t୤ െ  t୧

ൌ   
5 െ  3
3 െ  0

ൌ 0.67 m/s . 

For the second, 

vሬ⃑ ୅୚୉ ൌ  
𝑥⃑୤ െ  xሬ⃑ ୧
t୤ െ  t୧

ൌ   
5 െ  3
3 െ  0

ൌ 0.67 m/s . 

 
These results may seem a bit strange in that a person doing the first motion could do so in a 
leisurely manner, while someone performing the second would be zipping back and forth in a 
superhuman way.  Words that may seem to mean the same thing in everyday speech can mean 
very different things in Physics, according to how we define them.  For example, … 

Average speed is defined as the distance traveled per unit time: 

average speed ൌ  
s
∆t

  . 

There is no special symbol for the average speed. 

EXAMPLE 2-2 

Suppose that an object starts out at xi = 3 m and ends at xf = 5 m, and makes that trip smoothly 
and without reversing direction in 3 seconds.  

Suppose instead that the object travels from x = 3 m to x = 15 m, then back to x = - 8 m, then 
on to x = 5 m, all in 3 seconds.  

We’ve previously found the distances for these cases, so  

for the first case, 

average speed ൌ  
s
∆t
ൌ  

2
3

 ൌ 0.67 m s⁄  , 

and for the second, 

average speed ൌ  ୱ
∆୲
ൌ  ସ଼

ଷ
 ൌ 16 m s⁄  .\ 

These results may be more in line with your expectations. 

HOMEWORK 2-1 

Joe runs the length of a 10 m room in 4 seconds, then immediately turns and walks back in 8 
seconds.  Find his average velocity 
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a) for the trip down the room. 
b) for the trip back. 
c) for the entire trip.  

HOMEWORK 2-2 

You may remember the fable of the tortoise and the hare.  The hare runs at 3 m/s while the 
tortoise ‘runs’ at 0.2 m/s.  They start the race at the same time, but the hare decides to take a 
two minute nap along the way.  In the end, the tortoise beats the hare by 0.3 meters. 

a) How long was the track? 
b) How much time did the tortoise use to complete the race? 

The average velocity discussed above is considered over an 
interval of time.  How can we find the instantaneous 
velocity, the velocity at an instant of time?  Consider the 
following graph, which shows the position of an object as 
a function of time, x(t).  How would the average velocity 
between ti and tf be represented on this graph? 

vሬ⃑ ୅୚୉ ൌ  ∆୶
ሬ⃑

∆୲
ൌ  ୶

ሬ⃑ ౜ି ୶ሬ⃑ ౟
୲౜ି ୲౟

ൌ  rise over run ൌ

slope of the line connecting the two points.  
 

How can we 
find the velocity 
at time ti?  Let's 
decrease the time interval.  As the interval becomes 
smaller, the average velocity approaches the 
instantaneous velocity, or graphically, the slope 
representing the average velocity approaches the slope 
of the line tangent to the x(t) curve at the point at which 
we wish to know v(t).  Mathematically, we write this as  

vሬ⃑ ୍୒ୗ୘୅୒୘ ൌ  lim
∆୲→଴

∆xሬ⃑
∆t

   . 
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We can do the same with the instantaneous speed:  

instantaneous speed ൌ  lim
∆୲→଴

s
∆t

   . 

We then see that, for infinitely short time intervals, an object 
doesn't have time to reverse direction, and so the argument we 
gave above leads us to say that the instantaneous speed is the 
same as the magnitude of the instantaneous velocity.   

LOOKING AHEAD 

This process of taking a limit of a quantity as the time 
interval goes to zero is very common in this course.  Sometimes, I will use an abbreviation for 
this process.  So, suppose quantity Q is a function of time and we would like to refer to its 
instantaneous time rate of change (even if perhaps we can’t actually calculate it).  Let 

ITRCሺQሻ ൌ  lim
∆୲→଴

∆Q
∆t

    

as a form of shorthand notation. 

Acceleration and Jerk 

Sometimes, we want to know how quickly the velocity is changing.  We define the average 
acceleration as the change in velocity per unit time:  
 

aሬ⃑ ୅୚୉ ൌ  
∆vሬ⃑
∆t

  , 

and the instantaneous acceleration as  
 

aሬ⃑ ୍୒ୗ୘୅୒୘ ൌ  lim
୼୲→଴

∆vሬ⃑
∆t

ൌ ITRCሺvሬ⃑ ሻ  . 

 
The analysis is the same for a as it was for v, so the effort will not be repeated here.  Suffice it to 
state that the instantaneous acceleration can be found graphically by finding the slope of the line 
tangent to the v(t) curve.  In one dimension (only!), the direction of the acceleration can be found 
this way: if the object is speeding up, the acceleration is in the same direction as the velocity and 
if it is slowing, the acceleration is in the opposite direction as the velocity. 
 
EXAMPLE 2-3 
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Given a graph of the position x of an 
object as a function of time, sketch the 
velocity v. time curve. 
 
There are a number of special points we 
can look for to guide us.  Whenever the 
x(t) curve is horizontal, the velocity is 
zero.  In this example, the curve is flat at 
t = 0, between 2 and 3, at 5, and at 8.   
Then, whenever the x(t) curve is moving 
downward, the velocity is negative (and 
vice versa), and the magnitude of the 
velocity is proportional to the steepness 
of the x(t) curve. 

 
EXERCISE 2-2 
 

From the v(t) curve shown, sketch the a(t) curve.  Remember that since this is being done by 
eye, the accuracy of each successive curve will be reduced. 
 

We can continue the process indefinitely.  For example, the jerk is defined as  
 

ȷ⃑୅୚୉ ൌ  
∆aሬ⃑
∆t

    ;     ȷ୍⃑୒ୗ୘ ൌ  lim
∆୲→଴

∆aሬ⃑
∆t

ൌ ITRCሺaሬ⃑ ሻ ൌ slope of acceleration graph, 

 
and so on with the kick and then the lurch: 
 

kሬ⃑ ୅୚୉ ൌ  
∆ȷ⃑
∆t

    ;     kሬ⃑ ୍୒ୗ୘ ൌ  lim
∆୲→଴

∆ȷ⃑
∆t
ൌ ITRCሺȷ⃑ሻ ൌ slope of jerk graph , 

 

l⃑୅୚୉ ൌ  
∆k
∆t

    ;     l୍⃑୒ୗ୘ ൌ  lim
∆୲→଴

∆kሬ⃑

∆t
ൌ ITRC൫kሬ⃑ ൯ ൌ slope of kick graph . 

 
This process can continue as far as you like or need, although there seem not to be specific terms 
for the rest of these quantities.  The acceleration, jerk, kick, and lurch are all vector quantities.  
 

Kinematic Equations 

Let's use these definitions to derive some possibly useful relationships.  Generally in Physics, but 
particularly in this course, we examine special cases.  In this section, we’ll restrict ourselves to 
situations where the object’s acceleration is constant.  In terms of notation, we’ll make the 
following simplifications:  
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 all final quantities (tf, xf, vf) can be replaced with the more general corresponding variables 
(t, x, v).  This perhaps has a psychological aspect, in that we don’t necessarily want to limit 
the end points of our problems to specific values; 

 the problem starts at ti = 0, so that we can just drop that term.  If necessary, we can replace 
any t in the results with tf - ti; 

 the arrow over vector quantities will be dropped. The direction of any vector will be given 
by the sign of the value inserted into the equation for solution. 

Let’s start with the definition of the acceleration (since the acceleration is constant, that value is 
also the average value): 2 
 

aሬ⃑ ୅୚୉ ൌ  
∆vሬ⃑
∆t

ൌ  
vሬ⃑ ୤ െ vሬ⃑ ୧
t୤ െ t୧

ൌ  
vሬ⃑ െ  vሬ⃑ ୧

t
 

which re-arranges to  
 

vሬ⃑ ൌ  vሬ⃑ ୧ ൅ aሬ⃑ t     ሺKEq 1ሻ  . 
 
We shall refer to this relationship as kinematic equation Nr 1.3 

  
The next relationship is not developed from 
the definitions above.  What would a graph of 
velocity look like if the acceleration is 
constant?  Since the acceleration is the slope 
of the v(t) curve, constant slope means that 
the curve is a line.  I’ve drawn the line with a 
positive slope, although it could just as well 
have a negative or even zero slope.  We want 
to determine an expression for the average 
velocity that is independent of the definition.  
We need to average the infinitely many 
values the velocity has in the interval ti to tf.  

We can do it without calculus if we're a little clever.  First, average just the two endpoints to get  
 

vሬ⃑ ୧ ൅ vሬ⃑ ୤
2

   . 

Now, average these two points, one above vi by an amount  and the other below vf by the same 
amount to get   
 

ሺvሬ⃑ ୧ ൅ ε⃑ሻ ൅ ሺvሬ⃑ ୤ െ 𝜀ሻ

2
ൌ

vሬ⃑ ୧ ൅ vሬ⃑ ୤
2

   . 

 
So can have any value and result is the same average value for any given pair of symmetrically 

                                                 
2 For example, if every student earns an 85 on an exam, what is the average exam grade? 
3 Although we said this will be valid only for constant acceleration, it is in fact valid if a is the time-averaged 
acceleration. 
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placed points.  Since the overall average is the average of the pairs' averages, it should be clear 
that the overall average will also be 
 

vሬ⃑ ୅୚୉ ൌ
vሬ⃑ ୧ ൅ vሬ⃑ ୤

2
     ሺKEq 2ሻ . 

 
This is kinematic equation Nr 2.  Note that this argument only works for lines, that is, when the 
acceleration is constant. 
  
DERIVATION 2-1 
 

We have two expressions for the average velocity, the definition and the one we just derived.  
The two expressions must be equal, so long as the condition of constant acceleration is met. 
 

vሬ⃑ ୅୚୉ ൌ
vሬ⃑ ୧ ൅ vሬ⃑

2
ൌ  

xሬ⃑ െ  xሬ⃑ ୧
t

 

 
 
Now, we’ll substitute KEq 1 in for v: 
 

vሬ⃑ ୧ ൅ ሺvሬ⃑ ୧ ൅ aሬ⃑ tሻ
2

ൌ  
xሬ⃑ െ  xሬ⃑ ୧

t
   . 

 
A bit of math,  
 

ሺ2vሬ⃑ ୧ ൅ aሬ⃑ tሻt ൌ 2ሺxሬ⃑ െ  xሬ⃑ ୧ሻ  
 

2vሬ⃑ ୧t ൅ aሬ⃑ tଶ ൌ 2ሺxሬ⃑ െ  xሬ⃑ ୧ሻ  
 

vሬ⃑ ୧t ൅
ଵ
ଶ 

aሬ⃑ tଶ ൌ xሬ⃑ െ  xሬ⃑ ୧  
 
and we have that 
 

xሬ⃑ ൌ  xሬ⃑ ୧ ൅ vሬ⃑ ୧t ൅  ଵ
ଶ
 aሬ⃑ tଶ   ሺKEq 3ሻ . 

 
DERIVATION 2-2 

 
Let’s start with the same two expressions for the average velocity as in the previous derivation. 
 

vሬ⃑ ୅୚୉ ൌ
vሬ⃑ ୧ ൅ vሬ⃑

2
ൌ  

xሬ⃑ െ  xሬ⃑ ୧
t

 

 
Multiply both sides by 2: 
 



 

- 37 - 
 

vሬ⃑ ୧ ൅ vሬ⃑ ൌ  2
xሬ⃑ െ  xሬ⃑ ୧

t
   . 

 
Here’s the tricky part.  We’re going to take the dot product of each side with aሬ⃑ t; on the right, 
we’ll use that exact term, but on the left, we’ll use something equivalent to it (from KEq 1), 
vሬ⃑  – vሬ⃑ ୧: 
 

ሺvሬ⃑ െ vሬ⃑ ୧ሻ ∙ ሺvሬ⃑ ୧ ൅ vሬ⃑ ሻ ൌ  2
xሬ⃑ െ  xሬ⃑ ୧

t
∙ aሬ⃑ t 

 
vሬ⃑ ∙ vሬ⃑ െ vሬ⃑ ୧ ∙ vሬ⃑ ୧  ൌ  2aሬ⃑ ∙ ሺxሬ⃑ െ  xሬ⃑ ୧ሻ 

 
vଶ െ v୧

ଶ  ൌ  2aሬ⃑ ∙ ሺxሬ⃑ െ  xሬ⃑ ୧ሻ 
 

vଶ  ൌ v୧
ଶ ൅  2aሬ⃑ ∙ ሺxሬ⃑ െ  xሬ⃑ ୧ሻ    ሺKEq 4ሻ. 4 

Now, we have four kinematic equations that are valid in the special case of constant acceleration:  

v ൌ  v୧ ൅ at     ሺKEq 1ሻ   ; 

v୅୚୉ ൌ
v୧ ൅ v୤

2
     ሺKEq 2ሻ  ; 

x ൌ  x୧ ൅ v୧t ൅  ଵ
ଶ
 atଶ   ሺKEq 3ሻ   ; 

vଶ  ൌ v୧
ଶ ൅  2aሺx െ  x୧ሻ    ሺKEq 4ሻ   . 

Various combinations and perturbations of these should allow for solving most problems.  Here, 
however, is a warning: do not rely on the equations by themselves to solve problems.  The 
equations are in a sense tools, but it still requires the brain to direct their use.  Keep in mind that 
various textbooks and websites may use different kinematic equations; you must start your 
solutions with one or more of these specific four or a definition given here in this course and work 
from there. 

As we start to do examples and homeworks, I suggest strongly that you stick to the model presented 
here.  I think the steps shown form the best path to avoid making errors or omissions.  If I knew a 
better way, I’d show you that.  In Section 1, I made a point that Physics is not just plugging numbers 
into equations.  However, to get started, that’s basically how we’re going to roll.  The process is 
to make a sketch to help visualize the situation; this can be used to indicate the origin and which 
direction is positive for whomever is reading your solution.  Then, we make an inventory of 
quantities we know, quantities we think we know, and quantities we want to know.  Then, if we’re 
lucky, there will be a kinematic equation that has only those quantities in it.  If not, we may need 

                                                 
4 There is a slightly quicker way to do this that unfortunately doesn’t preserve the vector nature of the quantities. 
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to use two equations.  Identify which equation is to be used.  And again, as mentioned above, we’re 
going to drop the arrows above the vector quantities for convenience. 

It is better if you manipulate the equations symbolically, inserting the numerical values just before 
the end.  There are two reasons for this.  The first is that you will start to see how the various 
quantities interact with one another as they appear over and over again throughout the course.  The 
second is more practical.  Suppose your boss tells you that the car was moving at 15 m/s, and you 
insert the numbers at the top of a long and tedious calculation.  When he returns to tell you the 
initial speed as actually 12 m/s, what will you then need to do?  Better to be able to just insert the 
new value into the penultimate step.   

EXAMPLE 2-3 

A distracted driver traveling at 15 m/s notices a stop sign when he is 10 m from the stop line.  If 
the car decelerates at 6 m/s2, how quickly is the car moving as it passes the stop line?  

Let's write down the quantities which we know 
either implicitly or explicitly, as well as what we 
want to figure out; I call this the inventory.  

Let positive x be in the direction the car is 
moving and the origin be where the driver first 
applies the brakes. 
 
xi = 0 m 
xf  = 10 m  
vi = 15 m/s 
vf  = ?  ← 
a = - 6 m/s2 (a deceleration of 6 m/s2 is an acceleration of - 6 m/s2, since a velocity becoming 
less positive is the same as one becoming more negative).  
t = ? 
 
Since the kinematic equations are really all the same relationships presented in slightly 
different forms, we can look for one which contains all of the quantities above.  Sometimes 
this works, sometimes not; in this case we're lucky:  

vଶ  ൌ v୧
ଶ ൅  2aሺx െ  x୧ሻ .     5 

In fact, not much algebraic manipulation is necessary:  

v ൌ ටv୧
ଶ ൅  2aሺx െ  x୧ሻ ൌ ඥ15ଶ ൅  2ሺെ6ሻሺ10 െ  0ሻ ൌ  ൅10.3 m s⁄  .  

                                                 
5 Since we’re in one dimension, we can drop the dot product if we assign the proper sign to the vector values.  If the 
displacement and acceleration are in the same direction (++ or --), then the dot product is positive as expected.  If they 
are in opposite directions (+- or -+), then the dot product is correctly negative) 
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I’ve chosen the positive root, because I know that the car is travelling in the +x-direction. 

We should spend a few moments discussing why the equation gave us two possible answers.  The 
kinematic equations are valid if the acceleration is constant, in this case at -6 m/s2, for all time.  
That is, it assumes that the car is starting off infinitely ago at x = negative infinity, travelling with 
a speed of plus infinity, slowing and slowing until it arrived at the origin at t=0 while traveling at 
15 m/s.  It then slowed to a stop.  While the car in our problem may stop and remain stopped, the 
equation thinks that the car begins to move in the negative x-direction, passing the sign at -10.3 
m/s, passing the origin at -15 m/s, and continuing back to negative infinity, arriving there with 
infinite speed at the end of eternity.  It falls on us to make sense of whatever results the equations 
give us. 

EXAMPLE 2-4 

A box moving along the x-axis initially 
has a velocity of +8 m/s.  It experiences a 
constant acceleration as it travels 12 
meters, at which point it has a velocity of 
+26 m/s.  What was the acceleration and 
for how much time did the box travel? 

xi = 0 m 
xf  = 12 m  
vi = +8 m/s 
vf  = +25 m/s   
a = ? ← 
t = ? ← 
 
I’m pretty sure there is no one equation that will give us both quantities.  Let’s try KEq 4 to 
find the acceleration: 
 

vଶ  ൌ v୧
ଶ ൅  2aሺx െ  x୧ሻ 

 

a ൌ
vଶ െ v୧

ଶ

2ሺx െ  x୧ሻ
ൌ  

26ଶ െ 8ଶ

2ሺ12 െ 0ሻ
ൌ  ൅25.5

m
sଶ

  . 

 
Now, we know more, so we have more options.  We could use KEq 3, although that would 
require solving a quadratic equation, or we can use KEq 1, which is much easier: 
 

v ൌ  v୧ ൅ at      
 

t ൌ  
v െ v୧

a
ൌ  

25 െ 8
25.5

ൌ 0.67 s  . 

EXAMPLE 2-5 
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A different box moves along the x-axis, initially with velocity 6 m/s with an acceleration of +2 
m/s2.  How long does it take to slide 8 meters? 
 
xi = 0 m 
xf  = 8 m  
vi = +6 m/s 
vf  = ?   
a = +2 m/s2  
t = ? ← 
 
Looks like we need to use KEq 3: 
 

x ൌ  x୧ ൅ v୧t ൅  ଵ
ଶ
 atଶ   .   

 
Since this is a quadratic, this is one of the few exceptions as to when to insert values.  Put the 
numbers in and re-arrange the equation to the standard ax2 + bx +c = 0 format and make use 
of the well-known quadratic solution formula. 
 

8 ൌ  0 ൅ 6t ൅  ଵ
ଶ
 ሺ2ሻtଶ    

 
tଶ ൅ 6t െ 8 ൌ 0    ;   a ൌ 1, b ൌ  6, and c ൌ െ8 

 

t ൌ  
െb േ √bଶ െ 4ac

2a
ൌ  
െሺ6ሻ  േඥሺ6ሻଶ െ 4ሺ1ሻሺെ8ሻ

2ሺ1ሻ
ൌ  ൅1.12 sec or െ 7.12 sec  . 

 
Once again, we have received two solutions.  In this case, we realize that the box arrives at its 
destination after it left its starting point, so the correct answer is +1.12 seconds. 
 

HOMEWORK 2-3 
 

A car with an initial velocity of +6 m/s accelerated for 4 seconds, by which time its velocity is 
+21 m/s.  What was the car’s acceleration and what is its displacement? 
 

 
DISCUSSION 2-3 

What should we do when the acceleration is not constant?  Suppose that it is constant over 
some time interval, then changes abruptly to a different constant value.  

EXERCISE 2-3 
 

A car starts from rest at t = 0 and accelerates at +4 m/s2 for 5 seconds.  It then continues to 
accelerate at +6 m/s for an additional 3 seconds.  How far has the car travelled in those 8 
seconds? 
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HOMEWORK 2-4 
 

A speeder passes a parked black and white at 40 m/s and continues on, obliviously maintaining 
a constant velocity down the straight, level road.  At that instant, the cop car starts from rest 
with a uniform acceleration of 5 m/s2. How much time passes before the cop catches up to the 
speeder?  How far does the cop car travel in that time?  How quickly is the cop car going when 
it catches up with the speeder?  

Acceleration due to Gravity 

In the very special case of an object moving freely near the surface of the earth under no other 
influence except the earth's gravity, the acceleration of the object will be some value near 9.8 m/s2 
downward (it does vary from place to place).  You will verify this in a laboratory exercise.  Your 
text probably refers to this quantity as the acceleration due to gravity, g.  I would prefer that for 
now you use the symbol ag, reserving g for the strength of the gravitational field, which is not the 
same thing, as we shall discuss in Section 5. Except in lab, we will be rounding this number to 10 
m/s2, since we are not trying to send a probe to Mars or anything complicated like that.  The graph 
shows the results of a double experiment where metal balls of different masses were dropped from 
known altitudes H and the times to fall to the floor were measured.  Let’s spend some time on this. 
 

First, we are assuming that 
he acceleration due to 
gravity is a constant, 
which may or may not be 
true.  We can consider this 
assumption to be our 
hypothesis.  If that is true, 
then we should be able to 
make use of the kinematic 
equations to make a 
testable prediction.  For 
example, kinematic 
equation 3 is  
 

x ൌ  x୧ ൅  v୧t ൅  
1
2

atଶ  . 

If the balls start from rest at the origin, this reduces to  
 

H ൌ  0 ൅  0 ൅  
1
2

a୥tଶ      →      H ൌ  
1
2

a୥tଶ  . 

 
The parameter we control is the altitude, H; this is the independent variable and as such it should 
be placed on the horizontal axis.  The dependent variable is the time, and it goes on the vertical 
axis.  Here, our proposed relationship doesn’t imply a linear relationship between H and t, but 
rather one between H and t2: 
 

y = 0.2027x + 0.0013

y = 0.2028x + 0.0027
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tଶ ൌ  
2
a୥

 H   . 

 
So, we won’t plot the time against the altitude, but rather the square of the time against the altitude.  
The proportional relationship between t2 and H is demonstrated by the data forming a line that 
passes through the origin.   
 
Next, we’d lie to extract some information from the line.  A line can completely defined by just 
two quantities, usually the slope and the y-intercept, although the x-intercept can replace one of 
the other two.  Comparing the ‘theoretical’ relationship with the fit to experiment, 
 

tଶ ൌ  
2
a୥

 H    

y ൌ ሺslopeሻx ൅ ሺinterceptሻ  , 
 
we see that the slope should equal 2 divided by the acceleration.  Solving, we obtain 
 

Mass Acceleration due to gravity 
27.8 grams 9.867 m/s2 
16.2 grams 9.862 m/s2 

 
both results being less than 1% from the accepted value for Catonsville. 
 
Let’s review: 
 

1. We assumed that ag is a constant. 
2. Based on that assumption, we used out theory to predict the relationship between the 

altitude of release and time to fall. 
3. We linearized the relationship by plotting t2 instead of t v. H. 
4. We did least squares best fits to determine the slopes and intercepts of the lines. 
5. By comparing the ‘theory’ and the equation for a line, we verified that there is no missing 

constant term in the theory equation, and that the acceleration is indeed constant. 
6. We determined the value of the acceleration for each ball. 
7. We showed that the acceleration is independent of the mass of the object dropped. 

EXAMPLE 2-6 

Let's drop a water balloon onto the sidewalk from the top of a 20 m tall building.  How quickly 
will the balloon be moving at the bottom and how long will it take to arrive there? 

We have some choices to make.  You can make any point you like the origin, but there are two 
obvious choices that would probably make the solution mathematically easier to solve: the top 
of the building and the foot of the building.  Similarly, you can make up be positive, or down 
be positive.  Let up be positive and the origin be the top of the building.  In addition, the word 
‘drop’ tells us something about the initial velocity.  Then, 
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xi = 0 m 
xf   = -20 m  
vi = 0 m/s  
vf  = ? ← 
a = -10 m/s2  
t = ? ← 

Let's check to see if there is a single kinematic equation that will give us the answer, and 
there is, KEq 4: 

vଶ  ൌ v୧
ଶ ൅  2aሺx െ  x୧ሻ   , 

v ൌ ටv୧
ଶ ൅  2aሺx െ  x୧ሻ ൌ  ඥ0ଶ ൅  2ሺെ10ሻሺെ20 െ 0ሻ ൌ √400 ൌ  െ20 m/s   . 

We must take the negative root here, because the balloon is moving in the negative direction 
at the end of the problem.  The equation doesn't know to do that; we need to keep an eye out. 
As for the time, the shortest method is to make use of the final velocity above and use KEq 1: 

v ൌ  v୧ ൅ at      
 

t ൌ  
v െ v୧

a
ൌ  
െ20 െ 0
െ10

ൌ 2 s  . 

 
Alternatively, we might have used KEq 3: 
 

x ൌ  x୧ ൅ v୧t ൅  ଵ
ଶ
 atଶ   , 

 
െ20 ൌ 0 ൅ 0𝑡 ൅  ଵ

ଶ
 ሺെ10ሻtଶ  , 

 
which, while technically a quadratic equation, is easy to solve. 
 

tଶ ൌ  
2ሺെ20ሻ
െ10

ൌ 4     →      t ൌ  ൅2 seconds 

 
We take the positive root because the balloon hits the ground after it's dropped. 

 
DISCUSSION 2-4 
 

Consider an object thrown straight upward.  What is the acceleration on the way up?  What is 
the acceleration on the way down?  What is the acceleration right at the very top? 

Well, let’s consider the object’s velocity.  On the way up, it’s slowing, so the acceleration is in the 
opposite direction, or downward.  On the way down, the object is speeding up, so the acceleration 
is also downward.  Is the acceleration zero at the very top?  It is common to assume that it is zero, 
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but that confuses that velocity with the acceleration.  We 
can look at the graph and see that the slope of the v(t) graph 
when v = 0 is still -9.8 m/s2.  Or, think of the velocity the 
instant before the peak (positive) and the instant just after 
the peak (negative); the acceleration measures the change 
in velocity, which became more negative in that time 
interval.   

EXERCISE 2-4 
  
A ball is thrown from the street such that it rises past a 
25m high window ledge at 12 m/s.  Find 
 
a) the velocity with which it was launched,  
b) the maximum altitude above the street it reaches,  
c) how long ago it was thrown, and  
d) the time until it returns to the ground.   

 
HOMEWORK 2-5 

 
A rocket is launched straight upward from rest with an acceleration of 40 m/s2 for 5 seconds, 
at which time it runs out of fuel.  How high will it rise?  HINT: what is the rocket doing at the 
moment it runs out of fuel? 

A Different Graphical Interpretation 

DISCUSSION 2-5 
 

Consider a special case of an object moving with 
constant velocity in one dimension.  The graph of 
this motion is shown.  We've already defined the 
average velocity (or in this particular case just the 
plain old velocity, since it's constant) as  
 

v ൌ  
∆x
∆t

  . 

 
From this relationship, we see that the displacement is given by  
 

∆x ൌ v ∆t  . 
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How is this quantity represented on the graph?  

 
What about other cases?  Let's try constant but non-
zero acceleration, i.e., the velocity is represented by a 
straight but not horizontal line.  Since the velocity is 
not constant, we can not use the trick above, but we can 
use a craftier one:  Let's break the time interval up into 
many very small time intervals, tn (n is just an index, 
i.e., if n = 23, we're talking about the 23rd such interval), 
so that the velocity is almost constant over each.  Then 
the displacement over each interval, xn , is vn tn , and 
the total displacement should be 
 

∆𝑥 ൌ  ෍∆𝑥௡ ൌ  ෍𝑣௡ ∆𝑡௡   .
௡௡

 

   
Graphically, this is the sum of the areas of each of 
the little rectangles in the figure.   

Of course, in this example, we are always 
underestimating the displacement, because we're 
multiplying each t by the lower than average 
initial velocity of each interval.  So, we want to 
make as many intervals as possible, each over as 
small a time interval as possible, to reduce this 
error.  As we let the number of intervals go towards infinity, we can see that the little triangles atop 
each rectangle get smaller and smaller,6 and that the total rectangle area we are counting tends 
toward the total area under the line.  So, we see that the total displacement will be represented on 
such a graph as the area under the curve.   

The original shape under this curve was a trapezoid, the area of which is   

hଵ ൅  hଶ
2

b   .   

Substituting values results in 

v୧ ൅  v୤
2

∆t ൌ  v୅୚୉ ∆t ൌ  ∆x   .   

                                                 
6 As we increase the number of intervals by a factor, G, the number of triangles increases by G, but the base and height 
of each triangle are reduced by factor G and their areas each by factor G2.  The error caused by the missing triangles 
then goes as G/G2 = 1/G.  As G →∞, the missing area goes to zero. 
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So, for an object with constant acceleration, the area under the velocity v. time curve represents 
the displacement.  Then, we can generalize this result for any shape of curve: the area under a 
velocity v. time curve represents the displacement. 

 
Also, we can use exactly the same argument to assert 
that the area under the acceleration v. time curve is the 
change in velocity.  That bears repeating: we can't get 
the velocity from the curve, only the change in 
velocity, in the same way that we got the 
displacement, the change in position, for the velocity 
v. time curve, not the object's position itself.  
 
Here is a quick explanation.  Consider the two velocity 

v. time curves shown.  Each of the two curves will 
generate the same acceleration curve, since the slopes 
of the two are the same for each value of time, t.  So, 
given a particular acceleration curve, it would be 
impossible to determine which of an infinite number of 
velocity curves it was derived from.  

Let's look at another 
situation.  In this case, 
the velocity starts out 

positive, but there is a negative acceleration (slope of the 
line).  Eventually, the velocity becomes zero and the object 
comes momentarily to rest, having traveled through a 
displacement represented by the area under the curve (the red 
area).  As time progresses, we see that the velocity becomes 
negative, the object reverses direction, and we would expect that 
the displacement from the starting position will decrease.  The 
way to make this consistent with our interpretation of the area is that any area under the time axis 
must be considered negative.  Indeed, the object may well arrive back at its starting point, for a 
total displacement of zero.   

Consider a mass oscillating 
on a spring.  The velocity v. 
time curve is shown below.  
Once per cycle, the object 
returns to its starting point 
for a displacement of zero.  

At that time, the area under the curve must equal zero.  

So, to review this section, we can in principle find the ITRC of a quantity by examining the slope 
of that quantity’s time graph, and we can find the change in the preceding quantity by looking at 
the area under its time curve. 
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HOMEWORK 2-6 

The velocity v. time graph of an object is approximated by a triangle that starts at v = 0 at t = 
0, rises to a maximum of v = 7 m/s at t = 4 sec, then returns to zero at t = 13 sec.  How far did 
the object travel?  HINT: sketch the graph first. 

 
EXERCISE 2-1 Solution 
 
In the first case, since the trip is made without reversing direction, the distance will be the same 
as the magnitude of the displacement, or 2 meters.  Or, if you prefer, we’ve taken 2 m worth of 
steps. In the second case, each segment of the trip is one way, so we can count segment by 
segment.   
3→15    12 m 
15→ -8    23 m 
-8→ 5    13 m 
48 meters in total 
 
EXERCISE 2-2 Solution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXERCISE 2-3 Solution 
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We treat this as two separate problems, where to location of the car at the end of the first part 
becomes the initial location for the second part, and the final velocity from the first part becomes 
the initial velocity for the second part.  So, for the first part, 
 
xi = 0 m 
xf  = ? ← 
vi = 0 m/s 
vf  = ?  ← 
a = +4  m/s2  
t = 5 sec 
 
KEq 3: 

 
x ൌ  x୧ ൅ v୧t ൅  ଵ

ଶ
 atଶ 

 
x ൌ  0 ൅ ሺ0ሻt ൅  ଵ

ଶ
 4ሺ5ሻଶ ൌ 50 m 

KEq 1: 
 

v ൌ  v୧ ൅ at ൌ 0 ൅ 4ሺ5ሻ ൌ 20 m s⁄  .   
For Part Two: 
 
xi = 5 m 
xf  = ? ← 
vi = 20 m/s 
vf  = ?  ← 
a = +6 m/s2  
t = 3 sec 
 
KEq 3: 

 
x ൌ  x୧ ൅ v୧t ൅  ଵ

ଶ
 atଶ 

 
x ൌ  50 ൅ ሺ20ሻ3 ൅  ଵ

ଶ
 6ሺ3ሻଶ ൌ 137 m 

 
EXERCISE 2-4 Solution 
 
The first thing is that this is really three problems.  Every kinematic problem has a starting point 
and an ending point.  For Parts a and c, the problem begins at the ground and ends at the window 
ledge with the ball rising.  Let’s put the origin at the foot of the building and make upwards be 
positive.  Then, the inventory looks like this: 
 
xi = 0 m 
xf  = 25 m  
vi = ?  ← 
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vf  = +12 m/s  
a = - 10 m/s2  
t = ? ← 

KEq 4: 

vଶ  ൌ v୧
ଶ ൅  2aሺx െ  x୧ሻ    

v୧
ଶ ൌ  vଶ െ  2aሺx െ  x୧ሻ    

v୧ ൌ  ඥvଶ െ 2aሺx െ  x୧ሻ ൌ ඥ12ଶ െ 2ሺെ10ሻሺ25 െ  0ሻ ൌ  ൅25.4 m/s  

We take the positive root because the ball was obviously thrown upward. 

KEq 1: 
 

v ൌ  v୧ ൅ at 
 

t ൌ  
v െ  v୧

a
ൌ  

12 െ 25.4
െ10

ൌ 1.34 seconds  . 

 
Part b is a different problem.  It can start either at ground level or at the window ledge, but it 
definitely ends at the highest altitude, where, for a moment, the ball stops.  Let’s start at the ledge. 
 
xi = 25 m 
xf  = ? ← 
vi = +12 m/s  
vf  = 0 m/s (the ball stops) 
a = - 10 m/s2  
t = ?  

KEq 4: 

vଶ  ൌ v୧
ଶ ൅  2aሺx െ  x୧ሻ    

x ൌ x୧ ൅
vଶ െ v୧

ଶ

2a
ൌ   25 ൅

0ଶ െ 12ଶ

2ሺെ10ሻ
 ൌ 32.2 m  . 

Keep in mind that you could have used KEq 1 to find the time, then KEq 3 to find the altitude.  
There are often several paths to the answer. 

Part d is yet another problem, starting at the window ledge and ending when the ball hits the 
ground. 
 
xi = 25 m 
xf  = 0 m (lands on the ground) 
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vi = +12 m/s  
vf  = ? 
a = - 10 m/s2  
t = ? ← 
 
KEq 3 

x ൌ  x୧ ൅ v୧t ൅  ଵ
ଶ
 atଶ    

 
Since we’re solving for the time, let’s go ahead and insert values. 
 

0 ൌ  25 ൅ 12t ൅  ଵ
ଶ
 ሺെ10ሻtଶ    

 
5tଶ െ 12t െ 25 ൌ 0  

 

t ൌ  
െb േ √bଶ െ 4ac

2a
ൌ  
െሺെ12ሻ  േඥሺെ12ሻଶ െ 4ሺ5ሻሺെ25ሻ

2ሺ5ሻ
ൌ  ൅3.74 sec or െ 1.34 sec  . 

 
These are the times that the ball is on the ground, and we want the one that is in the future, that is, 
at 3.74 seconds.  Note also that we have solved Part c again, since the ball was launched from the 
ground 1.34 seconds before reaching the ledge. 
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SECTION THREE – KINEMATICS IN TWO DIMENSIONS 

In the last section, we discussed the kinematics of a point mass in one dimension.  Again, 
kinematics describes the motion of an object without regard to the cause of that motion. In this 
section, we shall examine two special cases of two dimensional motion: projectile motion and 
uniform circular motion. 
 
We need a way of keeping track of the motion of a particle.  Luckily, we discussed this back in 
Section One, where we defined the position vector 𝐫⃑ as 
 

r⃑ ൌ x ı ̂ ൅ y ȷ ̂ . 
 
The displacement is then  
 

∆r⃑ ൌ  r⃑୤ െ  r⃑୧ ൌ  ሺx୤ ı ̂ ൅ y୤ ȷሻ̂ െ ሺx୧ ı ̂ ൅ y୧ ȷሻ̂ ൌ  ሺx୤ െ x୧ ሻ ı ̂ ൅ ሺy୤ െ y୧ ሻ ȷ̂ ൌ  ∆x ı ̂ ൅ ∆y ȷ ̂ . 
 

so that the displacement is the vector sum of the individual displacements in the x and y directions 
(no surprise there).  The average velocity is 
 

vሬ⃑ ୅୚୉ ൌ  
∆r⃑
∆t

ൌ
∆ሺx ı ̂ ൅ y ȷሻ̂

∆t
ൌ  
∆x ı ̂ ൅ ∆y ȷ̂

∆t
ൌ  
∆x
∆t

 ı ̂ ൅  
∆y
∆t

 ȷ̂ ൌ  v୶ ୅୚୉ ı ̂ ൅  v୷ ୅୚୉ ȷ ̂ .   

 
The instantaneous velocity v is defined as before as  
 

vሬ⃑ ୍୒ୗ୘ ൌ  lim
∆୲→଴

vሬ⃑ ୅୚୉ ൌ lim
∆୲→଴

v୶ ୅୚୉ ı ̂ ൅  lim
∆୲→଴

v୷ ୅୚୉ ȷ̂ ൌ  v୶ ୍୒ୗ୘ ı ̂ ൅  v୷ ୍୒ୗ୘ ȷ ̂ .   

 
And, of course, because the acceleration is to the velocity as the velocity is to the position, we can 
immediately write that 
 

aሬ⃑ ୅୚୉ ൌ  a୶ ୅୚୉ ı ̂ ൅  a୷ ୅୚୉ ȷ ̂    and    aሬ⃑ ୍୒ୗ୘ ൌ  a୶ ୍୒ୗ୘ ı ̂ ൅  a୷ ୍୒ୗ୘ ȷ ̂ .   

DISCUSSION 

Consider a ball whirled around on the end of a string at constant speed.  Is the velocity of the 
ball constant?  Is its acceleration?  

 

PROJECTILE MOTION IN TWO DIMENSIONS 

Projectile motion describes objects that are thrown, dropped, launched, tossed, pitched, hurled, 
catapulted, or chucked near the surface of a planet.  Such objects are said to be in free fall.  We 
shall assume the following for now:   



 

- 52 - 
 

The planet’s gravitational field is uniform, i.e., constant in direction and magnitude.  Once an 
object is launched, the only agency acting on it is gravity; therefore its acceleration is a constant 
ag downward. 

This assumption leads us to suspect that the horizontal and vertical motions of an object are 
independent.  We confirmed to some degree of satisfaction by observing a demonstration.   

DEMONSTRATION 3-1 

VIDEO 

First, two balls were released from rest at the same time and allowed to fall toward the table; they 
arrived at the same time.  Then, one ball was dropped while the other was launched horizontally 
from the same height at the same time; once again, they arrived at the same instant.  This led us to 
an interesting conclusion, namely that the motions of the object in the horizontal and vertical 
direction will be independent of one another, thereby making a two-dimensional problem in fact 
two one-dimensional problems.  Of course, there are many situations where this is not true.  For 
example, if we were to account for drag, or as you seem to know it, air resistance, this assumption 
could be false. 

So, following our assumptions, we have two sets of kinematic equations, which I am simply 
copying from Section Two, 

v୶୤ ൌ  v୶୧ ൅  a୶t 

v୶ ୅୚୉ ൌ  
v୶୤ ൅  v୶୧

2
 

x୤ ൌ  x୧ ൅  v୶୧t ൅  ଵ
ଶ
a୶tଶ 

v୶୤
ଶ ൌ  v୶୧

ଶ ൅ 2a୶ሺx୤ െ  x୧ሻ 

v୷୤ ൌ  v୷୧ ൅  a୷t 

v୷ ୅୚୉ ൌ  
v୷୤ ൅  v୷୧

2
 

y୤ ൌ  y୧ ൅  v୷୧t ൅  ଵ
ଶ
a୷tଶ 

v୷୤
ଶ ൌ  v୷୧

ଶ ൅ 2a୷ሺy୤ െ  y୧ሻ 

with the time as the obvious connection between the two motions.   

Before we start on examples, let me talk briefly about what I call Rule Number One,1 which says 
that in problems in which there is acceleration, you should make one of the coördinate axes in the 
direction of the acceleration and the other perpendicular to that. The reason for this is to avoid 
breaking the acceleration into components, an action that generally makes the mathematics of 
solving a problem much more difficult.  For projectile problems, this probably seems very natural; 
make horizontal the x-axis and vertical the y-axis.  Remember, though, as the semester moves 
along, that the situation may change. 

                                                 
1 Strictly speaking, it’s a Really Strong Suggestion. 
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Here follows an example that you should use as the model for solving most projectile problems. 

ADMONITION 

When we do projectile problems, we remember that the problem runs from the moment just 
after the ball leaves the table to just before it hits the floor.  If the problem asks for the final 
velocity, do not assume it is zero because the ball hit the floor and presumably stopped!  During 
the collision with the floor, there was another agency besides gravity acting on the ball, and so 
the acceleration was not constant and the kinematic equations are not valid. 

EXAMPLE 3-1 

A ball is rolled horizontally off a table 1.2 m in height at 5 m/s.  How far from the base of the 
table will the ball strike the floor? 

First, draw a figure to help visualize the situation, 
including a system of axes with an origin.  Your choice 
of origin can be arbitrary, but in this problem, there are 
two obvious locations: the top edge of the table and the 
foot of the table. The top is a slightly better choice for 
reasons you are invited to work out on your own.  But 
don’t get hung up on it, the bottom will work out O.K., 
too.  The axes are chosen to be x horizontal and y vertical, 
according to Rule Number One above.  All these things 
are labeled in the diagram so that whoever is grading your 
paper can easily tell what you are doing.  Here, I’ve added 
in a few other pieces of information as well. 

Next, make your inventory of what you know, what you think you know, and what you want 
to know.  This is pretty standard for every problem.  We’re interested in what’s happening in 
the x-direction, so let’s start there.  I use question marks for quantities I don’t know and arrows 
for the ones I don’t know but want to know. 

xi = 0 m 

xf = ? ← 
vxi = +5 m/s 
vxf = +5 m/s  (why?) 
ax = 0 m/s2 (the acceleration is downward, and not at all horizontal, once the ball is in free fall) 
t = ? 

As we did in the last section, we’ll try to find a kinematic equation, or a combination, that will 
give us what we want to know.  Is there one? 
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Since there is not enough information on the x-side, we need to look to the y-side.  Here I will 
give you what I call an 80% Rule.2  Generally, it’s the time that is common to both sides of the 
problem, so I will find the time for the y-side, if possible, then bring it back over to the x-side, 
at which point I may have enough information there to solve.  Since the time features 
prominently in KEq. 3, I’ll probably use that on both sides. 

yi = 0 m 
yf = -1.2 m (upward is positive and the ball moved downward from the origin) 
vyi = 0 m/s (the ball was travelling horizontally and not at all vertically  as it left the table) 
vyf = ? 
ay = -10 m/s2 (we chose upward to be positive) 
t = ? 

Next, we state which principle of Physics we are using, in this case, KEq. 3: 

y୤ ൌ  y୧ ൅  v୷୧t ൅  ଵ
ଶ
a୷tଶ 

As discussed in Section Two, it’s best to try to manipulate the symbols to secure a general 
abstract solution, but since we want to learn the time, KEq. 3 will become a quadratic equation 
in t, which is the exception to our rule.  Inserting the numbers and re-arranging to the standard 
format leaves us with 

ሺ5ሻtଶ ൅ ሺ0ሻt ൅ ሺെ1.2ሻ ൌ 0 , 

which, it turns out, we can solve directly: 

t ൌ േ ඨ
1.2
5
ൌ  േ 0.49 seconds  . 

Since the ball hits the floor after it leaves the table, the time must be positive, so t = 0.49 
seconds.  We’ll take this back to the x-side to find xf. 

x୤ ൌ  x୧ ൅  v୶୧t ൅  ଵ
ଶ
a୶tଶ ൌ 0 ൅ 5ሺ0.49ሻ ൅ 0ሺ0.49ଶሻ ൌ 2.45 m  .  

EXAMPLE 3-2 

                                                 
2 The 80% number is obviously made up, I merely mean that this will work a large per centage of the time and it’s 
how I myself would start such a problem.  If it doesn’t work, then try something else. 
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Take the same ball as above and launch it from the 
edge of the table at 5 m/s at a 30o angle above the 
horizontal.  How far from the foot of the table will it 
land?  

What is the only way in which this problem is 
different from the previous example?  How will you 
deal with that difference? 

Use the same origin and coördinate system as above, 
because, well, why not? 

xi = 0 m 

xf = ? ← 

vxi = vi cos θ= 5 cos (30o) = +4.33 m/s (find the x-component of the initial velocity) 
vxf = +4.33 m/s  
ax = 0 m/s2  
t = ? 
 
Well, we don’t have any more information about the x-motion this time around than we did 
the last, so our plan should be the same as for the previous example.  Let’s move on to inventory 
for the y-side: 
 
yi = 0 m 
yf = -1.2 m (upward is positive and the ball moved downward from the origin) 

vyi = vi sin θ = 5 sin (30o) = +2.5 m/s 
vyf = ? 
ay = -10 m/s2 (we chose upward to be positive) 
t = ? 

KEq. 3: 

y୤ ൌ  y୧ ൅  v୷୧t ൅  ଵ
ଶ
a୷tଶ 

This will be quadratic, so insert the numbers and re-arrange: 

ሺ5ሻtଶ ൅ ሺെ2.5ሻt ൅ ሺെ1.2ሻ ൌ 0 , 

t ൌ  
െሺെ2.5ሻ േ ඥሺെ2.5ሻଶ െ 4ሺ5ሻሺെ1.2ሻ

2ሺ5ሻ
ൌ  െ0.3 OR ൅ 0.8 seconds  . 

Taking the positive time back to KEq.3 in the x-side: 

x୤ ൌ  x୧ ൅  v୶୧t ൅  ଵ
ଶ
a୶tଶ ൌ 0 ൅ 4.33ሺ0.8ሻ ൅ 0ሺ0.8ଶሻ ൌ 3.46 m  .  
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HOMEWORK 3-1 

A ball is thrown horizontally from the top of a 26 m tall building and hits the ground 12 meters 
from the base of the building.  With what initial speed was the ball thrown? 

EXERCISE 3-1 

A classic problem involves a hunter on the ground trying to shoot a monkey at the top of a tree.  
The hunter is 30 m away for the base of the tree, the tree is 40 m high, and the speed of the 
arrow, once off the bow, is 35 m/s.  Not having taken Physics, the hunter aims directly at the 
monkey and shoots.  The monkey, however, sees the hunter shoot, and figures the quickest 
escape is simply to fall immediately from the tree towards the ground.   Show that, in spite of 
this, the hunter hits the monkey after all.  You should ignore the hunter’s height, that is, the 
arrow starts at ground level. 

EXAMPLE 3-3 
 

Let’s try an example where we don’t use the 80% Rule.  An object is thrown horizontally from 
the top of a building of height H and hits the ground below four seconds later at a 45o angle.  
How tall is the building and with what speed was it launched?  How far from the base of the 
building did the object land? 
 
You should draw the figure for this.  Let’s put the origin at the base of the building and make 
positive x be horizontal to the right and positive y be upward.  What do we know? 
 
xi = 0 m  yi = ? ←  (this is the height H)  
xf = ? ←  yf = 0 
vxi = ? ←  vyi = 0 m/s (launched horizontally) 
vxf = vxi  vyf = ? 
ax = 0 m/s2  ay = -10 m/s2 
t = 4 seconds 
 
Finding the height of the building is straightforward with KEq. 3: 

y୤ ൌ  y୧ ൅  v୷୧t ൅  ଵ
ଶ
a୷tଶ 

H ൌ  y୧ ൌ  y୤ െ  v୷୧t െ  ଵ
ଶ
a୷tଶ ൌ 0 െ 0ሺ4ሻ െ ሺെ5ሻሺ4ଶሻ ൌ 80 m  . 
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Now for the x values.  Looking at the x-side, we see that even 
knowing the time does us no good.  So, what else links the 
two sides?  We know something about the final velocity 
components.  The angle in the diagram is -45o (below the x-
axis) and the ratio of the final velocity components is 

v୷୤
v୶୤

ൌ tanθ ൌ tanሺെ45୭ሻ ൌ  െ1     →      v୶୤ ൌ  െv୷୤  . 

 
Since the final x velocity is the same as the initial, KEq. 1 
tells us that 
 
v୶୧ ൌ  v୶୤ ൌ  െv୷୤ ൌ  െ൫v୷୧ ൅  a୷t൯ ൌ  െ൫0 ൅
ሺെ10ሻሺ4ሻ൯ ൌ 40 m/s .   
 
Lastly, xf is given by KEq. 3 as 

x୤ ൌ  x୧ ൅  v୶୧t ൅  ଵ
ଶ
a୶tଶ ൌ 0 ൅ 40ሺ4ሻ ൅  0 ൌ 160 m  . 

DISCUSSION 

Students, if asked, often guess that the object lands 80 meters from the base of the building; 
after all, it hit the ground at a 45o angle, and the building is 80 m tall.  This would seem to 
imply that the object followed a straight line from the top of the building after having made an 
abrupt change of direction immediately after launch.  In a moment, we’ll discuss the path 
actually taken by the object. 

EXERCISE 3-2 

Repeat Example 3-3 if the object had hit instead at an angle 53 degrees below the horizontal. 

Shape of a Projectile's Path 

There are some interesting ideas circulating about the shape of the path (the trajectory) taken by a 
thrown object.  As mentioned, some students assume that the object of the previous example 
follows a straight line path from the top of the building to the ground.  On the other hand, cartoon 
physics says that a coyote running horizontally off a cliff continues horizontally, until he realizes 
his predicament, then falls straight downward.  Let's try to determine the actual type of path a 
projectile will take through space near the surface of the earth, that is, we want y as a function of 
x.   
 
DERIVATION 3-1 
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Start once again with the kinematic equations; we’ll use our 80% Rule.  Call the starting point 
the origin, and let upward be +y and horizontal direction of motion be +x.  Then,3 
 
xi = 0  yi = 0  
xf = ?   yf = ? 
vxi = vo cosθo  vyi = vo sinθo 
vxf = ?  vyf = ? 
ax = 0  ay = ag 
t = ? 
 
This time, we’ll start with the x-side and find the time: 

x ൌ  x୧ ൅  v୶୧t ൅  ଵ
ଶ
a୶tଶ 

x ൌ  0 ൅  v୭cosθ୭t ൅ 0     →      t ൌ  
x

v୭cosθ୭
   . 

Now to the y-side: 

y ൌ  y୧ ൅  v୷୧t ൅  ଵ
ଶ
a୷tଶ 

y ൌ  0 ൅  v୭sinθ୭
x

v୭cosθ୭
൅  ଵ

ଶ
 a୥ ൬

x
v୭cosθ୭

൰
ଶ

ൌ ሺtanθ୭ሻ x ൅  ൬
a୥

2v୭ଶcosଶθ୭
൰  xଶ . 

This looks messy, but that’s O.K., because we don’t care at the moment about most of it.  For 
any given launch of an object, vo and θo are fixed.  We can’t go back and change their values 
midway through the trip.  Let’s replace the tangent term with a generic positive constant, A.  
Then, lump all the constants in the x2 term together and call them negative constant B 
(remember that ag is negative here): 

yሺxሻ ൌ  Ax ൅  Bxଶ  . 

You should I hope recognize this form of curve; it is an example of a parabola, specifically 
one ‘open down’ and symmetric around a vertical axis. 

So, so long as we meet the conditions outlined at the beginning of this section, any object thrown 
near a planet’s surface should follow a parabolic path. 

 

The Range Equation 

                                                 
3 Notice that the initial speed is labelled vo here.  A ‘nought’ subscript denotes a specific value that isn’t actually 
known. 
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Let's discuss a special case of projectile motion which is of historical interest.  In the 17th and 18th 
century, being a physicist usually meant being an artillery officer.  As is usual, we will consider a 
special case. 
 
DERIVATION 3-2 
 

Consider a flat horizontal plain (which is also a plane) on which are located a battery and a 
target.  Given an initial projection angle o (elevation) and launch speed vo (muzzle velocity, 
for guns or cannon), how far will the projectile land from the gun (range, R)?  
 
Because the plane is horizontal and 
flat, yo = yf = 0.  We’ll launch our 
projectile from the origin, for 
convenience. 
 
xi = 0  yi = 0  
xf = R  ← yf = 0 
vxi = vo cosθo  vyi = vo sinθo 
vxf = ?  vyf = ? 
ax = 0  ay = ag 
t = ? 
 
 Once again, we’ll try our 80% Rule, starting on the y-side to find the time with KEq 3: 

y୤ ൌ  y୧ ൅  v୷୧t ൅  ଵ
ଶ
 a୷tଶ  . 

Insert some values and substitutions: 

0 ൌ  0 ൅  v୭sinθ୭ t ൅  ଵ
ଶ 

a୥ tଶ , 

0 ൌ  ቀv୭sinθ୭  ൅  ଵ
ଶ
 a୥ tቁ  t . 

For the right side here to equal zero, either t = 0 (which is uninteresting; we already know the 
object was on the ground at the start of the problem), or 

v୭sinθ୭  ൅  ଵ
ଶ
 a୥ t ൌ 0, 

in which case 

t ൌ  
െ2 v୭sinθ୭

 a୥ 
    . 

This may look a bit strange.  Is the time actually negative?  Did we hit the target before we 
launched the projectile?  No, we’re O.K.  Having said that, I hate negative signs, so I’ll take 
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the absolute value of the negative acceleration and that will cancel the negative sign in the 
numerator: 

t ൌ  
2 v୭sinθ୭
ห a୥ ห

    . 

So, this is the time for the entire trip.  How far does the projectile travel horizontally in that 
time.  Back to KEq. 3. 

x ൌ  x୧ ൅  v୶୧t ൅  ଵ
ଶ
a୶tଶ 

R ൌ  0 ൅   v୭cosθ୭t ൅  0 ൌ  v୭cosθ୭
2 v୭sinθ୭
ห a୥ ห

ൌ  
v୭ଶሺ2sinθ୭cosθ୭ሻ

ห a୥ ห
  . 

Finally, we’ll use a trig identity to make this prettier: 2 sinα cosα = sin(2α).  This brings us to 
the final result of 

R ൌ  
v୭ଶsin ሺ2θ୭ሻ

ห a୥ ห
  . 

Remember that this result is valid only when the assumed conditions are met, particularly that 
the launching and landing spots must be at the same altitude.  Otherwise, you will need to treat 
this as a projectile motion problem to be solved from scratch. 

DISCUSSION 

In ‘real life,’ we would also worry about a number of effects that would make the result above 
invalid, particularly for large ranges.  Can you think of at least three? 

EXAMPLE 3-4 

A ball is thrown at 20 m/s at an angle of 25o above the horizontal over a flat surface.  How far 
from the launch point will the ball land? 

This is straight plug-and-chug: 

R ൌ  
v୭ଶsin ሺ2θ୭ሻ

ห a୥ ห
ൌ

20ଶ sin ሺ2 ൈ 25୭ሻ
10

ൌ
20ଶ sin ሺ50୭ሻ

10
ൌ 30.6 m  .  

EXAMPLE 3-5 

Let’s go the other way.  The launch speed is 50 m/s and we wish to hit a target 160 m away on a 
flat surface.  At what angle should the object be launched? 
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Re-arranging the Range Equation for theta, 

θ୭ ൌ  ଵ
ଶ

 arcsinቆ
Rห a୥ ห

v୭ଶ
ቇ ൌ  ଵ

ଶ
 arcsin ൬

160 ൈ 10
50ଶ

൰ ൌ ଵ
ଶ

 arcsinሺ0.64ሻ ൌ ଵ
ଶ

 ሺ40୭ሻ ൌ  20୭ . 

DISCUSSION 

Examine the Range Equation again.  For a given launch speed vo, what launch angle will result 
in the largest range?   

If we start at 0o, the range will be zero; the projectile will just hit the ground right away.  As 
we increase the elevation angle, the range will increase until the sine function maxes out at 1. 
What launch angle θo does that correspond to? If that angle results in the maximum range, what 
happens when we go above that angle? 

Let’s plot the sine of twice 
the launch angle against the 
launch angle, θo.  Solving 
the example above meant 
finding an angle such that  

sinሺ2𝜃௢ሻ ൌ  
𝑅ห a୥ ห

v୭ଶ
  , 

as can be seen on the graph; 
the solution is at the 
intersection of the two curves.  But, if you follow the dotted line over to the right, you will see that 
there is a second angle that fulfills this requirement.  Since this curve is symmetric, the second 
larger angle should be the complement of the smaller one.  So, there are actually two answers to 
the example above, the 20o we found, OR 70o, the complement of 20o.  Except of course for 45o, 
which is its own complement, there should be two answers to these problems. 
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So, how is this possible?  At a low angle, the projectile is not in the air long, but it has a high x-
component of velocity, while at a high angle, the projectile spends a lot of time in the air, but has 
a correspondingly lower x-component of velocity.  These two effects combine to give the same 
final x displacement as for the low angle case.  In the same way, the lower angle launch has a 
smaller initial y velocity component than the higher angle launch, and so will not reach as high an 
altitude.  The lower angle is useful in tank warfare, where it is important to hit the other guy before 
he gets off a shot at you, while the second is good if there are obstacles around your target. In the 
example above, the travel times of the two paths are 

t ൌ  
2 v୭sinθ୭
ห a୥ ห

 

tଶ଴౥ ൌ  
2ሺ50ሻsin ሺ20୭ሻ

10
ൌ 3.42 seconds  

 t଻଴౥ ൌ  
2ሺ50ሻsinሺ70୭ሻ

10
ൌ 9.40 seconds  .  

The figure at left shows the trajectories of this object 
for each of the angles, 20o and 70o.  The dots 
represent intervals of one second.  One can see that 
if two such objects were launched simultaneously, 
the one launched at 70o would still be rising when 
the other arrived at its target. 

 

HOMEWORK 3-2 

Derive an expression (that is, start with the kinematic equations) in terms of vo, θo, and ag for 
the maximum altitude H reached by a projectile.  Use this result to calculate the maximum 
altitudes for the object launched in Example 3-5 for each angle (20o and 70o).  Check your 
results against the graph above. 

EXERCISE 3-3 

Our target is 350 meters away along a flat surface.  Our launcher will throw the projectile with 
an initial speed of 55 m/s.  At what angle (or angles) could we launch in order to hit the target? 

HOMEWORK 3-4 

You’re playing golf on a flat fairway.  The green is 150 m away, and you can send the ball 
away at 60 m/s.  At what angle or angles could you hit the ball for a hole-in-one? 

HOMEWORK 3-5 
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Show that, for a projectile thrown at an initial angle θo above a flat horizontal plane, the 
maximum altitude H is related to the range by 

H ൌ
R tan θ୭

4
  . 

HOMEWORK 3-6 

To score in Sportsball, you must successfully 
throw the sportsball at a target on the wall from 
a distance of 12 m.  The target is 6 meters above 
the floor, and you release the ball with a speed 
of 16 m/s at an altitude of 2.5 m above the floor.  
At what angle or angles θo from the horizontal 
should you throw the ball.  You may find this 
relationship useful: 

𝑡𝑎𝑛ଶ 𝜃 ൅ 1 ൌ  
1

𝑐𝑜𝑠ଶ 𝜃
 . 

 
 
UNIFORM CIRCULAR MOTION 
 
Consider an object moving at constant speed v in a circle of radius r; forget about gravity for 
now.   
 
DISCUSSION 
 

Does this object have a constant velocity?  Which kind of a quantity is velocity? What are the 
two parts of velocity?  Do they both need to be constant for the velocity to be constant?  This 
means that the object is doing what? 

 
Let’s find that quantity.  We’ll do it two ways, one we could almost call’ traditional,’ and the other 
a bit less straightforward, but which will leave us with some additional useful relationships. 
 
Before we start, let’s define a quantity we will find useful through the rest of this course.  Consider 
our object moving in a circle.  Suppose that it has moved a distance s along the circumference of 
a circle of radius r, where arc s subtends an angle θ.  The arclength 
relationship tells us that  
 

s ൌ r θୖ୅ୈ୍୅୒ୗ  . 
 
A radian is the angle such that the arclength s is equal to the radius 
r, or about 57.3o.  Clearly, if we halve the angle, we also halve the 
distance along the arc, so that  and s are proportional by the factor 
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r.  As an extreme example, there are 2 radians in a circle, since the circumference (the arclength 
all the way around) is 2r. 

We should next find a way of describing changes in the object’s 
position, or the angular distance so that  

∆s ൌ   r ∆θ  . 

If we consider the instantaneous time rate of change of each side of 
the equation above, we obtain 

lim
∆୲→଴

∆s
∆t

ൌ r lim
∆୲→଴

∆θ
∆t

  , 

Since the radius is a constant.  The left side we recognize as the speed vT, We add the ‘T’ subscript 
because the velocity is tangent to the circle.  On the right side we will define the angular speed ω 
(omega), the angular distance per unit time:  

ω ൌ  lim
∆୲→଴

∆θ
∆t

  . 

This gives us a choice in describing the motion of the object, in terms of either its speed around 
the circle or its angular position as seen from the center of the circle: 

v୘ ൌ r ω  . 

EXAMPLE 3-6 

Consider a race car moving around a circular track at 70 m/s.  If the radius of the track is 300 
meters, what is the car’s angular speed as seen from the center of the curve?  

v୘ ൌ r ω  →    ω ൌ  
v୘
r
ൌ

70
300

ൌ 0.23 radians second⁄ .  

The following derivations will be valid only for objects moving with constant speed.  We’ll deal 
with the other case later in the course. 

DERIVATION 3-3 
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Consider a particular point in the 
object's path, where the velocity 
vector vሬ⃑  is of course tangent to the 
circle: let's also look just before this 
point (vሬ⃑ i ) and just after this point (vሬ⃑ f ), 
so that it takes time t to get from the 
former to the latter point.  These three 
vectors have the same magnitude 
(speed is constant) even though the 
directions are different.  Since the 
direction of the velocity changed, 
there was an acceleration.  How big 
and in what direction is the change, 
vሬ⃑ ?  Let's move the velocity vectors 
around so that they are tail to tail: 

The vector vሬ⃑  is the vector that needs to be added to vሬ⃑ i to get the final 
result, vሬ⃑ f.  As the figure shows, vሬ⃑  points toward the center of the circle 
(centripetal).  Since aሬ⃑ AVERAGE = vሬ⃑ /t, the direction of the acceleration 
is the same as for vሬ⃑ , and so this is a centripetal acceleration, 
aሬ⃑ C.  Strictly speaking, we just found the average acceleration over this 
interval, but if we were to make the time interval t smaller and 

smaller, then the average value approaches the instantaneous value at our point of interest, as 
we've seen before.   

Now for the magnitude of aሬ⃑ C.  Since the change in velocity and the acceleration are in the same 
direction, we can write of their magnitudes that  

a஼  ൌ  lim
∆୲→଴

∆v
∆t

  . 

First, we have to realize that the angle between the two velocity vectors vሬ⃑ i and vሬ⃑ f is the same 
as the one labelled  in the original figure.  We can argue this because the velocity vectors, 
being tangent to the circle, are always at right angles to their corresponding location vectors 
(the r's), so that as r swings through a given angle, then v must swing through the same angle.  

If that's true, then we see that we have two similar triangles, one in real space, the other in 
velocity space; each is isosceles (since vi = vf = v and rf = ri = r) and they have the same apex 
angle).  In that case, we can write a relationship involving the lengths of the sides of these 
triangles: 
  

∆r
r
ൌ  
∆v
v

   →    ∆v ൌ  
v ∆r

r
. 

Then,  
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aେ  ൌ  lim
∆୲→଴

∆v
∆t

ൌ  lim
∆୲→଴

v ∆r
r ∆t

ൌ  
v s
r ∆t

ൌ  
v s
∆t
r

ൌ  
vሺvሻ

r
ൌ  

vଶ

r
 , 

 
where we argue that, as the time interval is made smaller and 
our starting and ending positions become closer together on 
the circle, the displacement magnitude |r| approaches in 
value the distance s traveled by the object along the arc of 
the circle.   

So, in short, an object moving at constant speed about a 
circular path has an acceleration that points toward the center 
of the circle (centripetal) and has magnitude v2/r.  However, we can rewrite this result by 
substitution:  v2/r = (ωr)2/r = ω2r. 

aେ  ൌ  
v୘
ଶ

r
ൌ  ωଶr towards the center of the circle . 

DERIVATION 3-4* 

Here is a shorter, but more conceptual derivation for centripetal acceleration.4  I like it because, 
when we’re done, we can make use of it to derive some useful mathematical relationships for 
later in the course. 

Consider a point mass travelling around a circle at 
constant speed v and angular speed ω. Use vector r⃑ 
to indicate the position of the object relative to the 
center of the circle.  Remember from above that the 
direction of vሬ⃑  is always changing, but it is also always 
tangent to the circle and perpendicular to r⃑, and 
constant in magnitude.  The position of the object can 
be described using the angle theta from above, as 
measured from the x-axis.  The direction of the 
velocity can be described using the angle ϕ (phi), 
which is always 90o more than theta. 

For convenience, let’s define a function called the 
Instantaneous Time Rate of Change of a variable, 
such that, for example, 

ITRCሺr⃑ሻ ൌ lim
∆୲→଴

∆r⃑
∆t

ൌ vሬ⃑   . 

                                                 
4 This was adapted from Marcel Wellner, Elements of Physics (New York, Plenum Press, 1991), 129-131.  This 
book presents many interesting alternate ways of looking at elementary mechanics. 
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Note that this is nothing new, we’re just calling it something else for convenience. 

O.K., we’re ready to go.  What we have in r⃑ is a vector of constant magnitude whose direction 
is rotating CCW at constant rate ω.  Its ITRC has a constant magnitude that is ω times its own 
magnitude and a direction rotating CCW at constant rate ω, 90o ahead of its own.  Since there’s 
nothing particularly unique about r⃑ in terms 
of being a vector, I think we can assert that 
a similar relationship will hold for any such 
vector.  Aha! The velocity here is exactly 
just such a vector!  Since aሬ⃑  = ITRC (vሬ⃑ ), we 
know that the acceleration will be a vector 
of constant magnitude ωv = ω2r, rotating 
CCW at constant angular speed ω.  The 
acceleration is 90o ahead of the velocity, 
which is in turn 90o ahead of the position 
vector r⃑; since r⃑ always points outward 
from the center of the circle, the 
acceleration, which is then 180o ahead of 
the position vector,  must point opposite to 
r⃑ inward to the center of the circle, i.e., it is 
centripetal. 

MATHEMATICAL DIGRESSION* 

If you’re O.K. with the last discussion, we can make use of the concept there to develop some 
useful relationships for later in the semester.  Consider a vector Aሬሬ⃑  with constant magnitude A 
rotating CCW at a constant angular speed ω.  At any moment, its direction angle θ can be 
written as5  

θ ൌ  ωt  . 

Let Bሬሬ⃑  be the ITRC of Aሬሬ⃑ .  As discussed, the magnitude of Bሬሬ⃑  will be B = ωA and the direction 
angle ϕ will be θ + 90o.  However, this relationship should be true of the components of Aሬሬ⃑  and 
Bሬሬ⃑  as well: 

ITRCሺA୶ሻ ൌ B୶     and     ITRC൫A୷൯ ൌ  B୷  . 

So, if 

A୶ሺtሻ ൌ   A cosሺθሻ ൌ  A cos ሺωtሻ    and     A୷ሺtሻ ൌ   A sinሺθሻ ൌ  A sin ሺωtሻ , 

                                                 
5 For an object starting at the origin and moving linearly with constant velocity, KEq. 3 reduces to x = vt.  This is 
analogous. 
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Then, 

ITRC൫A cos ሺωtሻ൯ ൌ  ITRC ൫A୶ሺtሻ൯ ൌ  B୶ሺtሻ ൌ   B cos ሺϕሻ ൌ ሺωAሻ cosሺωt ൅ 90୭ሻ
ൌ  െሺωAሻ sinሺωtሻ  

ITRC൫A sin ሺωtሻ൯ ൌ  ITRC ቀA୷ሺtሻቁ ൌ  B୷ሺtሻ ൌ   B sin ሺϕሻ ൌ ሺωAሻ sinሺωt ൅ 90୭ሻ

ൌ  ሺωAሻ cosሺωtሻ  . 

Or, in summary, 

ITRC൫A cos ሺωtሻ൯ ൌ െωA sinሺωtሻ     and     ITRC൫A sin ሺωtሻ൯ ൌ  ωA cosሺωtሻ  . 

These statements should then be true for any sinusoidally varying function (not just vectors), 
so long as ω is constant. 

EXERCISE 3-4 

Verify the steps converting sine to cosine and cosine to sine above.  Make use of these trig 
identities: 

sinሺα ൅ βሻ ൌ  sinα cosβ ൅ cosα sinβ  .  

cosሺα ൅ βሻ ൌ cosα cosβ െ  sinα sinβ  .  

DISCUSSION* 

Describe the jerk, kick, and lurch of an object moving in such a circle.  What can you say about 
their magnitudes and directions? 

EXAMPLE 3-7 

What is the acceleration of a car that starts from rest and attains a speed of 35 m/s while 
traveling in a straight line for 100 m?  What is the acceleration of a car travelling at a constant 
35 m/s while driving in a circle of radius of 100 m?  In which case do you think the tires would 
be more likely to slip? 

Let’s let the direction of motion be along the x-axis.  From Section 2, 

xi = 0 m 
xf = 100 m 
vxi = 0 m/s (starts from rest) 
vxf = 35 m/s 
ax = ? ← 
t = ? 
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Looks like KEq 4 may work. 

v୤
ଶ ൌ  v୧

ଶ ൅ 2aሺx୤ െ  x୧ሻ 

a ൌ  
v୤
ଶ െ v୧

ଶ 
2ሺx୤ െ  x୧ሻ

ൌ  
35ଶ െ 0ଶ 

2ሺ100 െ  0ሻ
ൌ 6.1 m/sଶ .  

For the circular motion, 

aେ ൌ  
vଶ

r
ൌ  

35ଶ

100
ൌ 12.3 m/sଶ .     

We might well assume that the situation with the higher acceleration would be the one more 
likely to have the tires slip. 

EXAMPLE 3-8 

Suppose you’re on a roller coaster with a loop-de-loop of radius 45 m.  As you go over the top 
while upside-down, you notice that your bottom has just barely lost contact with your seat.  
How quickly is the roller coaster car moving at the top of the loop? 

If there is no other agency than gravity acting on you at that point, your acceleration will be 10 
m/s2 downward, which at this point is toward the center of the circle.  Then, 

aେ ൌ  
vଶ

r
     →      v ൌ  ඥaେr ൌ  ඥ10ሺ45ሻ ൌ 21.2

m
s

 . 

EXERCISE 3-5 

Suppose that the moon were a perfect sphere of radius 1740 km.  The gravitational field 
strength gMOON on the surface of the moon is about 1/6 that at the surface of the earth (We 
know this because we’ve been there.).  How quickly would you need to launch a satellite so 
that it just skims along the surface of the moon? 

HOMEWORK 3-7 

This was a demonstration when I took PHYS I.  The professor took a pail 
of water and swung it in a vertical circle with the intent that the water would 
stay in the bucket, even when the bucket was inverted.  That actually didn’t 
work out well for him.  What is the minimum number of revolutions per 
second necessary for Professor Buechner to stay dry? 

We shall return for further discussion of centripetal acceleration in a later 
section. 

______________________________________________________________________________ 
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EXERCISE 3-1 Solution 

The idea here is that we need to show that, at some point, 
the bullet and the monkey are in the same place at the 
same time.  The angle theta will be arctan(40/30) = 53o.  
We have two objects, and so we need a corresponding 
number of kinematic equations.  The monkey is a bit 
easier, so let’s do that first. 

Monkey 

xMi = +30 m  yMi = +40 m  
xMf = +30 m  yMf = yAf = ? 
vMxi = 0 m/s  vMyi = 0 m/s 
vMxf = 0 m/s  vMyf = ? 
aMx = 0 m/s2  aMy = -10 m/s2 
t = ? 

Arrow 

xAi = 0 m     yAi = 0 m  
xAf = +30 m     yAf = yMf = ? 
vAxi = vo cos(θ) = 35 cos(53o) = +21 m/s vAyi = vo sin(θ) = 35 sin(53o) = +28 m/s 
vAxf = +21 m/s     vAyf = ? 
aAx = 0 m/s2     aAy = -10 m/s2 

We can easily find the time required for the arrow to travel 30 m horizontally by using KEq. 3: 

x୤ ൌ  x୧ ൅  v୶୧t ൅  ଵ
ଶ
a୶tଶ 

30 ൌ  0 ൅  21t ൅  0 tଶ      →     t ൌ
30
21

ൌ 1.43 seconds  . 

At this time, both the monkey and the bullet are at x = +30 m.  Now at that same time, are they at 
the same altitude?  For the monkey, 

y୤ ൌ  y୧ ൅  v୷୧t ൅  ଵ
ଶ
a୷tଶ ൌ  40 ൅  0 ሺ1.43ሻ ൅  ଵ

ଶ
ሺെ10ሻሺ1.43ሻଶ ൌ 29.8 m  . 

For the bullet, 

y୤ ൌ  y୧ ൅  v୷୧t ൅  ଵ
ଶ
a୷tଶ ൌ  0 ൅  28 ሺ1.43ሻ ൅  ଵ

ଶ
ሺെ10ሻሺ1.43ሻଶ ൌ 29.8 m  . 

And so, yes, the arrow hits the monkey anyway. 

EXERCISE 3-2 Solution 
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If the time is still four seconds, then the building is still 80 m tall.   

v୷୤
v୶୤

ൌ tanθ ൌ tanሺെ53୭ሻ ൌ  െ1.33     →      v୶୤ ൌ  െ0.75 v୷୤  . 

 
And, since the final x velocity is the same as the initial, KEq. 1 tells us that 
 
v୶୧ ൌ  v୶୤ ൌ  െ0.75 v୷୤ ൌ  െ0.75 ൫v୷୧ ൅  a୷t൯ ൌ  െ0.75 ൫0 ൅ ሺെ10ሻሺ4ሻ൯ ൌ 30 m/s .   
 
Lastly, xf is given by KEq. 3 as 

x୤ ൌ  x୧ ൅  v୶୧t ൅  ଵ
ଶ
a୶tଶ ൌ 0 ൅ 30ሺ4ሻ ൅  0 ൌ 120 m  . 

EXERCISE 3-3 Solution 

The problem meets the conditions for using the Range Equation, so let’s go for it. 

R ൌ  
v୭ଶsin ሺ2θ୭ሻ

ห a୥ ห
 

θ୭ ൌ  ଵ
ଶ

 𝑎𝑟𝑐𝑠𝑖𝑛 ቆ
𝑅ห a୥ ห

v୭ଶ
ቇ ൌ  ଵ

ଶ
 𝑎𝑟𝑐𝑠𝑖𝑛 ൬

350 ൈ 10
55ଶ

൰ ൌ ଵ
ଶ

 𝑎𝑟𝑐𝑠𝑖𝑛ሺ1.16ሻ ൌ ሺ𝐸𝑅𝑅𝑂𝑅ሻ 

How many times did you retry 
taking the arcsine?  You didn’t 
make a mistake.  What angle has a 
sine of 1.16?  Graphically, you’re 
trying to find the intersection of 
these two curves, and it isn’t 
happening.  The physical 
interpretation of this is that it is 
impossible to hit the target under 
these conditions. 

EXERCISE 3-4 Solution 

For this, α = ωt and β = 90o.  Then, 

cosሺωt ൅ 90௢ሻ ൌ  cosωt cos90௢ െ  sinωt sin90௢ ൌ  cosωt ሺ0ሻ െ  sinωt ሺ1ሻ ൌ െ sinωt  .    

sinሺωt ൅ 90௢ሻ ൌ  sinωt cos90௢ ൅ cosωt sin90௢ ൌ  sinωt ሺ0ሻ ൅ cosωt ሺ1ሻ ൌ  cosωt  .  

EXERCISE 3-5 Solution 
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The acceleration of an object at the earth’s surface is 10 m/s2 towards the earth’s center.  If the 
moon’s gravity is the only agency acting on the satellite, then we might assume that this satellite’s 
acceleration will be ag = 10/6 = 1.7 m/s2 downward, towards the center of its circular orbit.  Don’t 
forget to convert the moon’s radius into meters:  

1740 km ൈ
1000 m

1 km
ൌ 1.74 ൈ 10଺m  . 

Then,  

aେ ൌ  
vଶ

r
     →      v ൌ  ඥaେr ൌ  ඥ1.7ሺ1.74 ൈ 10଺ሻ ൌ 1720

m
s

 . 

 



 

Sample Exam I 
 
MULTIPLE CHOICE (4 pts each) 
 
1) Define up as being positive.  Suppose an object is moving downward, but slowing down.  Then,  
          
 A) the velocity is negative and the acceleration is positive. 
 B) the velocity is negative and the acceleration is negative. 
 C) the velocity is positive and the acceleration is positive. 
 D) the velocity is positive and the acceleration is negative. 
 E) the velocity is negative and the acceleration is zero. 

 
2) Consider the figure, which reports the velocities of two cars in a 

race on a straight highway as a function of time.  Which of the 
statements below is (or are) true? 

 
(1) There is a time other than t=0 when both cars have the same 

displacement from the start line. 
(2) There is a time other than t=0 when both cars have the same 

velocity. 
(3) There is a time when both cars have the same acceleration. 

 
A) (1) only 
B) (2) only 
C) (3) only 
D) (1) and (2) only 
E) (2) and (3) only 

 

3) Consider two vectors, Aሬሬ⃑  ↑ and Bሬሬ⃑  →.  Which of the following choices best represents the 

general direction of Bሬሬ⃑  - Aሬሬ⃑ ? 
 

 
4) If a cannonball is fired at an angle of 53 degrees above the horizontal and leaves the muzzle 

with a speed of 400 m/s, what is the magnitude of the acceleration of the ball three seconds 
into its flight (neglect air resistance and assume that the ball is still in flight)?  Pick the closest 
answer. 

 
 A) 0 m/s2 
 B) 10 m/s2 
 C) 60 m/s2 
 D) 180 m/s2 
 E) 240 m/s2 
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5) We found in class that the range R of an object thrown with initial speed vi at an elevation θo 
over a flat plain is given by (if air drag is ignored) 

 

R ൌ  
v୭ଶsin ሺ2θ୭ሻ

ห a୥ ห
  . 

 
Find the angle(s) at which one could launch an object with initial speed 400 m/s and have it 
land 10,000 m downrange. 

 
A) 34o and 56o 

 B) 19o and 71o 
 C) 26o and 64o 
 D) 45o only 
 E) There are no such angles. 
 
PROBLEM I (20 pts) 
 
Starting from the definitions of the average velocity and of the average acceleration,  
 
 

v ൌ ୶ି ୶౟
୲

   and   a ൌ  ୴ି ୴౟
୲

 
 
and the relation, 
 

v୅୚୉ ൌ
୴౟ା୴౜
ଶ

  , 
 

derive the relation, 
 

x ൌ  x୧ ൅ v୧t ൅  భ
మ
 atଶ  . 

 
Be sure to show all effort for full credit.  
 
PROBLEM II (20 pts) 
 
Using the component method, find the magnitude and direction angle of vector Dሬሬ⃑ .  
 
Aሬሬ⃑  = 6m , θA= -75o 
Bሬሬ⃑  = 5m, θB = 45o 
Cሬ⃑  = 8m, θC = - 135o 
Dሬሬ⃑  = Aሬሬ⃑  + Bሬሬ⃑  - Cሬ⃑  



 

 
PROBLEM III (20 pts) 
 
The size of the earth has been known since 
antiquity.  Eratosthenes assumed that 
since the sun is very far from the earth, 
light rays from the sun are essentially 
parallel (one can show the sun is distant 
by observing solar and lunar eclipses.).  
He noticed that when the sun was directly 
overhead at Syene (in southern Egypt), it 
was 7o away from overhead in 
Alexandria, 770 km to the north.  From 
the information given, calculate the radius 
of the earth.  An approximate solution 
earns most of the points. 
 
 
 
 
 
 
 
 
 
 
 
 
  
PROBLEM IIII (20 pts) 
 
A ball is thrown downward with speed 9 m/s from the top of a 40m tall building.   
 
A) How long will it take for the ball to hit the ground?  (10 pts) 
 
B) How will be the ball’s velocity just before hitting the ground?  (10 pts) 
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SECTION 4 – RELATIVE MOTION 

Relative Velocities 
 
On occasion, it is useful to consider the motion of an object with respect to an origin/coördinate 
system which is itself in motion relative to some third reference frame.  A simple example is that 
of the ‘people mover’ at the airport, a giant conveyor belt that carries weary passengers along the 
length of the concourse, while also providing those in a rush a little extra speed as they run down 
the walkway.  For example, consider such a walkway (W) which moves with a velocity of +2 m/s 
with respect to the ground (G).  We’ll represent this with this notation:  vW,G = +2 m/s; the first 
letter indicated which object we’re examining, and the second what it is moving ‘with respect to.’  
Now, think of a person (P) walking in the same direction at +1 m/s along the walkway: vP,W = +1 
m/s.  I don’t think anyone would argue that the person’s velocity relative to the ground is +3 m/s, 
which would imply that 
 

vሬ⃑ ୔,ୋ ൌ  vሬ⃑ ୔,୛ ൅  vሬ⃑ ୛,ୋ  . 
  
Let’s test this for some other scenarios.  Suppose the person were to walk the wrong way on the 
walkway at -1 m/s.  Then 
 

vሬ⃑ ୔,ୋ ൌ  vሬ⃑ ୔,୛ ൅  vሬ⃑ ୛,ୋ ൌ  െ1 ൅ 2 ൌ  ൅1 m/s . 
 
The person would still be going in the same direction as before, although more slowly.  Still happy?   
 
One of the hardest aspects of relative velocity is to determine which two quantities get added to 
obtain the third.  Let’s look more closely at the notation.  Two of the velocity terms have the P in 
the first position and two have the G in the second position.  But, one has the W in the first position 
and the other has the W in the second position.  It’s the ones with the letters in different positions 
that are added to obtain the third.  If you do it correctly, the outer subscript letters on the right side 
will match the subscript letters on the left side. 
 
Here’s another useful fact: vሬ⃑ A,B = - vሬ⃑ B,A.  As an example, suppose that I’m driving I-83 to York, 
Penna at 120 kilometers per hour (kph) and pass someone parked on the shoulder. That person 
sees me going northward at 120 kph and himself as stationary, but I see myself as stationary and 
see him moving southward at 120 kph.   

EXAMPLE 4-1 

An airplane with an airspeed of 400 kph files eastward with an 85 kph tailwind.  What is the 
ground speed of the plane? 

Well, here we’ve introduced a couple of terms that may need explaining.  Airspeed is the speed 
of the plane as measured relative to the air, and of course the ground speed is measured relative 
to the ground.  The wind is measured relative to the ground, and a tailwind moves in the same 
direction as the plane. 
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We have three objects to consider: the plane; the ground; and the air.  Let eastward be the 
positive direction.  Then, 

vP,G = ? ← 
vP,A = +400 kph 
vA,G  = +85 kph 

We note that it is the A that changes position, so we write that 

vሬ⃑ ୔,ୋ ൌ  vሬ⃑ ୔,୅ ൅  vሬ⃑ ୅,ୋ  . 

The solution is straightforward: 

vሬ⃑ ୔,ୋ ൌ  vሬ⃑ ୔,୅ ൅  vሬ⃑ ୅,ୋ   ൌ 400 ൅ 85 ൌ 485 kph. 

EXERCISE 4-1 

Back on the ‘people mover,’ Person A walks the correct way at a speed of 1 m/s, while Person 
B walks at 2 m/s the correct way on the return walkway.  What is the relative speed between 
the brothers?  Assume each walkway moves at 2 m/s relative to the ground. 

EXAMPLE 4-2 
 

Consider a river flowing in a straight 
course at 8 kph.  Joe has a dock (labeled 
JD) and want to make a run to the store 
(S) 20 km downstream for ‘supplies.’  If 
the boat can travel 12 kph in still water, 
how long will it take Joe to make a round 
trip?  We’ll assume his order is already 
waiting for him, so he can immediately turn around. 
 
There are again three objects to worry about: the boat; the water; and the ground.  But also 
there are two parts to the problem: there (I) and back again (II).  The velocities are vB,G, vB,W, 
and vW,G.  Since we want the time for each of these trips, we need to work in the displacement.  
So, 
 

vሬ⃑ ୆,ୋ ൌ
∆𝑥⃑஻,ீ

𝑡
ൌ  vሬ⃑ ୆,୛ ൅  vሬ⃑ ୛,ୋ      →      t ൌ  

∆𝑥஻,ீ

v୆,୛ ൅  v୛,ୋ
  . 

 
Let’s make downstream the +x direction and use the notation of Sections Two and Three, i.e., 
let the sign of the value indicate the direction. 
 
On the way downstream: 
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vB,W = +12 kph 
vW,G  = +8 kph 

ΔxB,G = +20 km 
 

t୍ ൌ  
∆x୆,ୋ

v୆,୛ ൅  v୛,ୋ
 ൌ  

൅20
൅12 ൅ 8

ൌ 1 hour  . 

On the way upstream: 
vB,W = -12 kph 
vW,G  = +8 kph 

ΔxB,G = -20 km 
 

t୍୍ ൌ  
∆x୆,ୋ

v୆,୛ ൅  v୛,ୋ
 ൌ  

െ20
െ12 ൅ 8

ൌ 5 hours  . 

 
This is then a total of 6 hours. 

 

HOMEWORK 4- 1 

An escalator is 20 m long.  If a person simply stands on the 'up' side, it takes 30 seconds to ride 
to the top.  If a person walks up the escalator at a speed of 0.6 m/s relative to the escalator, how 
long will it take him to get to the top?  If the same person walks down the 'up' side at the same 
relative speed as before, how long will it take him to arrive at the bottom?  

HOMEWORK 4-2 

An airplane is to fly from City A due west to City B to pick up cargo, then return to City A.  It 
will take exactly one hour to load the plane at B, and this entire trip should be done in the 
shortest time possible.  The plane has a maximum airspeed of 300 kph, and encounters an 80 
kph westerly wind1 for the entire trip.  If the distance between A and B is 1800 km, how long 
does the entire trip require? 

Well, that was one dimensional motion.  Let’s move on to two dimensional problems.  We saw 
back in Section One that if 

Cሬ⃑ ൌ  Aሬሬ⃑ ൅  Bሬሬ⃑   , 

then 

C୶ ൌ  A୶ ൅  B୶     and     C୷ ൌ  A୷ ൅  B୷  , 

and we can treat a two dimensional problem as two one dimensional problems. 

                                                 
1 A westerly wind blows from the west, towards the east. 
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EXAMPLE 4-3 

Consider a boatman who wishes to 
cross a river (100 metres wide) from 
one dock north to another exactly 
opposite.  His boat will make 10 m/s in 
calm water.  The velocity of the water 
is 8 m/s eastward.  He aims his boat 
exactly northward and sets off.  How 
far downstream (x) will he actually 
land, in what compass direction did he 
actually travel, and how long will it take 
him to get there?  

 
We have three objects to 
consider: the boat; the 
ground; and the water.  The 
velocity equation is then 

vሬ⃑ ୆,ୋ ൌ vሬ⃑ ୆,୛  ൅  vሬ⃑ ୛,ୋ  . 

In this case, the quickest 
solution may be to realize 
that, if the velocities are all 
constant, a displacement 
component diagram can be 
constructed where each 
term is parallel to the 
corresponding velocity term.  The two triangles so formed are then similar, and so there is a 
proportionality of the lengths of the sides: 

x
100 m

ൌ  
8 m/s

10 m/s
     →      x ൌ  

100 ሺ8ሻ
10

ൌ 80 m . 

 The direction traveled can be found using the tangent of the angle :  

tan θ ൌ  
8

10
ൌ 0.8     →      θ ൌ 38.7୭  . 

For the time, we consider that the motion northward (in this case) is independent of the motion 
eastward; it would take 10 seconds to cover 100 meters at 10 m/s. Or, it would take 10 seconds 
to cover 80 meters at 8 m/s. 

EXERCISE 4-2 
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Now, suppose that, having learned his lesson, he tries again to cross directly to the other 
side.  In what direction should he aim his boat (relative to north) to arrive exactly at the other 
dock, and how long will it take him? 

HOMEWORK 4-3 

A plane needs to leave City A on time and arrive at City B on time exactly seven hours later.  
City B is 1500 km due east of City A.  There is a southerly wind blowing at 120 kph.  With 
what airspeed and in what direction should the pilot head the plane? 

HOMEWORK 4-4 

A plane needs to leave City A on time and arrive at City B on time exactly eight hours later.  
City B is 2500 km due east of City A.  There is a wind blowing at 120 kph toward 37 degrees 
west of north.  With what airspeed and in what direction should the pilot head the plane? 

Relative Accelerations* 

We’ve just discussed relative velocities, and of course we introduced vector addition as ‘relative 
displacements,’ so is there such a thing as relative acceleration?  Well, you betcha. 

EXAMPLE 4-4 

A heavy two-meter stick (S) with a vertical orientation is dropped from rest over a tall cliff.  
At that same instant, an ant (A) starts to accelerate up the stick from the bottom end.  From the 
markings on the meterstick and on his wristwatch, he sees that he covers 0.8 meters in 1.1 
seconds.  At that time, how far has the ant fallen with respect to the cliff face (C)?   

Let upward be positive x.  The ant’s acceleration relative to the stick (aA,S) is found from KEq 
3: 

xASi = 0 m 
xA,Sf  = 0.8 m  
vA,Si = 0 m/s 
vA,Sf  = ?   
aA,S = ?  ← 
t = 1.1 sec 

x ൌ  x୧ ൅ v୧t ൅  ଵ
ଶ
 atଶ    

a୅,ୗ ൌ 2
x െ  x୧ െ v୧t

tଶ
ൌ  2

0.8 െ  0 െ 0ሺ1.1ሻ
1.1ଶ

ൌ   1.32 m/sଶ    .  
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The acceleration of the meter stick2 is -10 m/s2.  Then, the acceleration of the ant with regard 
to the cliff face is 

aሬ⃑ ୅,େ ൌ  aሬ⃑ ୅,ୗ ൅  aሬ⃑ ୗ,େ  . 

a୅,େ ൌ  1.32 ൅ ሺെ10ሻ ൌ  െ8.68  m/sଶ  . 

Then, 

xACi = 0 m 
xA,Cf  = ?  ←    
vA,Ci = 0 m/s 
vA,Sf  = ?   
aA,S = -8.68 m/s2 
t = 1.1 sec 

x ൌ  x୧ ൅ v୧t ൅  ଵ
ଶ
 atଶ    

x஺,஼ ൌ  0 ൅ 0ሺ1.1ሻ ൅  ଵ
ଶ
 ሺെ8.68ሻሺ1.1ଶሻ ൌ െ5.25 m  .   

DISCUSSION 4-1 

Suppose that a passenger is sitting in a train waiting at the station.  You are standing on the 
platform spying on him.  Suddenly, a frog jumps straight upward from the floor of the train 
car.  What shape path will the frog seem to follow as seen by you?  As seen by the passenger? 

Suppose that a passenger is sitting in a train that is traveling through the station at constant 
velocity.  You watch as the train passes.  Suddenly, a frog jumps as before.  What shape path 
will the frog seem to follow as seen by you?  As seen by the passenger? 

Suppose that a passenger is sitting in a train that is traveling through the station with a constant 
acceleration aT, specifically the train is speeding up.  You watch as the train passes.  Suddenly, 
a frog jumps as before.  What shape path will the frog seem to follow as seen by you?  As seen 
by the passenger? 

EXERCISE 4-3* 

Show that the path of the frog as seen by the accelerating passenger is parabolic and is 
consistent with the notion of relative accelerations.  The most general form of the equation of 
a parabola is 

                                                 
2 Well, it’s actually just a little bit higher; we’ll deal with that in a later section. 



- 83 - 
 

Aଶyଶ ൅ Bଶxଶ െ 2ሺf୶ሺAଶ ൅ Bଶሻ ൅ ACሻx െ 2൫f୷ሺAଶ ൅ Bଶሻ ൅ BC൯y െ 2ሺABሻxy

൅ ቀሺAଶ ൅ Bଶሻ൫f୶ଶ ൅ f୷ଶ൯ ൅ Cଶቁ ൌ 0   , 

where (fx, fy) are the coördinates of the focus and the line given by  

Ax ൅ By ൅ C ൌ 0     →      y ൌ  ൬
െA
B
൰ x ൅  ൬

െC
B
൰  

is the directrix.  For our purposes, we need remember only that the directrix is perpendicular 
to the axis of symmetry of the parabola. 

 
 
EXERCISE 4-1 Solution 
 
Here we have five objects to keep track of: Person A, Person A’s walkway (AW), Person B, Person 
B’s walkway (BW), and of course the ground.  Let’s let A’s direction be positive x.  We then know 
 
vሬ⃑ A,AW = +1 m/s 
vሬ⃑ AW,G = +2 m/s 
vሬ⃑ B,BW = -2 m/s 
vሬ⃑ BW,G = -2 m/s 
 
Let’s do each person relative to the ground, as we did in the example. 
 

vሬ⃑ ୅,ୋ ൌ  vሬ⃑ ୅,୅୛ ൅  vሬ⃑ ୅୛,ୋ  ൌ  ൅1 ൅ ሺ൅2ሻ ൌ  ൅3 m/s . 
 

vሬ⃑ ୆,ୋ ൌ  vሬ⃑ ୆,୆୛ ൅  vሬ⃑ ୆୛,ୋ  ൌ ሺെ2ሻ ൅ ሺെ2ሻ ൌ  െ4 m/s . 
 
We want to know vA,B .  Be careful. 

vሬ⃑ ୅,୆ ൌ  vሬ⃑ ୅,ୋ ൅  vሬ⃑ ୋ,୆ ൌ  vሬ⃑ ୅,ୋ െ  vሬ⃑ ୆,ୋ ൌ ሺ൅3ሻ െ ሺെ4ሻ ൌ  ൅7m/s .  
 
We actually could have done this in one go: 
 

vሬ⃑ ୅,୆ ൌ  vሬ⃑ ୅,୅୛ ൅  vሬ⃑ ୅୛,ୋ ൅  vሬ⃑ ୋ,୆୛ ൅  vሬ⃑ ୆୛,୆ ൌ  vሬ⃑ ୅,୅୛ ൅  vሬ⃑ ୅୛,ୋ െ  vሬ⃑ ୆୛,ୋ െ  vሬ⃑ ୆,୆୛

ൌ  ൅1 ൅ 2 െ ሺെ2ሻ െ ሺെ2ሻ ൌ 7m/s . 
EXERCISE 4-1 Solution 
 
The common error here is simply to flip the triangle over.  But what should be done is to deform 
the triangle by sliding vW,G over until the sum, vB,G, is pointing due north: 
 
Before, the two short sides of the right triangle were vB,W and vW,G, but now those vectors are the 
hypotenuse and a short side, respectively.  So, 
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' = arcsin(8/10) and  |vB,G | = 10 cos'  
 
Finish the calculations yourself.  
 
EXERCISE 4-3 Solution 
 
At the moment of launch, the frog is moving forward (say, the +x 
direction) at speed vT because of the motion of the train, and 
upward at speed vU.  Once the frog leaves the floor, the only agency 
acting on it is gravity, and we’ve already worked out the trajectory 
for your point of view in Section Three: 
 

y ൌ  0 ൅  v୭sinθ୭
x

v୭cosθ୭
൅  ଵ

ଶ
 a୥ ൬

x
v୭cosθ୭

൰
ଶ

ൌ  
v୙
v୘

x ൅  
a୥

2v୘
ଶ xଶ  .  

 
However, since the passenger is accelerating with respect to the frog, he sees (or thinks he sees) 
the frog accelerating backwards, since aሬ⃑ B,M = - aሬ⃑ M,B.  To find the trajectory as seen by the 
passenger, we need to start from scratch. 
 
xi = 0 (why not?)  yi = 0 (same here) 
xf = ?     yf = ? ← 
vxi = 0 (as seen by the man) vyi = vU 
vxf = ?    vyf = ? 
ax = -aT

   ay = ag 
t = ? 
 
Once again, we’ll start with the x-side and find the time: 

x ൌ  x୧ ൅  v୶୧t ൅  ଵ
ଶ
a୶tଶ 

x ൌ  0 ൅  0 ൅ ଵ
ଶ
ሺെa୘ሻtଶ      →      t ൌ  ඨ

2x
െa୘

   . 

This result is O.K. because x will become negative as the frog ‘falls behind’ the passenger.  Now 
to the y-side and to substitute in for the time: 

y ൌ  y୧ ൅  v୷୧t ൅  ଵ
ଶ
a୷tଶ 

y ൌ  0 ൅  v୙ඨ
2x
െa୘

൅  
a୥
െa୘

 x  . 
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y ൅  
a୥
a୘

 x ൌ  v୙ඨ
2x
െa୘

  . 

Here is a sample curve for some 
representative values of aT = 4 m/s2 , viT = 3 
m/s, and vU = 5 m/s for the trajectory of the 
frog as seen from the passenger’s point of 
view and from your point of view standing 
on the platform. 

Square both sides to get  

yଶ ൅ 2 
a୥
a୘

 xy ൅  ൬
a୥
a୘
൰
ଶ

xଶ ൅  
2v୙

ଶ

a୘
 x ൌ 0  . 

First, is this a parabola?  This does match the general form of the equation for a parabola as given.3  
The difference is that its axis of symmetry is not vertical but tilted.  Continuing, 

Aଶyଶ ൅ Bଶxଶ െ 2ሺf୶ሺAଶ ൅ Bଶሻ ൅ ACሻx െ 2൫f୷ሺAଶ ൅ Bଶሻ ൅ BC൯y െ 2ሺABሻxy

൅ ቀሺAଶ ൅ Bଶሻ൫f୶ଶ ൅ f୷ଶ൯ ൅ Cଶቁ ൌ 0   . 

By comparing the coëfficients of each power of x and y here with those in our trajectory solution, 
we can determine the values of A, B, C, fx, and fy.  Luckily, we need only A and B today: 

A ൌ 1  ,   B ൌ െ  
a୥
a୘

   . 

 
The directrix is then a line with a 
slope of   

 
െA
B

ൌ  െ
െa୘
a୥

 ൌ  
a୘
a୥

 , 

and that indicates a parabola with 
its symmetry line tilted from the y-
direction by an angle θ with tangent 
(-aT/ag). 

How might we interpret this?  The 
passenger would observe the 
direction of acceleration of the 

                                                 
3 Strictly speaking, we showed that the square of the trajectory function is a parabola; since that equation puts the 
same restrictions on the values of x and y as the original (there are no sign changes), that too is parabolic. 
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flying frog to be at an angle θ from the horizontal, but he also sees that the free-fall acceleration 
magnitude would be given by 

aୣ୤୤ ൌ  ටa୘
ଶ ൅ a୥ଶ   . 

For the specific example above, the gravitational acceleration would seem to be directed at an 
angle of 22o ‘behind’ the vertical and be 10.8 m/s2. 
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SECTION 5 – THE FIRST PICTURE 

Students often get irritated with me when I point out that, up to this moment, we’ve really not done 
any physics at all.  We did discuss the acceleration of objects due to gravity near the earth’s surface, 
but the rest was really just definitions.  Kinematics is the descriptive study of the motions of 
objects, but we’d like to know why objects move the way they do.  To understand this, at least to 
the degree allowed in our one semester course, we’ll be looking at three ‘pictures,’ or ways of 
looking at problems.  To many people, these three pictures seem separate and unconnected, but in 
fact, they are all really the same, just twisted around a bit.  Each is particularly well suited to 
addressing certain types of problems; the other two can of course be used as well, but not as 
efficiently.   

In the introduction, I mentioned that the course is structured much like a traditional two-column 
proof Geometry course. In this section, we will introduce the two axioms on which the pictures 
are built.  In Physics, we call these axioms laws.  What exactly is a law?  Like the axions of 
Geometry, laws are ideas that we observe never to be false and which we then assume are true.  
The purpose of experimentation is to try to show that these laws are false; the more unsuccessful 
we are at that, the more confidence we have that they are true.  Of course, sometimes, we fool 
ourselves into thinking that something is true, then find out that it was actually a special case, or 
that our experiments just weren’t accurate enough.1  The notions many students have when they 
start a course in classical mechanics are often referred to as Aristotelian; part of the purpose of 
these classes is to disabuse students of these Aristotelian notions.   

Dynamics 
 
Dynamics is the study of why objects move the way they do, particularly with regard to forces.  
The root of the word is Greek for force.2 
 
DISCUSSION 5-1 
 

How would you define a force?  What definition were you given in grade school?  Is that good 
enough?  Is force a scalar or a vector?  Is there a difference between pushing something to the 
left and pushing it to the right? 

DISCUSSION 5-2 

Let’s start by making some observations.  We’ll place a book on the table.  Watch the book 
carefully.  What is the book doing?  We often use the expression ‘at rest’ to describe this 
situation.  What will it be doing an hour from now?  What about next semester?  What about 
when I finally retire?  If we want to book to be not at rest, what must happen?   

                                                 
1 An excellent example of this is that some of the ancients believed that the earth revolves around the sun.  They 
reasoned that, if this were true, a certain effect would be observed.  The effect was in fact not observed (it was too 
small to be detected with the techniques available at the time) until two millennia later. 
2 Indeed, a dyne is a unit of force, one we won’t be using. 
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Suppose I next toss the book onto the table.  What phrase might we use to describe the book?  
Once the book hits the table, what happens, and why?  What stopped the book? 

What is necessary to change the motion of an object?  If we say that the motion is constant, 
which quantity from Section 2 are we really referring to?  Which quantity from Section 2 
measures the change in the motion? 

CHEESY EXPERIMENT 5-1 

Let’s do a quick experiment to see how this works.  We’ve decided that a force is necessary to 
change an object’s motion or velocity, that is, it causes acceleration.  I have a cart on wheels 
(to minimize the effect of friction, whatever that is) and a force-o-meter marked off in some 
weird units.  I have some confidence that the force-o-meter works, in that as I pull harder, the 
numbers increase on the dial.  As I pull on the cart, you can hear from the sound of the wheels 
that it’s accelerating.  If I pull with twice as much force, the acceleration is higher.  Briefly, as 
F↑, a↑.   

DISCUSSION 5-3 

We should try to be a bit more explicit in the relationship between acceleration and force.  If 
no force means no acceleration, and more force means more acceleration, what is the simplest 
relationship between them that you can think of?  What about the directions of the force and 
acceleration? 

If we assume that, perhaps, the universe behaves as simply as possible, we might conjecture that 
the acceleration is proportional to the force.  Then, we make a hypothesis that aሬ⃑   Fሬ⃑ .  We may be 
wrong, of course. It may turn out that the acceleration is proportional to F2 or F3.  Maybe the force 
and acceleration are actually not in the same direction.3  At some point, we’ll do this experiment 
much more carefully and find out. 

What else can we change?  We don’t want to base our notions on just one experiment; the results 
may have been coïncidental.  Best to vary as many parameters as possible.   

CHEESY EXPERIEMENT 5-2 

Let’s repeat by keeping the force constant and doubling the mass of the cart.  What do you 
notice?  Is the acceleration larger or smaller when the mass is increased?     

DISCUSSION 5-4 

What relationship would you say exists between the acceleration and the mass of an object? 

We might write that as m↑, a↓.  Note something interesting.  In chemistry, you’re told that the 
mass is a measure of how much material there is in an object.  Here, we see that the mass of an 

                                                 
3 Just wait for Physics III! 
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object is a measure of how hard it is to accelerate that object.  The simplest relationship between 
the two would be that the acceleration and the mass are inversely proportional:  a 1/m.  Of course, 
we may be wrong, but we at least have a hypothesis. 

We’ve performed some simple experiments and conjectured that the acceleration is proportional 
to the applied force if the mass is held constant, and inversely proportional to the mass of the force 
is constant.  Let’s synthesize these ideas into one: 

aሬ⃑  ~ 
Fሬ⃑

m
  . 

If we choose the correct units, we can make the proportionality an equality.  Let the force necessary 
to accelerate one kilogram at one meter/second2 be called one newton.   

DISCUSSION 5-5 

What if there is more than one force acting on an object?  
Consider poor Joe, who has to push a crate across the warehouse 
floor by applying a force F to the right.  The next day, Joe gets 
his twin brother Jeb to help.  How much force is applied to the 
crate by the boys?  What would you expect the acceleration of 

the crate to be today, compared to that 
of yesterday?  On the next day, Jeb 
isn’t available, so Joe asks his other twin brother Jake to help out.  
Jake, however, seems to never quite 
‘get it.’  How much force is applied to 
the crate in this situation?  What would 

you expect the crate’s acceleration to be on this day?  So, what 
must we do when there is more than one force? 

Putting all of these ideas together gives us the second law of motion: 

aሬ⃑ ൌ  
∑ Fሬ⃑ ୬୬

m
  . 

 
Note that when we sum the forces,4 we include only the forces that are actually acting on the object 
of interest.  Other forces influence the motions of other objects.  I’ll show you a way of keeping 
track of which forces act of which objects. 

Lastly, although the form of the second law given above is conceptually the better, we are going 
to re-arrange it so that it is more convenient to use for problem solving: 

                                                 
4 You may not be familiar with this notation.  ∑ F⃑nn  means simply to add up all the forces with n as a counting 
number: Fሬ⃑ 1 + Fሬ⃑ 2 + Fሬ⃑ 3 +… .  Remember to add the forces as vectors. 
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෍ Fሬ⃑ ୬
୬

ൌ  maሬ⃑   . 

The reason I like this is that all the effort of solving a problem is done on the left side, and the right 
side is always mass times acceleration. Let me emphasize that maሬ⃑  is not a force.  Forces are the 
cause, and acceleration is the result. 

You may ask, ‘what’s the first law of motion?’  Well, it’s a special case of the second.  If there are 
no forces acting on an object, its acceleration is zero and the velocity will be constant.  If the object 
is at rest, it will remain at rest, and if it’s moving, it will continue that rectilinear motion. 

EXPERIMENT 5-3 

We placed a mass, which we call a glider, on a horizontal air track.  The track acts much like 
an air hockey table.  There are small holes through which air is forced to lift the glider off the 
track surface to minimize friction (whatever that is).  A force was applied to the mass and the 
resulting accelerations were measured.  Here are the results, plotted in two ways.  In the first 

graph, each line represents runs 
with a constant mass; the fact that 
the lines pass through the origin 
(well, the intercepts are very small 
compared to the values plotted) 
indicates that the respective 
accelerations and applied forces 
are proportional.  What’s more, 
matching the equation for a line to 
our hypothesized relationship 
leads us to predict that the slope 
should be the inverse of the mass: 

y ൌ ሺslopeሻx ൅ intercept 

a ൌ  ൬
1
m
൰ F ൅ 0  . 

Actual Mass Mass from graph Per cent difference 
0.2295 kg 0.2365 kg + 3.1 % 
0.3293 kg 0.3460 kg +5.1 % 
   

To gain a bit more confidence, let’s plot these data differently, acceleration v. inverse mass.  In 
this case, we’re trying to fit the data to this relationship: 

𝑎 ൌ  ሺ𝐹ሻ
1
𝑚
൅ 0 .  

y = 4.2292x ‐ 0.0075

y = 2.8899x ‐ 0.0006
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Once again, we should see lines passing through the origin with the slopes equal to the 
respective applied forces. 

We can see that the intercepts 
are quite small, compared to 
the smallest acceleration 
values, so the proportionality 
condition seems to be met.  
Let’s look at the forces. 

 

 

 

 

Actual force applied Force from graph Per cent difference 
0.3137 N 0.3180 N + 1.4 % 
0.2156 N 0.2067 N - 4.1 % 
0.1176 N 0.1121 N - 4.7% 
0.0196 N 0.0182 N - 7.1 % 

Without doing an uncertainty analysis, we can’t really determine if our hypothesis is justified, 
but I think that, perhaps, we may have some confidence that it is correct, subject to future, 
more careful validation. 

HOMEWORK 5-1 

A net force of 45 N is applied to a mass of 16 kg.  What will be the mass’s acceleration?  How 
much force should be applied to a 27 kg mass to give it the same acceleration? 

The third law of motion seems to be the one students have the most trouble with, although it really 
is the easiest to understand: If object A exerts a force on object B, then B exerts a force on A that 
is of the same type, equal in magnitude, and opposite in direction.  Mathematically, we write that 

Fሬ⃑ ୆,୅ ൌ  െ Fሬ⃑ ୅,୆  . 

Think about this scenario: A speeding car A rear-ends a parked car B at a red light; the parked car 
B is accelerated forward because of the force exerted by A, while A slows down due to the force 
exerted backwards on it by B.  Two forces that fulfill this description are referred to as a third law 
pair.  To be a third law pair, the forces must fit the description given above, e.g., A pushes B and 
B pushes on A.  

CHEESEY EXPERIMENT 5-4 

y = 0.0182x ‐ 0.0036

y = 0.1121x + 0.0017

y = 0.2067x + 0.0022

y = 0.318x ‐ 0.0658
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Let’s do a quick check of this concept with two force-o-meters.   

Third Law.MOV  

We see that the forces each exerts on the other are equal in magnitude.  Later in Section 7, 
we’ll show some experimental results that will help grow confidence in the third law. 

DISCUSSION 5-6 

Our book is still sitting on the table.  There is a gravitational force exerted on the book by the 
earth (this is called the book’s weight) and a force of contact acting upward on the book from 
the table.  If the acceleration of the book is zero (it's not moving), then what can we say about 
the two forces just mentioned?  Do these two forces form a third law pair? If not, what are the 
other halves of each pair?  Did you give them the A on B, B on A test? 

If there’s doubt on what constitutes a third law pair, just change the subjective and objective parts 
of the sentence around.  It’s not too hard to believe that if the table pushes up on the book, then 
the book pushes down on the table. Harder perhaps to believe that if the earth pulls down on the 
book, the book pulls up equally on the earth.  Indeed, if I were to drop a book, the earth would 
accelerate upward to meet the book!   
 
DISCUSSION 5-7 
 

Why don’t we notice the earth moving upward toward the book? 
 

Forces that form third law pairs are often called action-reaction forces.  I don’t like this 
terminology, because it gives the impression that one force occurs first, then the other.  Third law 
pair forces occur simultaneously. 
 
HOMEWORK 5-2 
 

A positively charged proton (mass = 1 dalton)5 repels a positively charged alpha particle (mass 
= 4 daltons) with a force of 0.5 pico-newtons.  What force does the alpha particle exert on the 
proton? 

TYPES OF FORCES 

In this course, you will encounter several types of forces.  We’ll start with three of them, then 
add in the others when we’re ready. 

Weight 

                                                 
5 More or less.  A dalton is 1/12 the mass of a carbon 12 atom.  A pico-newton is one quadrillionth of a newton. 
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We mentioned above that there is a force on objects that are near the surface of the earth that is 
associated with gravity, which we shall call the weight, Wሬሬሬ⃑ .  When an object is in free fall, the only 
force acting on it is Wሬሬሬ⃑ , which we know from lab causes the object to experience an acceleration 
of ag downward.  Using the second law, we can write that  
 

Wሬሬሬ⃑ ൌ m aሬ⃑ ୥  . 
 
Since all objects will fall with this same acceleration, the force necessary to give an object a certain 
acceleration is proportional to the mass of the object by some factor which we'll call gሬ⃑ , the 
gravitational field strength:  
 

Wሬሬሬ⃑ ൌ  gሬ⃑m  . 
 
Note that gሬ⃑  must be a vector quantity (pointing downward).  What is the value of g?  The fact that 
 

Wሬሬሬ⃑ ൌ  gሬ⃑m ൌ m aሬ⃑ ୥      →     gሬ⃑ ൌ aሬ⃑ ୥  . 
 
However, gሬ⃑  and aሬ⃑ g are two different quantities; they have the same value, the same dimension, and 
the same direction, but different units.  Since g is the gravitational force per unit mass the earth 
exerts on an object near its surface, gሬ⃑  is 9.8 newtons/kg, downward.6 
  
DISCUSSION 5-8 

 
Drop a ball.  As it falls, is there an acceleration?  Is it specifically ag?  Is there a gravitational 
field?  Now, make the ball smaller and drop it.  Is there any acceleration?  Is there a 
gravitational field?  How strong is it? Keep making the ball smaller and smaller until there is 
no ball left at all.  Is there an acceleration?  Is there a gravitational field?  How strong is it? 
 
Next, place the ball on a table.  Is there an acceleration?  Is there a gravitational field?  How 
strong is it? 

 
Now, as we did for ag, we will round off the value of g to 10 N/kg for the purposes of homework 
and exams.  In lab, we will be more careful. 
  

(Normal) Force of Contact 

Another type of force is the contact force, which is due to the fact that two objects are actually 
touching one another.  We will be considering two different contact forces in this course, but we’ll 
start with the one that is perpendicular (normal) to the surface of contact.  The nature of this type 
of force can be thought of as being due to the electronic bonds between atoms or molecules in each 

                                                 
6 This may seem like a big deal over nothing, but there is an analogous situation in Physics 2 that generally gives 
students a hard time.  Better to start thinking this way now. 
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of the materials.  You may have learned in chemistry that the forces between these particles looks 
a bit like this as a function of the separation:  

The forces of repulsion and 
attraction cancel at the 
equilibrium separation (F = 
0).  Around this point, it can be 
shown that the system acts 
much like balls connected by 
springs.  So, as the two 
macroscopic objects come into 
contact, the 'springs' are 
compressed and produce forces 
which act to push the objects 

back apart.  Or the objects could be glued together and then pulled apart, so that the 'springs' stretch 
and try to pull the objects back together.  In either case, the forces are due to contact between the 
objects and are directed perpendicularly to the interface between the objects.  
 
As an example, suppose you arrive home and set your bookbag on your couch.  At first, the bag 
will move downward into contact with the couch.  As the bag pushes into the cushion, it 
compresses the springs there, which, as we’ll see later, start to push back upward.  In the end, the 
bag comes to rest with the springs under it compressed.  If we think of the atoms in an object as 
balls connected by springs (instead of electric bonds) we can imaging the same thing happening in 
microcosm. 

Tension 

Often, we speak of the tension in a string or rope.  We'll define the tension to be the force the string 
exerts on the object it's attached to.  In this course, we usually assume that the strings are massless 
and inextensible (they don't stretch).   
 
Let's make an argument that the tension at each end of such a string is the same as at the other end 
(except of course opposite in direction).  Consider a rope used in a tug of war game.  The team on 
the right pulls to the right with force FR, and by the third law of motion, the string exerts the same 
magnitude force (the tension TR at that end, by our definition) on the team.  Likewise, the team on 
the left exerts a force FL on the rope, and the other half of that third law pair is the tension TL on 
the left end of the rope.  If the rope is massless, any difference in applied net force would cause an 
infinite acceleration.  Hence, FR = FL and TR = TL.  

Strings and ropes are often looped over wheels.  This does nothing more than change the direction 
of the tensions at the ends, so long as the wheel is itself frictionless and massless.  Situations where 
the wheel is not frictionless or massless will be treated later in the course. 

 

Applications of The Laws of Motion 
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First, several comments on notation.  In kinematics, we used the sign of a vector’s value to indicate 
the direction of the vector.  If an object moved in the +x directions at 3 m/s, we said that vx = +3. 
If it moved in the -x direction, we said vx = -3.  We’re going to stick with that notation for kinematic 
quantities here, but we will do something different with forces.  We will always write the 
magnitude of the force, but insert the correct sign in front of the force to indicate the direction.  In 
particular, we will always use positive 10 N/kg as the value for g regardless of whether up or down 
is positive.  Second, although we were very careful in past sections to measure the angle for finding 
components CCW from the x axis, we shall abandon that approach at this point.  Now, we will just 
make use of the most convenient angle and take care of the signs as described above.  
 
DISCUSSION 5-9 
 

Consider a man standing on a spring scale.  What does the scale actually measure?  Suppose 
the man holds the scale up against the wall and pushes on it horizontally.  Does the scale 
measure the man’s weight? 

 
This is one of the first things we need to be able to do, decide what forces act on an object.  The 
man's weight does not act on the scale, the man's weight is the force of (gravitational) attraction 
between the earth and the man, and that force acts on the man.  The man and the scale are in contact 
with one another, and it is the normal force of contact that the scale measures.  For example, if I 
were to place the scale on the wall and lean against it, the scale would not be measuring my weight.  
To keep track of the forces acting on an object, we can use a free body diagram, which is just an 
accounting tool to isolate each object for analysis.  Draw each of the forces with its tail at the center 
of the body under consideration (here, the man).  Here we see the weight (force of gravity of the 
earth acting on the man) and the normal force (force of contact of the scale acting on the 
man).  What about the force of the man acting on the scale?  Well, that’s a force on the scale, not 
on the man; that force would go on the free body diagram of the scale..   
 
EXAMPLE 5-1 
 
If the man is not moving, his acceleration is zero, and so we can write, 
using the second law and making upward positive, that  
 

෍ Fሬ⃑ ୬
୬

ൌ  maሬ⃑    

 
൅F୒ െ gm ൌ 0 

 
F୒ ൌ gm  . 
 

Since, by the third law, the normal force on the man from the scale is 
the same magnitude as that of the normal force of the scale on the man, the reading on the scale is 
numerically equal to the weight of the man, but it is not the weight of the man.  

Now, let's put the man and the scale in an elevator that is accelerating upward.  The diagram is 
similar to the one above.  Writing the second law results in:  
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෍ Fሬ⃑ ୬
୬

ൌ  maሬ⃑    

൅F୒ െ gm ൌ ma 
 

൅F୒ ൌ ma ൅  gm 
 
So, we see that if the elevator is accelerating upward, the scale reading will be higher than the 
man's weight, while it will be lower if the elevator's acceleration is downward.  
 
DISCUSSION 5-10 
 

While you may not be gnurdy enough to ride in an elevator with a scale, you probably have 
noticed this effect.  There are sensors in your body that can tell you when one layer of you is 
compressed against another layer of you.  How do you ‘feel’ when your elevator starts to move 
upward?  Do you feel as if you are heavier?  If you were standing on a scale, what would it 
read?  What about when your elevator starts to descend? 

 
HOMEWORK 5-3 
 

An 90 kg man stands in an elevator.  What force does the floor of the elevator exert on the 
man if 
a) the elevator is stationary?  
b) the elevator accelerates upward at 1.2 m/s2?  
c) the elevator rises with constant velocity 3 m/s?  
d) while rising, the elevator decelerates at 0.5 m/s2?  
e) the elevator descends with constant velocity of 2.5 m/s? 

 
 
HOMEWORK 5-4 
 

A softball (mass = 0.19 kg) is thrown directly upward so that it leaves the pitcher’s hand at 4.5 
m/s.  The pitcher’s hand moved through 1.5 meters as he threw the ball.  What force did the 
pitcher exert on the ball?  

 
EXAMPLE 5-2 
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Here is a problem we shall use as the model for 
presenting solutions.  We will be revisiting it 
from time to time. 
 

Consider a block of mass M on a frictionless 
plane inclined at an angle from the horizonal.  If 
the block is released from rest from a point a 
distance L up the incline, how quickly will it be 
moving when it reaches the bottom?  Let theta be 
37o, M be 5 kg, and L be 2 meters. 
 
Next, we can analyze the forces acting on the mass.  We can do an inventory, much as we did 

for kinematics.  Is there a weight?  Sure, and remember that there is only one weight per object.  
Is the mass touching something? It’s touching only the incline, so there is one normal force of 
contact.  Are there any strings or rope or the like?  No.  The free body diagram for the mass is 
then: 

Notice that the normal force of contact is perpendicular to the surface.  A 
common misconception is that the normal force points upward, and is 
probably due to the fact that students start by trying problems like the 
elevator situation above.  

Next, we'll pick a coördinate system.  There is a need for some experience 
here, but here is a hint: we certainly expect the block to accelerate along 
the plane, and not to either jump off the plane or burrow into it.  You may 
remember Rule One from Section 3: choose a system such that the 
acceleration is along one of the axes.  It will be much easier to solve this 
problem if we orient the axes parallel and perpendicular to the plane.  It's 

not impossible to solve the problem otherwise, but it's a lot tougher mathematically.  If the 
problem is such that the acceleration is zero, then this aspect is not so important and other 
considerations can be examined.  

Now, we can write the second law as  

Fሬ⃑ ୒ ൅ gሬ⃑m ൌ aሬ⃑   , 

which is not very useful, since we then have one equation with two 
unknowns.  However, we decided back in Section 1 that if two 
vectors are equal, then their components must be independently 
equal.  So we’ll break this equation into two separate equations, one 
for x and one for y.   



- 98 - 
 

First, the components.  It would probably be a good idea to review.  We’ve decided to make 
the coördinate system as shown in the figure, based on the object’s presumed acceleration 
direction.  FN is already completely in the +y direction, but gm is mixed.  We must replace gm 
with two other vectors that, when added together, equal the original vector, with one parallel 
to the x-axis and the other parallel to the y-axis.  Note that we are not using the angle as 

measured from the +x axis to find the components, but instead are 
simply making use of the trig identities with the angle we are given 
in the triangle.  We will assign the proper sign to the directions of 
these forces when we write the second law equations.  Since the x-
component of the weight points in the positive x-direction, we’ll 
place a plus sign in front of it.  Similarly, the normal force is in the 
+y-directions, but the y-component of the weight in the negative y-
direction.  

x:    ൅ gm sinሺθሻ ൌ ma୶ 

y:    ൅  F୒ െ gm cosሺθሻ ൌ ma୷ ൌ 0  

In this case, the y equation is not useful, but the x equation tells us that 

a୶ ൌ g sinሺθሻ  . 

Keep in mind that in our method, g is always positive; we took care of the direction by placing 
the correct sign in front of the terms in the second law equations.   

DISCUSSION 5-11 

When we finish with a major section of a solution, we should ask if the result makes some 
sense.  If theta were zero, what would the acceleration be?  If theta were ninety degrees, what 
would the acceleration be?  Do those values make sense? 

EXAMPLE 5-2 Continued 

So, for the values given in the problem, the acceleration will be 

a୶ ൌ g sinሺθሻ ൌ 10 sinሺ37௢ሻ ൌ  10ሺ0.6ሻ ൌ 6 m/𝑠ଶ . 

Now that we have the acceleration (and it’s constant!), we will choose a kinematic equation to 
find the final speed.  Let’s place the origin at the starting location. 
 
xi = 0 (starts from the origin) 
xf = 2m 
vxi = 0 (starts from rest) 
vxf = ?  ← 
ax = +6 m/s2 
t = ? 
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KEq 4 seems like a good choice. 

v୶୤
ଶ ൌ  v୶୧

ଶ ൅ 2a୶ሺx୤ െ  x୧ሻ 

v୶୤ ൌ  ටv୶୧
ଶ ൅ 2a୶ሺx୤ െ  x୧ሻ ൌ  ඥ0ଶ ൅ 2ሺ6ሻሺ2 െ 0ሻ ൌ ൅ 4.9 m s⁄  . 

We take the positive root because the box is sliding in the +x direction. 

In the previous example, we alluded to 'other considerations' in choosing a coördinate system.  As 
stated, it's generally best to align the axes so that the acceleration is along one of them.  If the 
acceleration is zero, this is not so important, and a judicious choice of axes might reduce the 
amount of math we need to do.  This is Rule Number Two.  Consider this problem:  

EXAMPLE 5-3 

Apply a force F horizontally to the block of the previous problem 
so that the block remains stationary.  Find F and the normal force, 
FN.  

Let's start with a free body diagram.  It bears repeating that the 
normal force is perpendicular to the surface between the box and 
the incline. Also, since the object is motionless, there is no 
acceleration and Rule Number One is moot. 

Now, if you were to set up the tilted, blue coördinate system as in 
the previous example, you might notice that you would have to decompose two vectors.  
However, if you chose the green system, only one vector 
would require decomposition.  That may make the algebra 
easier in that there would be fewer terms to manipulate (four 
vs five).  Let’s go with the green system and find the 
components of FN.  A small amount of geometry shows that 
if the ramp is inclined at angle theta, then the normal force 
is inclined theta from the vertical. 
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Now we write the second law for x and y: 

x:    ൅  F୒ sinሺθሻ െ F ൌ ma୶ ൌ 0 

y:    ൅  F୒ cosሺθሻ െ gm ൌ ma୷ ൌ 0  . 

At this point, it is worth making a general comment.  Note 
that the acceleration terms are zero.  This is because this 
particular object is stationary.  This is not always the case.  
A common error is to write a = 0 for every problem. 

Here’s a neat mathematical trick.  We’re going to divide 
these two equations.  First, some re-arrangement. 

 F୒ sinሺθሻ ൌ F 

 F୒ cosሺθሻ ൌ gm 

Then, we divide the left sides and set that equal to the quotient of the right side: 

F୒ sinሺθሻ
F୒ cosሺθሻ

ൌ  
F

gm
 

tanሺθሻ ൌ
F

gm
  

F ൌ gm tanሺθሻ ൌ 10ሺ5ሻ tanሺ37୭ሻ ൌ 37.5 N  . 

Returning to either of the original equations results in 

F୒ cosሺθሻ ൌ gm     →       F୒ ൌ
gm

cosሺθሻ
ൌ  

10ሺ5ሻ
cosሺ37୭ሻ

ൌ 62.2 N 

MATHEMATICAL JUSTIFICATION 

Suppose that A = B and C = D ≠ 0.  It should be O.K. to say that 

𝐴
𝐶
ൌ  
𝐵
𝐶

  , 

but since C = D, 

𝐴
𝐶
ൌ  

𝐵
𝐷

  . 
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Our next step is to investigate solving problems with more than one body.  Remember that only 
the forces that actually act on an object can affect its motion.  Other forces affect the motions of 
other objects. 

EXAMPLE 5-4 

Two of my uncles once started one of their cars by pushing it 
with the other car (It works fairly well with manual 
transmission cars.  Don’t try it with automatics.).  Suppose 
Bud’s truck has a mass of mT = 2500 kg and Russell’s car has 
a mass of mC = 1800 kg.  Bud’s truck has a force from the 
road of 8000 N pushing it forward.7  If the truck is in contact 
with the car, what will be the acceleration of the vehicles and what force will each exert on the 
other? 

We have two objects.  We should 
isolate them from each other and 
from all other objects (such as the 
earth) so that we can analyze the 
forces acting on each.  Of course, 
each car has a weight, and a normal 
force acts on each upward from the 
ground.  For the truck, there is a 
force forward from the ground and 
a force backward from the car, 
while the car experiences a force 
forward from the truck.  Since the 

presumed acceleration is to the right, we’ll use Rule One and choose the coördinate system 
shown.  The third law of motion says that if the truck exerts a force on the car, then the car 
exerts a force of the same magnitude in the opposite direction, so FTRUCK, CAR = FCAR, TRUCK.  
We must write a set of second law equations for each object. 

Truck Car 
x:   ൅ Fୖ୓୅ୈ െ  F୘ୖ୙େ୏,େ୅ୖ ൌ  m୘ୖ୙େ୏a୶ x:    ൅ Fେ୅ୖ,୘ୖ୙େ୏ ൌ  mେ୅ୖa୶ 
y:൅F୒ ୘ୖ୙େ୏ െ gm୘ୖ୙େ୏ ൌ  m୘ୖ୙େ୏a୷

ൌ 0 
y:    ൅ F୒ େ୅ୖ െ gmେ୅ୖ ൌ  mେ୅ୖa୷ ൌ 0 

The y equations are of no use, so we’ll add the x equations to eliminate the forces acting 
between the vehicles. 

Fୖ୓୅ୈ െ  F୘ୖ୙େ୏,େ୅ୖ ൌ  m୘ୖ୙େ୏a୶ 

                                                 
7 We’ll discuss the nature of this force later in this section.  If you like, for now you could say the truck’s tires are 
pushing the truck forward. 
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Fେ୅ୖ,୘ୖ୙େ୏ ൌ  mେ୅ୖa୶ 

Fୖ୓୅ୈ ൌ  ሺm୘ୖ୙େ୏ ൅  mେ୅ୖሻa୶ 

a୶ ൌ  
Fୖ୓୅ୈ

m୘ୖ୙େ୏ ൅  mେ୅ୖ
ൌ  

8000
2500 ൅ 1800

ൌ 1.86 m sଶ⁄  . 

Now, we go back to find the contact force.  We can use either equation, but why not use the 
simpler one?  

Fେ୅ୖ,୘ୖ୙େ୏ ൌ  mେ୅ୖa୶ ൌ 1800ሺ1.86ሻ ൌ  3348 N  . 

MATHEMATICAL JUSTIFICATION 

Suppose that A = B and C = D.  It should be O.K. to say that 

A ൅ C ൌ B ൅ C 

but since C = D, 

A ൅ C ൌ B ൅ D  . 

HOMEWORK 5-5 

An object with a weight of 250 N is hung from the ceiling 
as shown.  Find the tension in each of the wires if θ1 = 53o 
and θ2 = 30o.  Hints: There are two objects to investigate, 
the mass itself, and the knot where the wires meet.  

 

 

 

EXAMPLE 5-5 

This example introduces a couple more new notions.  Consider two blocks as shown with the 
inclined surface being without friction (whatever that is).  Since there are two bodies, we will 
have to have two free body diagrams and two sets of second law equations.  There looks to be 
a complication in choosing a coördinate system, though; no matter how the x and y axes are 
oriented, at least one acceleration will need to have two components, and there will have to be 
several equations relating the accelerations of each block to each other.  We can avoid this by 
using a fractured coördinate system.  For example, if mass one slides up the incline by one 
meter , mass two must descend exactly one meter.  Remember that our strings are inextensible.  
By using the system shown below, we can minimize the tedium of relating all the necessary 
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quantities and use simply x, v, and a to describe the 
motions of the masses along their respective x axes, while 
asserting that there is no motion in the respective y.  We 
will also assume that the wheel has no effect other than 
to change the direction of the string; it is massless and 
frictionless.  I will use the term magic to mean this.8  The 
combination of a magic string with a magic wheel means 
that the tension is the same at both ends of the string.  The 
problem is, find the acceleration of the masses and the 
tension in the string.  When a problem is worded like this, 
the expectation is that the tension will not appear in the 
answer for the acceleration, and the acceleration will not appear in the answer for the tension; 
the answers should be in terms of only those quantities given in the problem, plus some obvious 
ones such as g. 

Let's do free body diagrams.  Note that the angle marked  in this diagram is the same as the 
original angle of inclination.  

So, write a second law equation for each 
mass:  

Mଵ  x:  ൅ gMଵ sinሺθሻ െ T ൌ  Mଵa୶ 

Mଵ  y: ൅ F୒ െ gMଵ cosሺθሻ ൌ  Mଵa୷
ൌ 0  , 

Mଶ  x: െ gMଶ ൅ T ൌ  Mଶa୶ 

Mଶ  y:   No Forces  . 

This last ‘equation’ is written to assume me that you have checked the y-direction for M2 and 
there is just simply nothing going on there. 

Once again, we’re going to add the x equations: 

gMଵ sinሺθሻ െ T ൌ  Mଵa୶ 

െgMଶ ൅ T ൌ  Mଶa୶ 

gMଵ sinሺθሻ െ gMଶ ൌ  ሺMଵ ൅ Mଶሻa୶  . 

This is an efficient way to eliminate the tension terms.  The acceleration is then 

                                                 
8 In Section 8, we will deal with non-magic wheels. 
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a୶ ൌ
 Mଵ sinሺθሻ െ Mଶ

Mଵ ൅ Mଶ
g  . 

Let’s stop and think about whether this makes some sense.  The acceleration should be 
inversely proportional to the total mass (check).  If M1 is much larger then M2, the blocks 
should slide to the left, and vice versa.  Is there some condition whereby the blocks could just 
balance?  Seems O.K. 

Now to find the tension.  Substitute the acceleration result back into the simpler of the two x 
equations: 

െgMଶ ൅ T ൌ  Mଶ ቆ
 Mଵ sinሺθሻ െ Mଶ

Mଵ ൅ Mଶ
g  ቇ  , 

T ൌ  Mଶ ቆ
 Mଵ sinሺθሻ െ Mଶ

Mଵ ൅ Mଶ
g  ቇ ൅  gMଶ . 

Technically, this expression meets the requirement I put on the solutions.  If this were an exam 
question, for example, I would accept it.  It is possible, though, to make it prettier. 

EXERCISE 5-1 

Simplify the expression above for the tension.  Get in some practice with algebra. 

EXERCISE 5-2 
 

Consider the Atwood's Machine, comprising two masses connected 
by a massless string over a magic wheel.  Find the acceleration of the 
masses and the tension in the string.  Let M1 be 5 kg and M2 be 7 kg.  
Give yourself no more than one minute to obtain the correct answer.  
 
Note the difference between 'answer' and 'solution.'  The solution 
would take much longer than a minute to produce.  
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HOMEWORK 5-6 

Three identical masses are hung from strings as shown 
in the figure.  The strings and wheels are magic.  Find 
the two angles θ1 and θ2.  HINT: again, consider the knot 
as a separate object.   

HOMEWORK 5-7 

A box (M1) sits on a frictionless table and is connected by a magic 
string over a magic wheel to another mass (M2), as shown.  Find 
the acceleration of the masses and the tension in the string. 

 

Let’s now consider some objects in uniform circular motion.  To 
review, such an object, moving in a circle at constant speed, has an acceleration towards the center 
of the circle (centripetal acceleration) with its magnitude given by 

𝐚𝐂 ൌ  𝛚𝟐𝐫 ൌ  
𝐯𝟐

𝐫
  . 

As we have seen earlier in this section, accelerations are caused by forces. There must, therefor, 
be a force or at least a force component towards the center of the circle.  We call this of course a 
centripetal force.  This sometimes causes confusion; better to call this ‘a force that acts 
centripetally.’  The reason I say this is that, often, students will correctly draw in the force that acts 
centripetally, but then add in an additional centripetal force as if it is separate from the actual 
forces.  The general rule for this is, if you can’t identify what is exerting the force, it’s probably 
not actually there.   

Some forces of course are directed away from the center of the circle; we refer to these as 
centrifugal forces.  This is also something to be careful about.   

To be consistent with Rule One, we will make one axis in the direction of the acceleration, that is, 
we will place the c-axis as positive toward the center of the circle.  Centripetal forces will have a 
plus sign inserted in front of their magnitudes, and centrifugal forces a negative sign. 

DISCUSSION 5-12 
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Suppose that I swing a small mass m on a string around in a horizontal circle of radius r.  What 
forces are acting on the mass?  Perform the checklist.  Is there weight? Is the mass touching 
anything?  Is there a string?  Draw a free body diagram for the mass.  What if I slow the speed 
of the object down, does that change your ideas about the directions? 

EXAMPLE 5-6 

Consider the problem in the discussion above.  Find the 
relationship among theta, the speed, and the radius of the 
circle.  Draw the free body diagram, indicate the center 
of the circle (C of C) and choose the coordinate system 
so that the c-direction is in the direction of the 
acceleration toward the center.  We’ll then make y be 
vertical.  Then, we’ll need to decompose the tension into 
c and y components.  The second law equations are then 

c:   Tcos θ ൌ maେ ൌ  m
vଶ

r
 

y:  T sinθ െ gm ൌ ma୷ ൌ 0   . 

Can you see why the string must be at an angle above the horizontal?  If it were not, there 
would be a net downward force and the mass would accelerate downwards.  Let’s re-arrange 
and divide the y-equation by the c-equation: 

T sinθ ൌ gm 

 Tcos θ ൌ m
vଶ

r
 

tan θ ൌ  
gr
vଶ

  . 

With this result, we see that the angle of the string will decrease as the speed increases.  How 
quickly would the mass need to move to make the string horizontal? 

EXAMPLE 5-7 

Suppose that you’re riding a Ferris wheel of radius 20 m.  The operator decides to have fun 
with the rubes and speeds up the wheel.  At how many revolutions per minute would the wheel 
need to spin in order for you to feel apparently weightless when at the top of the wheel? 
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First, let’s recall what apparently weightless means.  It does not mean there is no weight; we 
can’t just shut that off.  Like in the discussion of the elevator above, it means that the normal 
force of contact between you and your seat is zero and you are in free-fall.  Second, since 
revolutions per minutes is angular speed, we’ll use that form for the centripetal acceleration.  
The weight is pointing toward the center of the circle but the normal force is away from the 
center, so 

൅gm െ  F୒ ൌ maେ ൌ mωଶr  . 

Setting FN to zero and solving for omega, 

ω ൌ  ට
g
r

 ൌ ඨ
10
20

 ൌ 0.71
rad

s
 ൈ ൬

1 rev
2π rad

൰ ൈ ൬
60 s

1 min
൰ ൌ 6.75 rev/min. 

 

 

 

HOMEWORK 5-8 

Suppose you want to lift a 12 kg mass from the ground to an altitude of 
15 meters as quickly as possible.  The problem is that the rope will break 
if its tension exceeds 160 N.  What’s the shortest amount of time in 
which the mass can be lifted without the rope breaking? 
 

 
HOMEWORK 5-9 
A ride at the firemen’s field days (carnivals, down here) comprises 
a seat connected to a central column by a horizontal strut and a 
strut connected at a 53o angle, as shown.  The lower strut is 12 
meters long.  If the seat plus passenger has a mass of 120 kg and 
the ride rotates at 2.4 revolutions per second, what is the tension in 
each strut? 

 

Pseudo-forces* 

As the term suggests, these are forces that don’t actually exist.  
Suppose you’re sitting in your car at a red light.  When the light turns green, you accelerate 
forward.  You may feel as if there is a force pushing you back into your seat.  If you have some 
trinket hanging from your rearview mirror, you may think that there is something pulling it 
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backwards.  These forces don’t actually exist.  What’s actually happening is that the car accelerates 
forward and exerts a force forward on you to move you forward along with itself.  You sink into 
the seat, the sensors in your body feel your layers being squished together, and your body interprets 
this as a force pushing backwards.  VIDEO. 

Similarly, when a car rounds a corner to the right, as an example, you may feel as if you are being 
pushed outward against the door.  In reality, the door is curving to the right while your body has a 
propensity to move in a straight line.  The door is actually pushing you to the right, helping you to 
move in the circle along with the car. 

As you may guess, pseudo-forces are imagined by observers who are in an accelerating frame of 
reference.  Generally, if you can’t identify the source of a force, it’s probably actually a pseudo-
force. 

 

HOMEWORK 5-10 

An ornament (m = 0.3 kg) hangs from the rearview mirror of a car.  When the car accelerates 
forward along a horizontal road, the die appears to swing backward so that the string supporting 
it makes an angle of 6o with the vertical.  What is the acceleration of the car?  HINT: We're not 
concerned about how the die swung back, only that it has swung back. 

DISCUSSION 5-13 

Can you think of a way this effect could be used as, for example, a safety device in an 
automobile? 

Friction 

Now, we consider the fourth force, another contact force, that 
we’ve been dancing around since Section 2.  Friction occurs 
at the interface between two surfaces and is directed along 
the surface (not perpendicular to it, as for normal contact 
forces), opposite to the direction in which the surfaces are 
sliding or want to slide.  There are two types of friction that 
we will consider: kinetic and static.  It is a common 
misconception that an object must be stationary to experience 
static friction or moving to experience kinetic friction.  What 
is important is whether the surfaces in question are sliding 
against one another or not.  Let’s start by considering an 
object at rest on the desk; clearly the sum of the forces acting on this object (weight and normal 
force from the desk) is zero, since there is no acceleration.  If we apply a small force horizontally 
to the object, we may be mildly surprised that it does not accelerate; if the second law is to remain 
correct, there must be yet another mystery force acting oppositely to our applied force that causes 
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the total horizontal force to be zero (second 
law, Fappl - Fmystery = ma = 0).  What's more, 
the magnitude of that force changes as we 
change our applied force; it's always just 
big enough to cancel our force.  That is, if 
we apply 2 newtons, it applies 2 newtons, if 
we apply 5 newtons, it applies 5 
newtons.  We'll call this force friction.  A 
graph of this situation might look like this, 
a line of slope one passing through the 
origin:  

Furthermore, we see that, if we continue to 
increase our applied force, there comes a 

point at which this frictional force reaches a maximum value; we know this because we can apply 
enough force to make the object move, and that requires a net non-zero force.  How big is this 
maximum frictional force and what quantities determine its value?  

CHEESEY EXPERIMENT 5-5 

 
In this experiment, we placed a one kg metal cylinder atop a mouse pad 'sled' and slowly 
increased the applied force as measured by our force-o-meter.  If we apply a non-zero force 
and the mass doesn’t move, then from the second law, we know how much frictional force is 
applied.  The point of interest here, of course, is the value of the applied force for which the 
sled just begins to move, which is then also the maximum frictional force.  In this case, that 
force was 2 N.  What if the mass is doubled to 2 kg?  What do you think the maximum force 
will be?  It was in fact 4 N. 

DISCUSSION 5-14 
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On what parameters of this experiment do you think the maximum friction force depends?  
Suppose I place my hand on the mousepad and repeat the experiment to obtain 1.6 N.  I repeat 
the experiment but this time obtain 26 N.  Did the mass of my hand change?  What did change?  
Is this notion consistent with what we saw in the first part of the experiment?  When I doubled 
the mass, what else doubled?   

It appears that the magnitude of the maximum possible frictional force is proportional to the 
magnitude of the normal force pushing the two surfaces together.  We usually use the Greek letter 
μ (mu) as the constant of proportionality and call it the coëfficient of friction: 

F୤ ୑୅ଡ଼ ൌ  μF୒  . 

EXPERIMENT 5-5 CONTINUED 

Let’s flip the mousepad over and repeat.  The results are listed in the table. 

Normal Force Maximum Frictional Force 
(pad right side up) 

Maximum Frictional Force 
(pad upside down) 

0 N 0 N 0 N 
9.8 N 2N 3 N 
19.6 N 4 N 6 N 
coëfficient of friction  0.20 0.31 

You may notice that the coefficient is different for the two parts of the experiment.  What is 
different between the two situations?   

The value of the coëfficient of friction is always for a pair of surfaces.  We 
can’t say that the coefficient for the tabletop is 0.4, it must be the value for 
the tabletop and the bottom of the mousepad.  Since the surface of the 
mousepad is rougher than the top, that coëfficient will be higher. 

What is the nature of friction?  In this case, it is once again the springiness 
of the bonds between atoms.  Surfaces are never perfectly smooth, and 
comprise ‘valleys’ and ‘hills.’  As the surfaces try to slide against one 
another, the points of lateral contact will exert forces to prohibit the sliding.  
If one of the surfaces is smoother, there will be fewer points of contact, and 
it will require less force to initiate the slide.  You can try this yourself by 
using your fingers.   

DISCUSSION 5-15 

Does friction disappear once the surfaces start to slide?  Suppose that you are moving a couch 
across a floor.  Do you need to continue to apply a force in order to keep the couch moving 
once it’s started?  Is it harder to get the couch to start to move, or to keep it moving? 
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So, it appears that there are two types of friction.  One when the surfaces are not sliding, as 
discussed above, and one when the surfaces are already sliding.  To distinguish these, let’s call the 
first (above) static friction and the new one kinetic friction.  Let’s repeat the experiment above for 
sliding surfaces. 

EXPERIMENT 5-5 CONTINUED 

This time, we’ll get the mass moving, then apply enough force to keep it moving at a constant 
velocity.  Then the acceleration will be zero and once again, the applied force will be the same 
size as the frictional force. 

Normal Force Frictional Force 
(pad right side up) 

Frictional Force 
(pad upside down) 

0 N 0 N 0 N 
9.8 N 2.5 N 3 N 
19.6 N 5.0 N 10 N 

coëfficient of friction  0.26 0.51 

We see that the frictional force is proportional to the normal force.  However, the 
proportionality constants are different from their respective values in the static case.  We’ll 
need to distinguish them as μS and μK: 

F୤୏ ൌ  μ୏F୒  .  

We will assume that, unlike static friction, kinetic friction always has this value.  Remember that 
in the first half of the experiment, we found the maximum value of the static friction.  At this point, 
it’s worth doing a brief review. 

 There is a force of contact called friction which acts along the interface of two objects (as 
opposed to perpendicular to the interface, as for the normal force of contact).  
 

 If the surfaces are not sliding against one another, we call the friction static.  This static friction 
force is only as big as it needs to be to prevent the surfaces from sliding against one another, 
but only up to a maximum value that depends on the natures of the two surfaces and on how 
hard they are being pushed together:  

F୤ୗ  ൑  μୗF୒  . 

Because of the inequality in the relationship for static, we concentrate on situations where the 
surfaces are 'about to slide,' or there is some similar condition so that we know that we are at 
the critical point when the equality holds true.  You should justify this when to do homework 
or exam problems. 

 If the surfaces are already sliding, we have kinetic friction, in which case 

F୤୏ ൌ  μ୏F୒  . 
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DISCUSSION 5-16 

What are the units for the coefficient of friction? 

 
EXAMPLE 5-8 

You’re pushing a 800 N box at constant velocity across a floor by 
applying a 200 N force F applied at an angle of 25o below the 
horizontal.  What is the coëfficient of kinetic friction between the box 
and the floor? 

  
Because of the wording of the 
problem (F keeps the box moving), 
we assume that the block is moving 
toward the right.  Correspondingly, 
the frictional force is to the left.  The 
velocity is constant, so all 
components of the acceleration are 
zero.  We therefor make use of Rule 
Two in choosing a coördinate 
system.  The second law equations 
are then 
 

൅F cosθ െ  F୊୏ ൌ ma୶ ൌ 0 
 

െF sinθ ൅  F୒ െ gm ൌ ma୷ ൌ 0  . 
 
We also need an equation for the friction.  Since this is kinetic friction, there is no question 
that we use the equal sign: 

F୤୏ ൌ  μ୏F୒   . 
 
The solution is fairly straightforward substitution: 
 

μ୏ ൌ  
F୤୏
F୒

ൌ  
F cosθ

gm ൅ F sinθ
ൌ  

200 cosሺ25଴ሻ
800 ൅ 200 sin ሺ25୭ሻ

ൌ 0.20 

 
DISCUSSION 5-17 

 
Your boss sees you moving the crate in this manner and says, “You 
need to work smarter, not harder.  Get a rope and pull the crate at 25o 
above the horizontal.”  Will this require less force?  What physical 
reasons (in words) would back this up? 
 

EXERCISE 5-3 
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Go ahead and calculate how much force would be necessary at 25o above the horizontal to 
keep the crate moving at a constant velocity.  Was your boss correct? 

 
DISCUSSION 5-18 
 

What question should you ask yourself next?   Usually, this question is answered using 
calculus.  Can you think of a way to solve this without calculus? 
 

EXAMPLE 5-9 
 

Can we find what angle would result in the lowest required force to keep the crate moving at 
a constant velocity?  The force necessary to keep the crate moving as a function of the applied 
angle is given by 
 

F ൌ  
μ୏gm

cosθ ൅  μ୏sinθ
  . 

 
We would like to minimize the force, which means maximizing the denominator in the 
expression.  This is a problem that screams for calculus, which we are forbidden to use.  So, 
we’ll have to be a bit cleverer.  Let the coëfficient of friction be represented by the cotangent 
of an angle phi.   
 

cosθ ൅  μ୏sinθ ൌ  cosθ ൅ cotሺφሻ sinθ ൌ  cosθ ൅
cosሺφሻ
sinሺφሻ

sinθ

ൌ  
sinሺφሻ cosθ ൅ cosሺφሻ sinθ

sinሺφሻ
ൌ  

sin ሺφ ൅ θሻ
sinሺφሻ

 

 
Now, since sin(φ) is a constant (it depends on μK), we need only worry about the numerator 
here, which maxes out at one when the sum of the angles is 90o.  So, the angle that would 
require the least force to keep the crate moving would be  
 

θ୭ ൌ  90୭ െ  φ ൌ  90୭ െ  arccotሺμ୏ሻ ൌ  90୭ െ  arccotሺ0.20ሻ ൌ  11.3୭ 

Static friction problems are generally harder than kinetic problems.  First of course, we may not 
be at the critical point of the surfaces being just about to slide, and often we don’t even know 
which way they will try to slide.  Let's look at a fairly standard problem and see what kinds of 
questions can be asked and how we might deal with them.   

HOMEWORK 5-11 

A mover finds that a 120 kg dresser requires a 70 N horizontal force to set it in motion across 
the floor, but only 55 N to keep it moving with constant velocity.  Find the static and kinetic 
coëfficients of friction between the bottom of the dresser and the floor. 

HOMEWORK 5-12 
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What minimum force is necessary to drag a crate of mass 60 kg across a floor at constant 
velocity with a rope inclined at 37o above the horizontal?  The coëfficient of kinetic friction is 
0.7. 

EXAMPLE 5-10 

Consider once again two blocks connected by a 
light string over a magic wheel, with one block on 
a rough incline.  

What kinds of questions could be asked?  One 
might wonder  

 what is the largest value of M1 (or the smallest 
value of M2) for which M1 will not slide down the 
plane? 
 what is the smallest value of M1 (or the largest 
value of M2) for which M1 will not slide up the 
plane? 
 what is the smallest value of S for which M1 will not slide down (or up) the plane? 
 what is the smallest (or largest) value for  for which M1 will not slide up (or down) the 
plane? 
 what is the direction and magnitude of the acceleration, assuming that the blocks are in 
motion? 
 about many things not listed here. 

Many of these types of problems require us to assume or guess which way the blocks would 
slide if there were no friction, since we need to be able to assign a direction to the frictional 
force that would keep that from happening.  Sometimes, the direction is obvious, other times 
we will need to solve the problem first with S = 0.   Let’s take a run at several of these.   

Write the second law, assuming that the blocks are moving, or about to move, with M1 sliding 
down the incline.  Keep in mind, we may well be wrong about this.  Even worse, the blocks 
may be moving one way but accelerating the other! 
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For M2, we have 

൅T െ gMଶ ൌ  Mଶa୶ 

No Forces  
For M1, 

െT െ  F୤ ൅ gMଵ sinθ ൌ  Mଵa୶ 

൅F୒ െ gMଵ cos θ ൌ  Mଵa୷ ൌ 0 

F୤ ൌ  μF୒  . 

Note that I haven’t specified which type of friction, although if it’s static, the system must be 
just about to move.  Nor have I specified zero acceleration.  I have assumed that the frictional 
force is directed up the incline.  Let’s do some math. 

F୤ ൌ  μF୒ ൌ  μሺgMଵ cos θሻ  

Substitute this into the M1 x equation. 

െT െ  μ gMଵ cos θ ൅ gMଵ sin θ ൌ  Mଵa୶ 

Then, as usual, add the M2 x equation to eliminate the tension. 

െT െ  μ gMଵ cos θ ൅ gMଵ sin θ ൌ  Mଵa୶ 

൅T െ gMଶ ൌ  Mଶa୶ 

െgMଶ െ  μ gMଵ cos θ ൅ gMଵ sin θ ൌ  ሺMଵ ൅  𝑀ଶሻa୶ 

𝑔൫െ 𝑀ଶ ൅ Mଵሺsinθ െ μ cos θሻ൯ ൌ  ሺMଵ ൅  𝑀ଶሻa୶ 

Let’s answer some of the questions that were listed above. 

What is the largest value of M1 for which M1 will not slide down the plane?  Since the masses 
are not yet moving, ax = 0, the friction is static, and the equation simplifies to 

 𝑀ଶ ൌ Mଵሺsin θ െ μ cos θሻ 

 Mଵ୑୅ଡ଼ ൌ
Mଶ

sinθ െ μ cos θ
 

What is the smallest value of M1 for which M1 will not slide up the plane?  We don’t have to 
redo the entire problem.  The only thing that changes from the first question is the direction of 
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the frictional force, and we can fix that with a mathematical trick by replacing μ with -μ.  So, 
we immediately know that  

Mଵ୑୍୒ ൌ
Mଶ

sin θ ൅ μ cos θ
  . 

What is the smallest value of S for which M1 will not slide down (or up) the plane?  Once 
again, the acceleration is zero and the friction is static, so 

𝑀ଶ ൌ Mଵሺsin θ െ μ cos θሻ 

μௌ ெூே ൌ  
sinθ െ

𝑀ଶ
Mଵ

cos θ
  . 

What is the smallest value of S for which M1 will not slide up the plane?  We’ll use our math 
trick again, since the only difference in the equations will be the direction of the frictional 
force. 

μௌ ெூே ൌ  െ൮
sinθ െ

𝑀ଶ
Mଵ

cos θ
൲ ൌ

𝑀ଶ
Mଵ

െ sinθ

cos θ
  . 

I’m sure you’re getting the idea here.  Now, what if the masses start from rest and do slide?  
What would be the acceleration?  That’s going to depend on which way they slide.  So, first 
we need to find the direction of acceleration without friction, then put it back in to find the 
actual acceleration: 

a୶ ୒୓ ୊ୖ୍େ୘୍୓୒ ൌ  
െ 𝑀ଶ ൅ Mଵ sinθ
ሺMଵ ൅  𝑀ଶሻ

 g 

a୶ ൌ  
൫െ 𝑀ଶ ൅ Mଵሺsin θ െ μ௄  cos θሻ൯

ሺMଵ ൅  𝑀ଶሻ
g  

If the sign of this ‘no friction’ acceleration is positive, we’re already O.K. and we return to the 
solution as given. If the ‘no friction’ acceleration is negative, then we need to reverse the sign 
of the coefficient of friction, then compute: 

a୶ ൌ  
൫െ 𝑀ଶ ൅ Mଵሺsin θ ൅ μ௄  cos θሻ൯

ሺMଵ ൅  𝑀ଶሻ
g  

Of course, if you’re told which direction they are moving in, you just pick the correct sign for 
μK. 

HOMEWORK 5-13 
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A 15 kg mass (M1) is connected by a magic string over a magic 
wheel to a 5 kg mass (M2) as shown in the figure.  When the 
masses are released, M2 falls from rest a distance of 2.2 meters 
in 3 seconds.  What is the coëfficient of kinetic friction between 
M1 and the table surface? 

 

EXAMPLE 5-11 

Suppose you’re bored early on a Sunday morning and you decide to drive your 1800 kg car in 
circles in the parking lot at the local mall.  How quickly can you drive the car in a circle of 
radius 50 m?   

So, what forces act on the car?  Obviously, there is weight.  There is a 
normal force from the pavement upward, and there is friction.  If you’ve 
tried this on an icy surface, you know the car will simply travel in a 
straight path.  In what direction is the friction?  Well, the car is ‘trying’ to 
move in a straight path, which means it’s trying to slide away from the 
center of the circle.  Since the friction opposes that attempt, it must point 
toward the center of the circle.  You can even feel this force with your 
hands VIDEO.  Which type of friction is this, static or kinetic?  Be careful!  
Let’s say the coëfficient of friction is 0.85. 

Let’s do a free body diagram. 

Rule One tells us to place the c-axis 
toward the center of the circle.  The 
second law equations are 

c: ൅ F୤ ୗ ൌ maେ ൌ m
vଶ

r
 

y: ൅ F୒ െ gm ൌ ma୷ ൌ 0 

F୊ ୗ ൌ  μୗF୒    crit. sit. 

We can use the equality in the static 
friction equation because we’re looking for the maximum speed, i.e., the tires are just about to 
slip.  Re-arranging and substituting, 

vଶ ൌ  
r F୤ ୗ
𝑚

ൌ  
r μୗF୒
𝑚

ൌ
r μୗgm
𝑚

 ൌ  r μୗg ൌ 50ሺ0.85ሻ10 ൌ 425 

v୑୅ଡ଼ ൌ  √425 ൌ 20.6 m s⁄  . 
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Notice that the mas of your car didn’t matter. 

DISCUSSION 5-19 

What does MDOT do to help you get around sharp curves on the highway?  Think especially 
about cloverleafs.  How does this help? 

EXAMPLE 5-12 

Turn 1 at the Talladega Superspeedway is inclined at a 33o angle from the horizontal and has 
a radius of 330 m (this depends of course on which lane you are in).  Brand new tires have a 
coëfficient of static friction with the track surface of 1.3.  What is the theoretical maximum 
speed a 1,636 kg car can travel and still negotiate this turn? 

 Of course, we begin with a free body diagram.  As in the previous example, this car would 
tend to move toward the outside of the circle, 
and so the static frictional force would act to 
oppose this sliding and so push it toward the 
center.  Following Rule One, the c-axis is 
toward the center of the circle and then the y-
axis is vertical.  We will need to decompose 
both the frictional force and the normal force. 

The second law equations become: 

c: ൅  F୤ୗcosθ ൅  F୒sinθ ൌ maେ ൌ  m ୴మ

୰
 

y: ൅ F୒cosθ െ  F୊ୗsinθ െ gm ൌ ma୷
ൌ 0 

F୤ ୗ ൌ  μୗF୒   crit. sit. 

Let’s re-arrange, substitute, and divide. 

 

൅ μୗF୒cosθ ൅  F୒sinθ ൌ m
vଶ

r
 

൅F୒cosθ െ  μୗF୒sinθ ൌ gm 
 

μୗF୒cosθ ൅  F୒sinθ
൅F୒cosθ െ  μୗF୒sinθ

ൌ  
m vଶ

r
gm
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μୗcosθ ൅  sinθ
cosθ െ  μୗsinθ

ൌ  
vଶ

gr
 

 
At this point, of course, we could solve for any of the variables contained in this relationship.  
Proceeding to find the maximum speed results in 
 
 

v୑୅ଡ଼ ൌ  ඨgr
μୗcosθ ൅  sinθ
cosθ െ  μୗsinθ

ൌ  ඨ10ሺ330ሻ
1.3cos33୭ ൅  sin33୭

cos33୭ െ  1.3sin33୭
ൌ 203 m s⁄  . 

 
The record is about 96 m/s. 

 
Suppose in the previous example, we had wanted to find the slowest possible speed so as not to 
slide to the center of the track.  Since the only thing different about the problem is the direction of 
the frictional force, we can take this result and flip the sign of the coefficient of friction: 
 
 

v୑୍୒ ൌ  ඨgr
െμୗcosθ ൅  sinθ
cosθ ൅  μୗsinθ

   . 

 
With these particular numbers, I expect that we’ll be taking the square root of a negative number, 
which means the car could be parked on the incline and not slip, but with a coëfficient 
corresponding to an icy surface, there may well be a real minimum speed. 
 
HOMEWORK 5-14 

 
A dime (m = 2 grams) sits at the edge of the platter of a record player (They’ve made a 
comeback, so I know you know what that is).  What is the minimum coëfficient of static friction 
that will keep the coin on the platter as it spins.  A standard LP is 30 cm in diameter and rotates 
at 331/3 revolutions per minute. 
 

HOMEWORK 5-15 
 

Again at the field days, a patron enters a circular room of radius 5 
m.  The room starts to spin and speeds up to 7 radians/second, at 
which time the floor drops away.  What must be the minimum 
coëfficient of static friction so that the passenger does not slide down 
to a certain death? 
 
 

Outside the Safe Zone* 
 
Let’s take a crack at a problem that does have drag.  Consider a small metal ball of mass m dropped 
from a great height.  In the absence of air, it will accelerate downward uniformly at some value 



- 120 - 
 

around 9.8 m/s2.  The drag force is commonly assumed to be proportional to the speed of an object, 
and of course depends on the size, shape, and orientation of the object as well as the properties of 
the fluid though which it is travelling.  The direction is opposite to the motion of the object through 
the fluid.  Let’s write NII for the vertical direction, with down positive: 
 

൅gm െ bv ൌ ma. 
 
Qualitatively, we can see that, just after release when the speed is extremely small, the acceleration 
will be equal to ag.  However, as the ball falls and picks up speed, the acceleration will become 
less and less (still downward though of course).  Eventually, the ball acquires speed v = gm/b, at 
which point the acceleration becomes zero, and the velocity accordingly becomes constant.  This 
ultimate speed is known as the terminal velocity of the ball.  Of course, this value will vary from 
object to object and even on the orientation of the object, if it is not spherical.  
 
Let’s be a bit more analytical about this problem and solve for the velocity as a function of time.  
In doing so, we’ll find the solution to a problem that re-occurs often in this course. 
 
Re-arranging the NII equation above,  
 

v ൌ  v୍ ൅  v୍୍ ൌ
gm
b
െ  

m
b

a . 

 
Clearly, the expression that will ultimately represent the velocity has a constant part (vI) and a 
changing part (vII), such that v = vI + vII.  By observation, we see that vI = gm/b.  Next, the ball’s 
acceleration is the instantaneous time rate of change of the velocity, but because vI is constant, it 
is also the ITRC of vII alone.  Mathematically,  
 

a ൌ ITRCሺvሻ ൌ  lim
∆୲→଴

∆v
∆t

ൌ  lim
∆୲→଴

Δሺv୍ ൅ v୍୍ሻ
∆t

ൌ lim
∆୲→଴

൬
∆v୍
∆t

൅
∆v୍୍
∆t

൰ ൌ lim
∆୲→଴

∆v୍
∆t

൅ lim
∆୲→଴

∆v୍୍
∆t

ൌ 0 ൅  lim
∆୲→଴

∆v୍୍
∆t

  . 

 
So, now we have that 
 

lim
∆୲→଴

∆v୍୍
∆t

ൌ ൬െ
b
m
൰ v୍୍  . 

 
DISCUSSION 5-20 
 

We’re trying to find a function whose ITRC is proportional to itself.  You may remember 
studying such a function in high school, although then, the proportionality constant was 
positive.  I’ll give you a hint: right now, in 2020, the proportionality constant in the U.S. is 
horrifically low at +0.0005, while in Switzerland, the constant is a very Swiss -0.0021.   

 
The solution to this equation is  
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v୍୍ሺtሻ ൌ  v୭eି
ୠ୲
୫   , 

 
with vo the initial value of vII (but not of v!) and e is a well-known number in mathematics equal 
approximately to 2.7183.  Solve for vo, knowing that v(t=0) = 0: 
 

v ൌ  
gm
b
൅  v୭eି

ୠ୲
୫ 

0 ൌ  
gm
b
൅  v୭eି

ୠ଴
୫  

 

v୭ ൌ െ
gm
b

  . 

So, finally,  
 

vሺtሻ ൌ  
gm
b

 ൬1 െ eି
ୠ୲
୫൰  . 

 
 
 
MATHEMATICAL JUSTIFICATION* 
 

We have a function F(t) with the ITRC of F proportional to F (constant C).  Call the initial 
value of F at t = 0 Fo.  What we’ll do is start at Fo, at t = 0 and estimate F at a time Δt later by 
extending a line tangent to the curve; we’ll call that value F1.  For this line, Fo is the y intercept 
and CFo is the slope.  F1 is not expected to be the actual value of the function at that time. 
 

Fଵ ൌ Fሺ∆tሻ ൌ  F୭ ൅  CF୭ ∆t ൌ F୭ሺ1 ൅  C∆tሻ . 
 
Let’s repeat this process to estimate the function’s value at t = 2Δt.  We’ll use the slope 
calculated from our estimate of F1: 
 

Fଶ ൌ Fሺ2 ∆tሻ ൌ  Fଵ ൅  CFଵ ∆t  ൌ  Fଵሺ1 ൅  C∆tሻ ൌ  F୭ሺ1 ൅  C∆tሻଶ  . 
 
We can use an inductive argument that the nth estimate will be 
 

F୬ ൌ Fሺn ∆tሻ ൌ  F୭ሺ1 ൅  C∆tሻ୬  . 
 
We have every reason to think that each subsequent iteration of this process takes us further 
and further from the correct values, so we’ll need to do this in extremely small steps, i.e., take 
the limit as Δt →0.  To do that, we’re going to make a few substitutions.  First, the actual time 
t is the product of the number of steps we’ve taken and the size of each step: t = n Δt.  We’ll 
also define q to be 1/(C Δt).  Then, for motivations that should be obvious in a moment or two, 
we can write that n = Ct/CΔt = qCt.  Note that, as Δt →0, q→∞. 
 

Fሺn ∆tሻ → Fሺtሻ ൌ  lim
∆௧→଴

F୭ሺ1 ൅  C∆tሻ୬  
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Fሺtሻ ൌ  lim
௤→ஶ

F୭ ൬1 ൅  
1
𝑞
൰
୯ େ୲

ൌ F୭ ቆ lim
௤→ஶ

൬1 ൅  
1
𝑞
൰
୯

 ቇ
஼௧

  

 
The value of the limit is very well know in mathematics, but if you don’t recognize it, you can 
obtain an approximate value by letting q be a fairly high integer and obtain 2.718281… .This 
number appears so often that it has its own symbol, e.  The result then is that 
 

Fሺtሻ ൌ F୭eେ୲  .  
 
You might recognize this as the formula for continuously compounded interest in a savings 
account.  In 2020, many European central banks have negative interest rates.  In the U. S., 
negative rates at the Federal Reserve are forbidden by the Constitution. 

 
 

EXERCISE 5-1 Solution 

 

𝑇 ൌ  𝑀ଶ ቆ
 𝑀ଵ sinሺ𝜃ሻ െ 𝑀ଶ

𝑀ଵ ൅𝑀ଶ
𝑔  ቇ ൅  𝑔𝑀ଶ 

𝑇 ൌ  ቆ
 𝑀ଵ𝑀ଶ sinሺ𝜃ሻ െ 𝑀ଶ

ଶ ൅ 𝑀ଶሺ𝑀ଵ ൅𝑀ଶሻ
𝑀ଵ ൅𝑀ଶ

 ቇ𝑔 

 

𝑇 ൌ  ቆ
 𝑀ଵ𝑀ଶ sinሺ𝜃ሻ െ 𝑀ଶ

ଶ ൅ 𝑀ଶ𝑀ଵ ൅𝑀ଶ
ଶ

𝑀ଵ ൅𝑀ଶ
 ቇ𝑔 

 

𝑇 ൌ  ቆ
 𝑀ଵ𝑀ଶ sinሺ𝜃ሻ  ൅ 𝑀ଶ𝑀ଵ

𝑀ଵ ൅𝑀ଶ
 ቇ𝑔 

 

𝑇 ൌ  ൬
 𝑀ଵ𝑀ଶ

𝑀ଵ ൅𝑀ଶ
 ൰ ሺsinሺ𝜃ሻ ൅ 1ሻ𝑔 

 
EXERCISE 5-2 
 
Well, you just did this problem.  In this case, though, the angle of the ‘incline’ is 90o. 
 

a୶ ൌ
 Mଵ sinሺθሻ െ Mଶ

Mଵ ൅ Mଶ
g ൌ  

 5 sinሺ90୭ሻ െ 7
5 ൅ 7

 10 ൌ  െ1.67 m/sଶ. 

T ൌ  ൬
 MଵMଶ

Mଵ ൅ Mଶ
 ൰ ሺsinሺθሻ ൅ 1ሻg ൌ  ൬

 5ሺ7ሻ
5 ൅ 7

 ൰ ሺsinሺ90୭ሻ ൅ 1ሻ10 ൌ 58.33 N 
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EXERCISE 5-3 Solution 
 
The second law equations are almost the 
same; only the vertical component of the 
applied force changes direction (it will 
presumably also change magnitude). 
 

൅F cosθ െ  F୊୏ ൌ ma୶ ൌ 0 
 
൅ F sinθ ൅  F୒ െ gm ൌ ma୷ ൌ 0  . 

 
F୤୏ ൌ  μ୏F୒   . 

 
This solution is a bit more tedious. 
 

F cosθ ൌ  F୊୏ ൌ  μ୏F୒ ൌ  μ୏ሺgm െ  F sinθሻ ൌ μ୏gm െ  μ୏F sinθ  
 

F cosθ ൅  μ୏F sinθ ൌ  μ୏gm 
 

F ሺcosθ ൅  μ୏sinθ ሻ ൌ  μ୏gm 
 

F ൌ  
μ୏gm

cosθ ൅  μ୏sinθ
ൌ  

ሺ0.2ሻ800
cosሺ25୭ሻ ൅ μ୏sinሺ25୭ሻ 

ൌ  161.5 N  
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Sample Exam II 
 

MULTIPLE CHOICE (4 pts each)  
 
1) Consider the two masses (m1 = 10 kg, m2 = 5 kg) hanging as shown in 

an elevator.  What is the tension in each rope as the elevator accelerates 
downward at 3 m/s2?  Let g = 10 N/kg. 

 
 A) T1 = 105 N; T2 = 35 N 
 B) T1 = 195 N; T2 = 65 N  
 C) T1 = 100 N; T2 = 50 N 
 D) T1 = 150 N; T2 = 50 N 
 E) None of the answers above is correct. 
 
2) Choose the answer which bests completes the sentence: 
 If an object is at rest, then 
      

A) no forces act on the object. 
B) any forces which form Third Law pairs cancel each other out. 
C) the mass of the object must be very large. 
D) the sum of all forces acting on the object must be zero. 
E) the weight and the normal force must be equal in 

magnitude and opposite in direction. 
 
3) Consider a block of mass m which is just about to slide 

along the ceiling, as shown. The coëfficient of static 
friction between block and ceiling is µS. Which of the 
following sets of equations follow from Newton's 
second law? 

 
 A) F sin θ + mg - FN = 0           F cos θ + Ff = 0          Ff = µS FN 
 B) F cos θ - mg - FN = 0          F sin θ + Ff = 0          Ff = µS FN  
 C) F cos θ - mg + FN = 0          F sin θ - Ff = 0          Ff = µS FN 
 D) F sin θ - mg - FN = 0              F cos θ - Ff = 0      Ff = µS FN 
 E) F sin θ - mg + FN = 0          - F cos θ - Ff = 0        Ff = µS FN 
 
4) Suppose you would like to launch a satellite so that it orbits the earth in a circle just above the 

surface (ignore inconvenient considerations such as air resistance and irregular topography).  
What would the speed of the satellite need to be?  The radius of the earth is 6.4×10 +6 m. 

 
 A) 6.4×10 +7 m/s 
 B) 8000 m/s 
 C) 2500 m/s 
 D) 800 m/s 
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 E) 10 m/s 
 
N.B.: If you’re rusty on scientific notation, remember that 6.4×10 +6 = 6,400,000. 
 
5) The most expensive production automobile ever is the Veyron by Volkswagen (cost = $6 million 

each).  The Veyron can slow from 110 m/s to a stop in 10 seconds on a flat road, i.e., it can 
decelerate at 11.1 m/s2.  Assuming that this is due entirely to the brakes (it’s not), what minimum 
coëfficient of static friction between road and tires will allow this? Pick the closest value. 

 
 A) 0 
 B) 0.25 
 C) 0.9 
 D) 1.1 
 E) 2.6 
 
PROBLEM I (20 pts) 
 
Consider the two masses (M1 = 2 kg, M2 = 5 kg) as 
shown, one of which is on a smooth surface inclined 
at an angle of θ = 30o from the horizontal.  
 
A) What is the acceleration of the masses? (15 pts) 
 
B) Find the tension in the string. (5 pts) 
 
 
 
PROBLEM II (20 pts) 
 
Billy decides to boat 2000 m downstream and back. His mom tells him he must be back within an 
hour (= 3600 seconds).  The river flows at 1 m/s relative to the ground and Billy’s boat moves at  
3.0 m/s relative to the water. 
 
A) How much time will it take Billy to travel the 2000 m downstream? 
 
B) How much of his 60 minutes remain for the return trip upstream? 
 
C) With what velocity relative to the water would Billy’s boat need to move to return on time?  Can 

he make it back in time? 
 
PROBLEM III (20 pts) 
 
Commander Buzz Kutter is floating in space 50 meters from the open airlock of his spaceship, the 
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Lazy Star.  The only thing in his possession not immediately needed for survival is a hammer.  
Outline a procedure that might allow Kutter to return to his ship.  Explain fully. 
 
 
PROBLEM IIII (20 pts) 
 
A uniform string of mass M hangs between the tops of two poles 
of equal height.  At each end, the string makes an angle θ with 
the pole, as shown.  Find the tension in the string at its center. 
 
HINT: Here’s a problem where the tension in a string is NOT 
the same along its length.  It is not massless. 
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SECTION 6 – THE SECOND PICTURE 

We've looked at the motions of objects using forces and accelerations, and if we were lucky enough 
to have constant accelerations, the kinematic equations.  Now, we'll introduce a second picture 
which we may, or may not, find more convenient to use on certain classes of problems.  Please 
note that this new picture is really nothing more than Newton’s second law with a few definitions 
thrown in; there is a tendency for students to thjnk of this material as disconnected from previous 
discussions, but it really just a re-arrangement of stuff you already know. 
 
DISCUSSION 6-1 
 

Consider a small toy car sitting on a table at a spot marked ‘X’; we’ll assume the wheels make 
its contact with the table frictionless.  Observe the car closely.  Now, observe the car as it 
travels through point X.  Is it fair to say that the car possesses some quality or property in the 
latter case which it lacks in the former?  How did the car acquire that property?   
 

CHEESY EXPERIMENT 6-1  VIDEO 
 

After the experiment, we concluded/agreed on the following: 
 

 We agreed that there is some quality the object possesses when it’s moving through X that 
it lacks when it’s stationary.  For want of a better word, let's call that quality energy (E).  

 Energy is transferred into the object by applying a force.  However, the force must act 
through a displacement.  Applying a force to a non-moving object transfers no energy. 

 Transferring energy into (or out of) an object is a process; let us call the transfer of energy 
the work (W) done on the object.  Work is not a form of energy, it is the transfer of energy.  
Let’s define the work on an object to be positive when energy enters the object and negative 
when it is removed (why not?) 

 The bigger the force, the more energy is transferred:  as F↑, W↑. We might even speculate 
that W is proportional to F.  That would certainly be the simplest relationship consistent 
with our observations.  We could be wrong, of course; perhaps W ~ F2 or F3.  We’ll make 
the simplest assumption and see if there is a contradiction somewhere in our subsequent 
experiments. 

 The greater the displacement over which the force acted, the more work is done: that is, as 
Δx ↑,W↑ .We might speculate that W is proportional to Δx.  

What's more, there is an effect due to the relative orientation of the force with the displacement.  
We saw that: 

 If Fሬ⃑  and xሬ⃑  are in the same direction, energy is transferred into the object and we say that 
positive work was done.  

 If Fሬ⃑  and xሬ⃑  are in the opposite directions, energy is transferred out of the object and we say 
that negative work was done.  

 If Fሬ⃑  and xሬ⃑  are perpendicular, no energy is transferred into the object and we say that no 
work was done.  
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DISCUSSION 6-2 

How can we express these last notions in a more mathematical way?  Can you think of a 
function that will give us a positive value when two vectors are parallel, a negative value when 
they are anti-parallel, and zero when they are perpendicular? 

Let’s consider an object moving along, say, the x-axis while a force is applied at some angle away 
from the x-axis, as shown in the figure.  When we talked about vectors and components, we said 

that the components of a vector can replace the 
original vector.  Let’s do so for this force.  The 
component parallel to the displacement is F cos θ 
and the component perpendicular is F sin θ.  The 
former should contribute to the work, while the 
latter does not.  Sounds like just what we need.  
Indeed, if the angel were greater than 90o, the 
cosine would provide the negative sign required 
when the force and displacement are in generally 
opposite directions.   

Let’s synthesize these notions into a single mathematical expression, with the assumption that the 
universe works as simply as possible: 

W ൌ F ∆x cosθ୊,∆୶ ൌ  ∆E . 

The unit for work is newtons times meters; we will define one joule (J) as the work done by one 
newton of force acting on an object while it displaces one meter in the same direction.  This 
procedure will increase the energy of the object by one joule.1 

Now, since the result for the work doesn’t depend on the actual directions of the force or the 
displacement, but only on their relative directions, we might guess that the work is a scaler 
quantity.  We’ll confirm this in a page or so.  As such, the work can be written as2 

W ൌ  Fሬ⃑ ∙  ∆xሬ⃑   . 

EXAMPLE 6-1 

Consider a box pulled 4 meters along the flat ground by a rope with tension 58 newtons which 
is at an angle of 54o above the horizontal.  How much work does this force do? 

The diagram for this is close to the one above.  The work would be 

                                                 
1 I like to use a bank account as an analogy.  Work is like the deposits and withdrawals, while the amount of energy 
is like the balance.  If there is a deposit of $19, the balance increases by $19. 
2 Revisit Section One to review the dot product of two vectors. 
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W ൌ F ∆x cosθ୊,∆୶ ൌ 58 ሺ4ሻ cosሺ54୭ሻ ൌ ൅ 136.4 J  . 

HOMEWORK 6-1 

A cowboy grabs a rope trailed by a runaway horse and applies a force of 1100 N as he is 
dragged 37 meters.  How much work does the cowboy do on the horse?  How much work does 
the horse do on the cowboy?  How do the answers to this question depend on whether the horse 
stops, slows, or keeps running? 

DISCUSSION 6-3 

What if several forces act on the object simultaneously?  Can you extend the analogy with the 
back account? 

At this point, we’re in a strange position.  We think we know a bit about transferring energy, but 
we don’t yet know what energy is.  Let’s see what happens if we apply a number of forces to an 
object and find the total work performed on it., which in turn should be the change in the object’s 
energy, ΔE. 

DERIVATION 6-1 

To start off, let’s assume a one-dimensional problem with constant forces. 

W୘୓୘୅୐ ൌ  ෍W୬

୬

ൌ෍ Fሬ⃑ ୬
୬

൉ Δxሬ⃑ ൌ ൭෍ Fሬ⃑ ୬
୬

൱ ൉ Δxሬ⃑  ൌ  ሺm aሬ⃑ ሻ ൉ Δxሬ⃑ ൌ mሺaሬ⃑ ൉ Δxሬ⃑  ሻ

ൌ m ቆ
v୤
ଶ െ  v୧

ଶ

2
ቇ ൌ ଵ

ଶ
mv୤

ଶ െ  ଵ
ଶ
mv୧

ଶ ൌ  Δ ቀଵ
ଶ
mvଶቁ  ൌ  ΔE  , 

at which point we might jump to the conclusion that 

E ൌ  ଵ
ଶ 

 mvଶ  . 

This is a little dangerous; just because two quantities have the same change in value doesn’t 
mean that they have the same value.  For example, there could be some constant term included 
in the energy that cancels out when calculating the change.3  However, we have previously 
decided to go with the simplest explanations, until a contradiction is found.  Historically, this 
was the definition of energy, but as we proceed through this section, we will introduce notions 
of other types of energy.  Seeing as our object possesses this energy due to its motion, let’s 
define this specifically to be the kinetic energy, K: 

K ൌ  ଵ 
ଶ

mvଶ  . 

                                                 
3 Perhaps E = ½ mv2 + mc2.  The second term will always disappear when ΔE is calculated. 
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Note that, because the kinetic energy depends on the speed of the object, it is a scalar, not a 
vector. 

HOMEWORK 6-2 

At what speed would a 50 kg person have to run to have the same kinetic energy as a 1500kg 
auto traveling at 100 km/h? 

DISCUSSION 6-4 

Suppose a jogger of mass M is trotting along at speed vo, and therefor has kinetic energy Ko.  
What kinetic energy (in terms of Ko) would he have if he doubled his pace?  If his daughter 
with half his mass then paces him, how much kinetic energy would she have?   

Now let’s make thigs a little harder.  First, what 
if the force applied were not constant (or, a 
variable force)?  Clearly, more work would be 
done in some displacement intervals than in 
others.  
 
DERIVATION 6-2 
 

We need to break the overall displacement 
down into very many, very small 
displacements xn, over which we can 
consider the force to be relatively constant at value Fx n; we then find the work done over that 
interval to be (approximately) 

W୬ ൌ  F୬ ∆x୬ ൌ  ଵ
ଶ
 m v୬ଶ െ

ଵ
ଶ
 m v୬ିଵ

ଶ   

and the net work is then 

W ൌ෍ F୬ ∆x୬
୬

ൌ ଵ
ଶ
 m vଵ

ଶ െ  ଵ
ଶ
 m v୧

ଶ ൅  ଵ
ଶ
 m vଶ

ଶ െ  ଵ
ଶ
 m vଵ

ଶ ൅ ⋯൅  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୬ିଵ

ଶ

ൌ ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ ൌ  ΔK  ,  

as before. 

DERIVATION 6-3 

And finally, what if the object moved in three dimensions?  The force could be written in 
components, Fx, Fy, and Fz.  Fx would make no work contribution due to movement in the y or 
z directions, Fy would make no contribution due to movement in the x or z directions, and Fz 
would make no contribution due to movements in the x or y directions,  Therefore, making use 
of Derivation 6-2, the work done by this force would be 
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W ൌ  ෍ F୶ ∆x ൅  F୷ ∆y ൅  F୸ ∆z
୬

ൌ  ଵ
ଶ
 m v୶୤

ଶ െ  ଵ
ଶ
 m v୶୧

ଶ ൅  ଵ
ଶ
 m v୷୤

ଶ െ  ଵ
ଶ
 m v୷୧

ଶ ൅  ଵ
ଶ
 m v୸୤

ଶ െ  ଵ
ଶ
 m v୸୧

ଶ

ൌ  ଵ
ଶ
mሺ v୶୤

ଶ ൅ v୷୤
ଶ ൅ v୸୤

ଶ െ ሺ v୶୧
ଶ ൅  v୷୧

ଶ ൅  v୸୧
ଶ ሻሻ ൌ   ଵ

ଶ
m ൫v୤

ଶ െ  v୧
ଶ൯ ൌ Δ ቀଵ

ଶ
 m vଶቁ

ൌ   ΔK  , 

as before. 

A combination of these last two arguments lets us assert that the result is valid even for variable 
forces in three dimensions, although in practice that may be quite difficult to calculate. 

So, most generally speaking, we have that 
 

W୘୓୘୅୐  ൌ  ∆K. 
 
This last relationship is called the work-energy theorem.  Note that it is nothing more than 
Newton's Second Law, combined with one of the kinematic equations, plus a definition.  It is the 
second 'picture' of the three we shall use to solve problems, the first being forces and accelerations.   
 

Net force causes change in velocity 

Net work causes change in kinetic energy 

? causes change in ? 

You may well ask, why bother?  Can’t we just solve everything with Newton’s Second?  We will 
find that this picture will be on occasion more convenient to use than forces and accelerations, 
especially in cases where we don't need to know the time a trip takes, or when the acceleration is 
not constant.   

EXAMPLE 6-2 
 
Throw a ball upward with an initial speed of 12 m/s.  How high does it rise (H)? 
 

𝑊்ை்஺௅ ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ  . 

When we used Newton’s second law, we put in all of our effort on the left side finding the 
forces, but the right side was always maሬ⃑ .  Here, we put all the effort in again on the left side 
finding the works, and the right side is always ΔK. 

The only force acting on the ball is its weight, gm, downward.  The displacement is H upward, 
so our angle between the force and the displacement is 180o.  The work done is therefor 
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W୥ ൌ ሺgmሻሺHሻ cos ሺ180୭ሻ ൌ  െgmH 

The ball stops at its highest altitude, so vf = 0.  So, 

െgmH ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ  . 

H ൌ   
v୧
ଶ െ  v୤

ଶ

2g
ൌ  

12ଶ െ  0ଶ

2ሺ10ሻ
ൌ 7.2 m   . 

HOMEWORK 6-3 

A 3 kg object initially at rest is acted on by a 
non-constant force which causes it to move 3 
m.  The force varies with position as shown in 
the figure. 

a) How much work is done on the object by this 
force?  
b) What is the final speed of the object as it 
arrives at x = 3 m?  Assume that the given force 
is the only force acting on the mass.  

 

EXAMPLE 6-3 

Here’s a problem we’ve seen before to compare the 
solution methods of Picture One and Picture Two.  
Consider a block of mass m = 5 kg at the top of a 
frictionless ramp L = 2 meters long that is inclined at 
 = 37o to the horizontal.  If the mass starts from rest 
at the top, how quickly will it be moving when it 
reaches the bottom?  The answer better be 4.9 m/s. 

 

Draw a free-body diagram; the weight and a normal force 
are the only forces.  One thing we don’t need to do is 
choose a coördinate system.  Everything is relative to the 
direction of the displacement.  We’ll use the WE theorem, 

W୘୓୘୅୐ ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ  . 

Let’s look at the works: 

WN = 0, since the force is perpendicular to the 
displacement; 
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Wg = (mg) (L) (cosmg,x). 

What angle should we use for Wg?  It’s not 37o!  We want the angle between the force and the 
displacement, 53o. 

W୒ ൅  W୥ ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ  

0 ൅  W୥ ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ  

 v୤ ൌ  േඨ v୧
ଶ ൅

2W୥

m
 ൌ ට v୧

ଶ ൅ 2gL cosሺθሻ ൌ  ඥ 0ଶ ൅ 2ሺ10ሻ2 cosሺ53୭ሻ ൌ 4.9 m/s .  

DISCUSSION 6-5 

Suppose that I drop an object from a given height, such as a pen onto the table.  The force of 
gravity (the object's weight) does work and the kinetic energy of the object increases.  Now, 
suppose instead that I slowly lower the object to the table from the same initial 
altitude.  Compare the work done by gravity in the second case to the work done in the first 
case.   Do you understand the difference between the work done by a force and the total work 
done by all forces on an object? 

Conservative and non-Conservative Forces 

Let's divide the realm of forces in to two categories: conservative forces and 
non-conservative forces.  This may seem rather facile, in that I could divide 
forces in to red and non-red categories, and each force would have to fit into 
one of them.  However, this is a distinction which we will find useful.  What 
we find is that for some forces, the work they do on some object moving from 
any particular point A to any particular point B is independent of the path taken 
between A and B.  We call this type of force a conservative force.  There are a 
number of alternate ways to define what a conservative force is, but they are 
all equivalent to each other. Any force for which the work can depend on the 
path is a non-conservative force. 

Let's take the weight of an object as a concrete example.  Suppose that I lower 
a mass m from a height h above the table to the top of the table.  I'm only 
interested at this point in what the weight does, not what any other force, such 
as from my hand, does.  The force is gm downward, and the displacement is h 
downward, and those two vectors are parallel, so we have that 

W୥ ൌ gm h cosሺ0୭ሻ ൌ gmh.  
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Now, let's take the object on a little tour of the region.  Move it 
horizontally a displacement s, then down h, then horizontally again 
s, back to point B.  The work done will be 

W୥ ൌ gm s cosሺ90୭ሻ ൅ gm h cosሺ0୭ሻ ൅ gm s cosሺ90୭ሻ ൌ gmh  

once again.   

Let's pick a random 
path.  You might be 
able to see that we 

can always approx-imate any path to an arbitrary 
degree of accuracy with these stepped horizontal 
and vertical move-ments.  From previous 
discussion, we know that any horizontal 
movements will correspond to no work being done 
by gravity.  The vertical displacements are each of 
magnitude hn, some parallel to the weight and 
some anti-parallel, such that the work done by the 
weight during each vertical motion is  

W୥ ൌ  ෍ gm h୬ cosሺθ୬ሻ ൌ gm ෍ h୬ cosሺθ୬ሻ
୬

 ,
୬

 

where cos (n) = +1 if the displacement is downward (parallel to the force) and -1 if the 
displacement is upward (anti-parallel to the force).  We realize that the last summation is simply 
h, so that the work done by the weight is gmh, as before, and work done by the weight throughout 
the whole trip is indeed independent of the path taken.  

Next, let's consider an example of a non-
conservative force: friction. Consider an 
object being slid across a table top along two 
paths (let all x's be the same magnitude).  
Remember that we are not concerned with the 
work done by any other force, such as that of 
the hand that pushes the block.  The frictional 
force will be (not proven here):  
 

F୤୏ ൌ  μ୏ ሺgmሻ 
 

So that the work done by friction from Point 
A to Point B along the direct path is 

 W୤ ୈ୧୰ୣୡ୲ ୔ୟ୲୦ ൌ  μ୏ ሺgmሻ Δx  . 
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If instead, the object is pushed along the other three sides of a square, the same amount of work 
will be done by friction along each of the sides, so that 

W୤ ୐୭୬୥ ୔ୟ୲୦ ൌ  3 μ୏ ሺgmሻ Δx ് W୤ ୈ୧୰ୣୡ୲ ୔ୟ୲୦  . 

So, we see that friction is not a conservative force.  Just as clearly, neither is the force that pushed 
the object around on the table. 

 

Potential Energy 

A few pages ago, we defined energy as ½ mv2, which is how it was originally defined.  It was a 
few years later that the ‘kinetic’ was added.  We make this distinction because we will introduce 
a second type of energy, although to my mind, it is only a bookkeeping trick to keep track of some 
work terms.  I admit, though, that the concept of potential energy (U) can be extremely useful. 
 
Let's consider the dropped pen again.  We can say that during its fall, the pen is acted on only by 
the force of gravity, which does positive work, and thereby causes an increase in the pen's kinetic 
energy (work-energy theorem).  We can develop an alternate notion, by saying that energy is 
somehow stored in the pen by virtue of its altitude above the table, and that this potential energy 
is then converted to kinetic energy as the pen falls.  What we find is that any conservative force 
can have a potential energy function associated with it.  For example, if a conservative force does 
positive work on an object so that the kinetic energy increases, we could alternatively say that the 
potential energy of the object is decreasing while the kinetic energy is increasing, and vice 
versa.  So, for a given conservative force (FC), we require that  
 

Wେ ൌ  െ∆U  . 
 
We can do this only for conservative forces.  Here’s why.   
 

 
By definition for a conservative force, the work done by the force along any Path One from A to 
B is the same as along any other Path Two.  Since the two paths have only points A and B in 
common, there must be some numbers associated with the object being at each of these points that 
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provide sufficient information to determine the work.  We call these values the potential energy of 
the object at A (UA) and the potential energy of the object at B (UB).4  If we tried to do that with 
the non-conservative force, starting at point A, we would have to conclude that there are two 
different values associated with point B, or indeed, potentially an infinite number of such values, 
one for each possible path and amount of work done.   
 
DISCUSSION 6-6 
 

One might point out that this 
argument regarding conservative 
forces is valid only when Path One 
and Path Two do not cross (they 
would have more than just two 
points in common).  Of course, we 
can come up with any number of 
paths that do cross.  Can you 
provide an argument that takes care 
of that omission? 

 
Here we go.  Let’s start with the work-energy theorem, and divide the works on the left into two 
categories, depending on whether the associated forces are conservative (C) or non-conservative 
(NC): 

W୘୓୘୅୐ ൌ  ∆K   
 

Wେ ൅  W୒େ ൌ  ∆K  . 
 
We’ll define the change in potential energy as ΔU = -WCONS, so that 
 

െΔU ൅  W୒େ ൌ  ∆K  . 
 
Since work and energy are not the same thing, and because I hate minus signs,  
 

W୒େ ൌ  ∆K ൅ ΔU   . 
 
In the same way that I find ΣF = ma to be more convenient than the conceptually better a = ΣF/m, 
I find this form of the work-energy theorem to be more convenient than the conceptually satisfying 
version of a few pages back. 

Can we figure out what the gravitational potential energy function is?  Not really.  We can only 
figure out an expression for its change.   

                                                 
4 If you read this paragraph carefully, you should have noted that these values are not directly associated with the 
points A and B themselves, but with our object being located at A and at B.  There is a quantity associated with the 
points themselves, regardless of whether there is an object there or not, but it is typically not covered in PHYS 1.  
Look for an analogous quantity though in PHYS 2! 
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DERIVATION 6-4 

Consider the specific example of the pen discussed earlier 
that was lowered from a height H to the table below.  We 
calculated that the work done on the pen by the weight 
was gmh.  Now, to make this work consistently, it’s 
necessary to give up a little freedom of choice; we will 
require upward to be positive y.5  Since h is a positive 
number (the magnitude of the displacement) and since yi 
> yf, we can instead write that  

  
W୥ ൌ gmh ൌ gmሺy୧ െ  y୤ ሻ ൌ െሺgmy୤ െ  gmy୧ሻ

ൌ  െ ∆ሺgmyሻ  . 

If we keep in mind that we defined U such that  

W୥ ൌ  െ∆U  ,  

we might just jump to the conclusion that  

Uሺyሻ ൌ gmy  . 

Now, of course, we still have the same problem we had with kinetic energy, that there may be 
some constant term we’re missing that will cancel out when we find ΔU: U(y) = gmy + Uo.  
This time, though, we’re going to take advantage of that.  Where we pick our origin (i.e., where 
y = 0) is entirely up to us, and so that is where we choose the potential energy to be zero.  So, 
we’ll make these choices to be as convenient for us as possible.  Generally (80% Rule!) you 
will want to place y = 0 at the lowest level of a problem.6 

But, let’s consider.  Suppose I raise a 2 kg object from a tabletop 1 m above the floor to 2 m 
above the floor.  If the zero of potential energy is zero at floor level, I increased U from 
(10)(2)(1) = 20  joules to (10)(2)(2) =  40  joules.  If the zero had been at table level, it went 
from 0 joules to (10(2)(1) = 20  joules.  And if the 3 meter high ceiling had been U = 0, it went 
from (10)(2)(-2) = -40 joules to (10)(2)(-1) = -20 joules.  In each case the change was the same 
(+20 joules) even if the actual potential energy values were very different. 

Some admonitions before we start examples.  First, remember that you should not put the potential 
energy term on both sides of the relationship; it’s either a work term on the left, or it’s a potential 
energy change on the right. As I said, this is a bookkeeping trick.  Second, remember that there 
may well be more than one conservative force operating on the object, which would require us to 

                                                 
5 You may remember doing this when we required radial forces to be counted as positive when toward the center of 
the circle and negative when away. 
6 Of course, later, we’ll see some exceptions, i.e. the other 20%! 
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have more than one U term.  For this course, there are only three conservative forces; all others 
should be considered to be non-conservative. 

 

Conservation of Mechanical Energy 

Let’s call the sum of an object’s kinetic and potential energies its mechanical energy.  Let’s 
consider a special case in the absence of non-conservative forces, or at least a situation where no 
non-conservative forces do work:  
 

W୒େ ൌ  ∆K ൅ ΔU  
becomes  
 

0 ൌ  ∆K ൅ ΔU  
 

0 ൌ  𝐾௙ െ  𝐾௜ ൅  𝑈௙ െ  𝑈௜ 
 

𝐾௜ ൅  𝑈௜ ൌ  𝐾௙ ൅  𝑈௙  .  
 
This is interesting.  It says that, in the absence of non-conservative forces (or at least of such forces 
which do any work), the total mechanical energy is conserved, or remains constant.  There is, in 
physics, a great number of quantities that are conserved in the absence of outside agencies.  In the 
present example, the energy may change from from kinetic to potential or vice versa, but it is 
neither created nor destroyed. 
 

This concept of the conservation of mechanical energy is not the same as conservation of total 
energy, which you may have heard of in your other classes.  This is a much more restricted form 
of that concept.  For example, let's look once again at the dropped pen.  Just after release, the pen 
has zero kinetic energy and mgh of potential energy (we'll let U = 0 at the tabletop).  Just before 
hitting the table, U = 0 and K is not zero, and in fact equals numerically mgh.  Now in a more 
general way, we can talk about the conservation of total energy, but only if we broaden the 
definition of energy.  You may remember from your other classes that the molecules in solids can 
be modeled by balls connected by springs, and that the balls are constantly vibrating, possessing 
kinetic and potential energy.  This kinetic energy is different (in a fashion) from the translational 
kinetic energy discussed above, in that for translational kinetic energy, every particle shared the 
same velocity vector, but for vibrational kinetic energy, the motions are more random.  When the 
pen hit the table, shock waves went out from the impact through both the table and the pen, 
increasing the vibration of the molecules in each object.  This increased thermal energy is observed 
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macroscopically as an increase in the temperatures7 of both the table and the pen. Other energy is 
carried away as sound, which eventually warms other objects it hits, such as your eardrum. 

EXPERIMENT 6-2 
 

Everything we’ve done in 
this section up to this point 
was based on the 
conjecture that the work is 
found by multiplying the 
displacement of an object 
by the parallel component 
of the force acting on it.  
While the rest of the 
section has a fairly firm 
basis, if the original 
conjecture is incorrect, all 
that followed may be just 
as incorrect.  So we need 
some evidence to support 
the conjecture, and that is usually accomplished by performing an experiment.  Here are the 
results of an experiment measuring the potential and kinetic energies of an object as it slides 
down a frictionless incline.  Note that, as the potential energy U decreases, the kinetic energy 
K correspondingly increases, but that the total energy (U + K) remains constant as predicted 
(to within experimental error).  In this experiment, the maximum deviation from the average 
is 0.8%. 

 
EXAMPLE 6-3 

 
You.ve seen this one before.  Consider a block of 
mass m = 5 kg at the top of a frictionless ramp L 
= 2 meters long, which is inclined at  = 37o to 
the horizontal.  If the mass starts from rest at the 
top, how quickly will it be moving when it 
reaches the bottom?  
  
As usual, draw a sketch and a free-body diagram. 
There are two forces acting on the mass: the 
weight and the normal force.  Let’s start with the more recent and more useful version of the 
work-energy theorem: 
 

                                                 

7 While you may have a general idea of what temperature is, we’ll define it carefully later in the 
course. 
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W୒େ ൌ  ∆K ൅ ΔU  
 

W୒େ ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ ൅ gmy୤ െ  gmy୧  
 
Next, let’s consider the works done: 
 
WN = 0 – the force is perpendicular to the path and so the 
cosine term is always zero. 
Wg – this is a conservative force and will be dealt with on 
the right side of the equation. 
 
There is one piece of information we will need: the initial 
altitude of the object.  Since the sinθ = yi/L, yi is L 
sin(37o) = 1.2 m. 
 
So then 
 
0 ൌ  భ

మ
 m v୤

ଶ െ  భ
మ
 m v୧

ଶ ൅ gmy୤ െ  gmy୧  , 
 
which is always nice. 
 
Following a brilliant suggestion I read somewhere, I’ll put y = 0 at the bottom of the ramp.  I 
also realize that the object starts from rest at the top, and so I’ll simplify here with justification.8 
 

0 ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ ൅ gmy୤ െ  gmy୧ 
starts from rest      y୤ ൌ 0 

  
 ଵ
ଶ
 m v୤

ଶ ൌ  gmy୧ 
 

 v୤ ൌ ඥ2 gy୧ ൌ  ඥ2ሺ10ሻሺ1.2ሻ ൌ 4.9m/s . 
At this time, it is legitimate to ask, “Gee, Dr Baum, 
we’ve learned how to do this problem three ways, 
none of which seems any easier than the others.  
What’s the point?”  And here it comes.  Suppose 
that instead of a straight frictionless surface, the 
incline had instead possessed a ‘wavy’ surface, as 
shown in the figure.  Here, the mass does not slide 
uniformly down a straight surface.  Let’s think 
about doing this with Newton’s second law.  Let x be the direction down the incline.  The weight 
will have a constant component along the dotted line shown in the figure, but the normal force will 
have a varying component in that direction, sometimes down the incline, sometimes up the incline, 
and sometimes zero, depending on the exact shape of the surface.  And that’s an oversimplification.  
If we try to use the original form of the work-energy theorem (following the wavy line), it’s 

                                                 
8 In this section, I’ll indicate quantities that are zero in red, and justifying why in the line directly underneath. 
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certainly true that the normal force does no work, but the angle that the weight makes with each 
small interval of displacement as the object slides down will vary.  Either way, we would have to 
know a lot of very specific data about the shape of the curves ramp and do a horrendous calculation.  
However, because the weight is a conservative force, the work done on the object does not depend 
on the exact path taken; all we need to know are the potential energies at the start and end of the 
trip.  Here is a perhaps clearer example to illustrate the usefulness of potential energy. 
 
MATHEMATICAL DIGRESSION* 
 

Before we cover the next example, we need to find the average value of the cosine function in 
the first quadrant, between 0 and π/2 radians (90o).  To do that, we’re going to find the area 

under the cosine curve.  The height of the rectangle containing the same area over the same 
domain will be the average.  As an analogy, think of the left curve as the distribution of grades 
on an exam (well, let’s hope not!).  The area under the curve represents the total number of 
points earned by all students.  If we redistribute the points so that every student gets the same 
grade, then that grade will be the average.  
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To find the average, consider an object moving at constant 
speed v around a circle of radius R.  To match the 
parameters of our problem, we’ll look at the motion when 
the object is in quadrant four with theta measured as shown.  
For convenience, we’ll make both v and R, and therefor ω, 
equal one.9  This makes the x component of the velocity be 
 

v୶ ൌ v cos θ ൌ cosሺθሻ  , 
 
and since θ = ωt, we can write that, numerically, 
 

𝜃 ൌ 𝑡  . 
 

That means that the graph of the x component 
of the velocity in quadrant four matches exactly 
the graph on the left above, and their areas will 
be the same.  What is the area under a velocity 
vs time graph?  It’s the displacement, and in 
this scenario, the object moved from x = 0 to x 
= R = 1.  The area under the original cosine 
curve is then 1. 10  To find the average value in 
this interval, consider the area of the rectangle: 
 

𝑎𝑟𝑒𝑎 ൌ 𝑏𝑎𝑠𝑒 ൈ ℎ𝑒𝑖𝑔ℎ𝑡 

         1  ൌ
𝜋
2

 ℎ     →      ℎ ൌ  
2
𝜋

  . 

 
The average of the cosine function between 0o 
and 90o is 2/π. 

 
EXAMPLE 6-4 
 
Consider a small ball (mass m) attached to the end of a (magic) string of length L = 1.5 m).  The 
ball is held up at 90o to the vertical and released.  How quickly is it moving when it reaches the 
bottom of its swing? 

 

                                                 
9 If it bothers you that the validity of the coming result may be limited to this special case, remember that we can 
simply use different units so that R is 1.  That is, if R = 3.2 meters, we can simply define one noof to be 3.2 meters 
and the radius becomes one noof while the initial velocity becomes 1 noof/second.  The real requirement here is that 
ω = 1 rad/sec.  Now, if omega were not 1 rad/s, there would simply be a scaling factor that would in the end disappear.  
If, for example, omega were say 6.7, then the initial velocity would be 6.7 times greater, but the time to erach the x-
axis would be 6.7 times shorter; the shape under the curve becomes taller and narrower by the same factor so that the 
area remains the same. 
10 Modified from “Why does the area under one hump of a sine curve exactly equal 2?” Girl’s Angle Bulletin, July 
31 2013 https://girlsangle.wordpress.com/2013/07/31/why-does-the-area-under-one-hump-of-a-sine-curve-exactly-
equal-2/. 
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As a demonstration of the usefulness of the concept of potential energy, we’re going to do this 
problem twice.  First the long way; keep in mind that we could also use calculus, but that 
wouldn’t make this solution much shorter.   
 
First Solution* 
 
We’ll use the original form of the work-energy theorem.  There are two forces acting on the 
mass, the ball’s weight and the tension in the string.   
 
WT = 0 (the tension is always perpendicular to the 
path). 
Wg is tough.  In general, the work is F Δx cos θF,Δx.  
That works if the force is constant and the 
displacement is along a straight line.  But here, the 
angle between the weight and the direction of motion 
is continually changing.  We must break the path 
down into very many very small lengths δl, find the 
work for each displacement, then add them all up. 
 

W୥ ൌ෍ gm δ𝑙௡ cos ሺθ୬ሻ
୬

ൌ gm෍  δ𝑙௡ cos ሺθ୬ሻ
୬

 

 
We can express the average value of the cosine as  
 

cos ሺ𝜃ሻ஺௏ா ൌ
∑  δ𝑙௡ cos ሺθ୬ሻ୬

∑  δ𝑙௡ ୬
  .  

 
We’ve previously shown that the average value of the cosine between 0o and 90o is 2/π, and 
the sum of the δln terms is one-fourth of the circle’s circumference, or, πL/2.  Then, 
 

W୥ ൌ gm൭෍  δ𝑙௡ 
୬

൱ ሺcosሺθሻ୅୚୉ሻ ൌ gm ൬
πL
2
൰ ൬

2
π
൰ ൌ gmL  . 

Then,  
 

W୘ ൅  W୥ ൌ  ଵ
ଶ
mv୤

ଶ െ  ଵ
ଶ
mv୧

ଶ 

W୘  ൌ 0            starts from rest 
 

gmL ൌ  ଵ
ଶ
mv୤

ଶ 

 

v୤ ൌ  ඥ2gL ൌ  ඥ2ሺ10ሻ1.5 ൌ 5.48 m/s  . 
 
Second Solution 
 
Next, let’s use potential energy.   
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WT = 0 (the tension is always perpendicular to the path 
Wg – conservative force, treat as potential energy terms 
 
Set U = 0 at the bottom of the problem 
 
 

0 ൌ ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ ൅ gmy୤ െ  gmy୧   
starts from rest    y୤ set to zero 

 
ଵ
ଶ
 m v୤

ଶ ൌ   gmL   
 

v୤ ൌ  ඥ2gL ൌ  ඥ2ሺ10ሻ1.5 ൌ 5.48 m/s  . 
Much shorter. 

 
Generally, you will find that using potential energy is never harder than finding the work directly, 
and usually much easier. 
 
HOMEWORK 6-4 
 

A pitcher hurls a 0.35 kg sportsball around a vertical circular path of radius 0.6 m, applying a 
tangential force of 30 N, before releasing it at the bottom of the circle (underhand pitch).  If 
the speed of the ball at the top of the circle was 12 m/s, what will be the speed just after it's 
released? 
 

EXERCISE 6-1 

Another classic.  Consider a child perched at the top of an 
igloo, which we will consider to be a hemisphere of 
radius R covered in slippery snow.  He starts with an 
almost zero speed from the top and travels down the 
side.  At what vertical distance H from the ground will he 
become airborne?  

 

HOMEWORK 6-5 

Tarzan swings on a 25 m long vine that was initially inclined at an angle of 25o from the 
(downward) vertical.  What is his speed at the bottom of his swing if  
he pushed off his branch with an initial speed of 3 m/s? 
 

HOMEWORK 6-6 
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A point mass block slides without friction on the loop-de-loop track of radius R as 
shown.  From what height h must it be released from rest in order to make it around the loop 
without leaving the track? 

 
 
 
 
 
 
 
 
 
 

 
 
Springs 

Let’s next consider our second conservative force.  If 
I take a spring and simply toss it onto the table, you 
may notice that it always assumes the same length, 
regardless of whether I compress it or stretch it before 
I toss it.  Let’s refer to this as the spring’s relaxed 
condition and the length its relaxed length.  In order 
to stretch or compress the spring, I must apply some 
force.  In this course, at least for now, we shall 
assume that all springs obey Hooke's relationship: 
the force necessary to stretch (or compress) a spring 
from its relaxed state is proportional to the amount of 
stretching (or compression).  In more mathematical 
terms:  
 

 
F୅୮୮୪୧ୣୢ ൌ k ∆X  . 

 
The symbol k represents the spring constant of the spring, the number of newtons required to 
stretch (or compress) the spring one meter, and is given in N/m.  A high value of k means that the 
spring is stiff, while a low value implies the spring is flexible.  Notice that I am using a capital X 
to describe the position of the end of the spring; the reason for this should become apparent later 
in the discussion.   
 
DISCUSSION 6-7 
 

HookesLaw.mp4  
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In the figure, we’ve applied 
known forces to three springs 
over an admittedly small range 
of stiffness.  Is the amount each 
spring is stretched indeed 
proportional to the applied 
force?  What property of the 
data in the graph would indicate 
that?  How is the spring constant 
k found for each curve?  Which 
is the independent variable and 
which the dependent variable in 
this experiment?  How should 
Hooke’s relationship be 
arranged to match the equation of a line? 

  
We need to be a bit careful about signs.  The relationship above is the force which needs to be 
applied to the spring to stretch (compress) it, and that force needs to be in the direction of the 
displacement of the end of the spring.  We do not expect this force to be conservative, as it may 
be provided by a hand or other such agency.  However, we are often interested in the force applied 
by the spring to some object to which it is attached.  By the third law, this spring force would be 
in the opposite direction:  

Fୗ୮୰୧୬୥ ൌ െ k ∆X  . 
 
However, this is further complicated by our habit of writing down the magnitudes of forces and 
adding in the appropriate directional signs as necessary.  As a result, I shall write this relationship 
this way, 
 
  

Fୗ୮୰୧୬୥ ൌ ሺെሻ k ∆X  
 
with the minus sign there in parentheses to remind you that the force exerted by the spring is in 
the direction opposite to that in which the spring is stretched, but not to be taken literally.  You 
must determine the correct sign for each specific problem encountered.  Occasionally, the 'delta' 
is dropped as well, if it is understood that the relaxed position is at X = 0:  
 

Fୗ୮୰୧୬୥ ൌ ሺെሻk X . 
 
One last assumption: unless told otherwise, springs, like strings, will be considered to be massless. 

DISCUSSION 6-8 

Is the spring force conservative?  Can you make a quick argument that it is?  Suppose that we 
were to stretch the spring from X = 0 to point A.  Repeat from X = 0 to A to a point B beyond 
point A, then back to B? 

y = 0.0156x + 0.0015

y = 0.062x ‐ 0.0058

y = 0.1212x ‐ 7E‐05
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Since the force exerted by the spring depends only on the position of the end of the spring X (we'll 
assume that the other end is fixed), reversing the displacement back over already covered ground 
simply undoes the work done the first time (by flipping the sign of the cosine term), so that the net 
work done depends only on the initial and final positions of the end of the spring.  

DERIVATION 6-5 

How much work is necessary to 
stretch (or compress) a spring distance 
X from its relaxed position?  We can 
use the graphical representation 
showing Fon spring as a linear function 
of X with slope k: 

We showed above that the work done 
by any variable force is represented by 
the area under the force vs position 
curve.  Since this is a triangle, the area 
is one-half the base times the height: 

  
W୭୬ ୗ୮୰୧୬୥ ൌ

ଵ
ଶ
 X F ൌ  ଵ

ଶ
 X ሺkXሻ ൌ ଵ

ଶ
 kXଶ  

Now we have to do a couple of flip-flops.  The work done on the spring is 1/2kX2, the work 
done by the spring is -1/2kX2 (the forces are in opposite directions), and the change in the 
potential energy of the spring is the negative of that, or  

∆Uୗ୮୰୧୬୥ ൌ  െWୠ୷ ୗ୮୰୧୬୥ ൌ  െ൫െW୭୬ ୗ୮୰୧୬୥൯ ൌ  ൅ଵ
ଶ
 kXଶ , 

UሺXሻ െ Uሺ0ሻ ൌ  ൅ଵ
ଶ
 kXଶ . 

It would seem extremely convenient to make U(0) = 0, so that  

Uୗ୮୰୧୬୥ሺXሻ ൌ  ൅ଵ
ଶ
 kXଶ . 

Note that in this version, we have given up some freedom again.  We will be assuming the spring’s 
potential energy is zero when the spring is relaxed.  Do we have to do this? No, but things will be 
much easier if we do.  We will also see that maintaining this zero of potential energy supersedes 
our choice of where to make the gravitational energy zero, again for mathematical exigency. 

Also, note that the potential energy of a spring depends on the square of the extension or 
compression.  That is, for U(X), it really doesn’t matter if we make compression or extension 
positive or negative; the potential energy increases either way. 

EXAMPLE 6-5 
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Consider the frictionless surface shown.  On the left is an ideal spring of constant k = 30 N/m.  
A mass of 5 kg is pushup against the spring, compressing it 0.2 m.  When the mass is released, 
it is pushed to the right, slides across the surface, and travels up the incline.  What is the mass’s 
altitude yf when it stops? 

 

There are three forces acting on the mass at one time or another.  Use the work-energy theorem. 

WN = 0 (the normal force is always perpendicular to the path). 
WSp – conservative 
Wg – conservative 

Let’s define y = 0 to be at the bottom of the problem.  Then, 

𝑊ே஼ ൌ  ∆𝐾 ൅  ∆𝑈௚ ൅  ∆𝑈ௌ௣   . 

0 ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ ൅ gmy୤ െ  gmy୧ ൅
ଵ
ଶ
 𝑘𝑋௙

ଶ െ ଵ
ଶ
 𝑘𝑋௜

ଶ   
              stops        starts from rest    y୧ ൌ 0  spring is relaxed 

gmy୤ ൌ  ଵ
ଶ
 kX୧

ଶ      →        y୤ ൌ  
 kX୧

ଶ

2gm
ൌ

30ሺ0.2ଶሻ
2ሺ10ሻ5

ൌ 0.012 m  

This illustrates why I used X; it represents the location of the end of the spring, not the location 
of the mass. 



- 151 - 
 

EXAMPLE 6-6 

Show that an object of mass m 
moving at speed vo across a 
rough horizontal floor will 
slide a distance s = (vo)2/2μKg. 

There are three forces acting 
on the object.  Consider the 
work each does. 

WN = 0 (the normal force is 
always perpendicular to the 
path). 

Wg – conservative 

Wf = Ff s cosθF,s.  We need to find the frictional force, which unfortunately requires a trip 
back to Newton’s second law land.  Although the result here may seem obvious to you, it is 
important to actually show the effort.  From NII in the y-direction, 

൅ F୒ െ  gm ൌ ma୷ ൌ 0     →      F୒ ൌ gm 

F୤୏ ൌ  μ୏F୒ ൌ  μ୏gm  . 

Since the displacement and frictional forces are in opposite directions, we’ll be taking the 
cosine of 180o, so 

W୤ ൌ  ሺμ୏gmሻ s ሺെ1ሻ ൌ െμ୏gms  .  

The work-energy theorem then results in  

െμ୏gms ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ ൅ gmy୤ െ  gmy୧ 
       comes to a stop                   y୤ ൌ y୧ 

Finish up with 

μ୏gs ൌ  ଵ
ଶ
  v୭ଶ 

s ൌ  
v୭ଶ

2μ୏g
   . 

HOMEWORK 6-7 
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Two identical massless springs of 
constant k = 400 N/m are fixed at 
opposite ends of a level track, as 
shown.  A 12 kg block is pressed 
against the left spring, 
compressing it by 0.3m.  The block is then released from rest.  The entire track is frictionless 
except for the region of length 0.2 m between points A and B, where K = 0.08.  What is the 
maximum compression of the spring on the right?  

HOMEWORK 6-8 

Consider a 13 kg block sitting at rest on a rough 
surface.  The coëfficient of friction between the 
block and surface is 0.7. The block is barely 
touching a relaxed spring of constant k = 300 
N/m.  How much work would a hand or other such agency need to do to push the block very 
slowly 0.2 m against the spring?  

HOMEWORK 6-9 

The 10 kg mass is released from rest at a 
height of 1m above the floor.  If the 
coëfficient of kinetic friction between the 5 
kg mass and the table is 0.8, what will be the 
speed of the 10 kg mass just before it hits the 
floor? 

 
EXAMPLE 6-7 

Let’s look at a problem where it is not a good 
idea to make the lowest point the zero of 
gravitational potential energy.  Let’s drop a 
box of mass M onto a vertical spring.  How far 
is the spring compressed when the box comes 
to a stop?  The figure shows three points in the 
process.  Because the spring’s potential energy 
is quadradic while the gravitational potential 
energy is linear, things will go much easier 

mathematically if we set the springs relaxed position to be the zero for both.  Note then that 
the final values for y and for X will be the same.  Let’s pick some numbers: yi = 12 m; M = 8 
kg; k = 120 N/m. 

Use the work-energy theorem: 

There are two forces acting on the box, the weight and the spring force. 
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Wg – conservative 
WSpring – conservative 

 So, we have that happy situation when WNC = 0. 

0 ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ ൅ gmy୤ െ  gmy୧ ൅
ଵ
ଶ
 kX୤

ଶ െ ଵ
ଶ
 kX୧

ଶ   
The box begins and ends at rest                          the spring is initally relaxed 

 
Remember that yf = Xf. 

0 ൌ  gmy୤ െ  gmy୧ ൅
ଵ
ଶ
 k y୤

ଶ   

This is a quadratic equation, so let’s insert the values now and re-arrange for solution.  We’ll 
also divide both sides by 20 to make the numbers smaller. 

0 ൌ 10ሺ8ሻy୤ െ 10ሺ8ሻy୧ ൅
ଵ
ଶ
 ሺ120ሻ y୤

ଶ   

3 y୤
ଶ ൅ 4y୤  െ 4y୧ ൌ 0 

y୤ ൌ
െ4 േඥ4ଶ െ 4ሺ3ሻሺെ4ሻ

2ሺ3ሻ
ൌ  ൅0.67m or െ 2 m   . 

This time, we want the negative root because we know the final position will be below the y 
= 0 level. 

 
DISCUSSION 6-9 
 

Why does the equation give us two values?  What condition did we impose on the locations of 
the box and the end of the spring?  What situation does the other root correspond to? 
 

HOMEWORK 6-10 
 

A 0.85 kg bunch of bananas depresses the pan of a spring balance at Wegman’s 3.0 cm when 
resting on it.  If the bananas were dropped onto the pan from a height of 0.3 m above the empty 
pan, how far will the pan be depressed before starting to return upward? 
 

 

Power 

Sometimes, we’re interested in the rate at energy is put into, or removed from, an object, or the 
rate at which work is done, the power: 
 

P୅୚୉ ൌ  
W
t

  . 
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The instantaneous power is of course 
 

P୍୒ୗ୘ ൌ  lim
∆୲→଴

δW
∆t

  . 

 
If we consider forces acting on an object during a short interval of time (and displacement), we 
obtain an interesting result: 
 

Pூேௌ் ൌ  lim
∆୲→଴

δW
∆t

ൌ lim
∆୲→଴

൬
F ∆x cosሺθ୊,୼୶ሻ

t
൰  ൌ 𝐹 lim

∆୲→଴
൬
∆x
t
൰ cosሺθ୊,୼୶ሻ ൌ F v cos൫θ୊,୴൯ ൌ Fሬ⃑  ൉ vሬ⃑   . 

 
If one joule of work is performed in one second, we say that the power is one watt (symbol W).  
There is an alternate unit for power that is still commonly used in the U.S., the horsepower (hp).  
The hp has been redefined as exactly 750 W. 
 
DISCUSSION 6-10 
 

What is the power rating of a typical incandescent light bulb?11  What is the power rating of a 
corresponding diode light bulb?  What is the power rating of the engine in your car?  How 
many light bulbs could your car engine presumably light up at once? 

 
EXAMPLE 6-8 
 

Suppose you’re late for your next class.  You need to run up a flight of stairs as quickly as 
possible.  What power output is required? 
 
The result depends on the values picked and will of course vary from person to person.  Let’s 
assume that the floors of your building are 6 m apart (fairly typical for an office building).  The 
average adult male American masses in at 90 kg.  The part no one ever agrees on is the amount 
of time required to run up a flight of stairs.  Let’s call it twelve seconds. If we can agree that 
all of the work goes into increasing the person’s potential energy (he’s running the same speed 
at the top and at the bottom), then we have 
 

P ൌ  
W
t
ൌ  
ΔU

t
ൌ

gmH
t

ൌ  
10ሺ90ሻ6

7
ൌ  771 W ൌ 1.03 hp. 

 
DISCUSSION 6-11 
 

The horsepower was originally defined, loosely, as the power a draught house could supply 
while drawing a plough.  From the previous result, it appears you could do this job.  What’s 
the difference between your ability and the horse’s ability to draw a plough? 

 

                                                 
11 This is not the same power that we discussed; it is the rate of conversion of electrical energy to thermal energy.  
But, let’s continue anyway. 
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EXERCISE 6-1 Solution 

Start as usual with a free body diagram.  There are two forces acting on the child, his weight and 
the normal force.   

WN = 0 (the normal force is always perpendicular to the path). 
Wg – conservative 

So, we have again that WNC = 0, and 

0 ൌ  ଵ
ଶ
 m v୤

ଶ െ  ଵ
ଶ
 m v୧

ଶ ൅ gmy୤ െ  gmy୧  . 
 
The child starts from rest (or close to it) and 
we will set ground level as y = 0.  The 
problem ends not at the ground, but when the 
child leaves the igloo surface at y = H.  The 
original altitude is y = R, the radius of the 
igloo. 
 

0 ൌ  ଵ
ଶ
 m v୤

ଶ  ൅ gmH െ  gmR  . 

The trouble we have here is that there are two unknowns.  We need more information.  We might 
notice that the child is moving in a circle, and we know a lot about things moving in circles.  Let’s 
return to Newton’s second law: 

൅ gm cosሺθሻ െ  F୒ ൌ maେ ൌ  
mvଶ

r
  . 

The radius of the circle is of course R.  The normal force goes to zero when the child loses contact 
with the surface, and at that moment, v = vf. 

 gm cosሺθሻ ൌ  
m𝑣௙

ଶ

R
  . 

We may notice that the cosine of theta is H/R, so that 

gm
H
R
ൌ  

mv୤
ଶ

R
     →      gmH ൌ mv୤

ଶ   . 

Returning to the energy equation, 

0 ൌ  ଵ
ଶ
 gmH ൅ gmH െ  gmR  ; 

3
2

 H ൌ R ; 
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H ൌ
2
3

R  . 
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SECTION 7 – THE THIRD PICTURE 

We've looked at the motions of objects using two outwardly different, but ultimately identical, 
points of view: forces and accelerations, and work and energy.  We know that they are the same, 
since we derived the work-energy theorem using Newton's Second Law and a couple of 
definitions.  Now, we'll introduce yet another picture which we may, or may not, find convenient 
to use on certain classes of problems.  
 

CHEESY EXPERIMENT 7-1 
 

Consider a small toy car sitting on a table at a spot marked ‘X’; we’ll assume the wheels make 
its contact with the table frictionless.  Observes the car closely.  Now, observe the car as it 
travels through point X.  Is it fair to say that the car possesses some quality or property when 
it’s moving through X that it lacks when stationary?  How did the car acquire that property?   
 

DISCUSSION 7-1 
 

Impulse.mp4  
You may notice that the car had the property only after a force acted on it.  Indeed, I can also 
remove the property by applying a force opposite to the motion of the car.  This is sounding 
awfully familiar.  In fact, we will approach this in a manner very much like the one we used 
for work and energy.  After the experiment, we agreed to the following: 

 
 There is some quality or property the object possesses when it’s moving through X that it 

lacks when it’s stationary at X.  Of course, we know that the object possesses kinetic energy 
when it’s moving, but we are measuring the transfer of this new property differently, so we 
must be transferring something else as well.  For want of a better name, let’s call this new 
property momentum (symbol p) 

 Momentum is transferred into the object by applying a force.  However, the force must act 
for some period of time.  That means that the property is not energy, although clearly 
energy was also being transferred.   

 Transferring momentum into (or out of) an object is a process; let us call the transfer of 
momentum the impulse (J) done on the object.  Impulse is not momentum; it is the transfer 
of momentum.   

 The bigger the force, the more momentum is transferred:  as F↑, J↑. We might even 
speculate that J is proportional to F.  That would certainly be the simplest relationship 
consistent with our observations.  We could be wrong, of course; perhaps J ~ F2 or F3.  
We’ll make the simplest assumption and see if there is a contradiction somewhere in our 
subsequent experiments. 

 The greater the time interval over which the force acted, the more impulse is provided: that 
is, as Δt ↑,J↑ .We might speculate that J is proportional to Δt.  

We may perhaps further speculate that, in the simplest possible scenario, J = F Δt. = Δp.   
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DISCUSSION 7-2 
Let’s look at the center term of the hypothesis formula above.  Which kind of a quantity is 
force?  Then, what about impulse and momentum?  Is the bank account analogy appropriate 
here?  Can you think of one that may be more appropriate? 
 

As in Section 6, we know that there may be more than one force acting on an object at once, each 
with its own effect on the momentum.  Let’s start with our guess above and see it we can figure 
out what momentum is.  This derivation works for constant forces, and as we’ll see, in three 
dimensions. 
 
DERIVATION 7-1 
 

J⃑୘୓୘୅୐ ൌ  ෍ J⃑୬
୬

ൌ෍ Fሬ⃑ ୬
୬

∆t ൌ  ൭෍ Fሬ⃑ ୬
୬

൱ ∆t ൌ ሺmaሬ⃑ ሻ ∆t ൌ mሺaሬ⃑  ∆tሻ ൌ mሺvሬ⃑ ୤ െ  vሬ⃑ ୧ሻ

ൌ  mvሬ⃑ ୤ െ  mvሬ⃑ ୧ ൌ  ∆ሺmvሬ⃑ ሻ  .  
 
Keeping in mind that we required that J⃑୘୓୘୅୐ ൌ  Δpሬ⃑  , we may perhaps jump to the conclusion 
that pሬ⃑ ൌ mvሬ⃑ . 1  
 
Now, because we wrote this derivation in terms of vectors, and because we know that if two 
vectors are equal, then their x, y, and z components must independently be equal, we can treat 
these problems with momentum as three separate problems, one with the x-components, one 
with the y-components, and one with the z-components. 

DISCUSSION 7-3 

In the derivation above, we stipulated that the forces should be constant in time.  This allowed 
us to make use of kinematic equation 1: vf  = vi + at.  How would you deal with a situation in 
which forces are not constant in time? 

DISCUSSION 7-4 

It is useful to remember that these quantities, such as momentum or energy, are ones that we 
have defined.  Is momentum a real thing?  What about energy? 

HOMEWORK 7-1 

What is the ratio of the magnitude of the momentum of a 3kg mass moving at 3 m/s to that of 
a 2 kg mass moving at 4 m/s?  What is the ratio of the respective kinetic energies?  NOTE: 
You should find that one of the objects has more momentum, while the other has more kinetic 
energy.  How is that possible? 

                                                 
1 As always, we could be wrong and perhaps pሬ⃑  = mvሬ⃑  + Aሬሬ⃑ , where Aሬሬ⃑  is some constant that subtracts out when we find 
the change in pሬ⃑ .  For now, let’s assume the simplest case that Aሬሬ⃑  = 0. 
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HOMEWORK 7-2 

Show that the kinetic energy of an object can be written in terms of the magnitude of the 
momentum as K = p2/2m. 

EXAMPLE 7-1 

A constant force of 14 N acts on an initially stationary object (mass 6 kg) for 8 seconds.  If this 
was the only force acting on the object, what is the impulse?  What is the final speed of the 
object? 

Call the direction of the force the +x direction. 

J⃑୘୓୘୅୐ ൌ  Fሬ⃑  ∆t ൌ 14ሺ8ሻ ൌ 112 Ns in the ൅ x direction   . 

Note that, unlike for work/energy, there is no special unit for impulse/momentum. Typically, 
impulse is newtons seconds, while momentum is kilogram meters/second. 

Then, 

J⃑୘୓୘୅୐ ൌ  ∆pሬ⃑ ൌ mvሬ⃑ ୤ െ mvሬ⃑ ୧  , 

vሬ⃑ ୤ ൌ  vሬ⃑ ୧ ൅  
J⃑୘୓୘୅୐

m
ൌ   0 ൅  

112
6

 ൌ 18.7 m s⁄ in the ൅ x direction  . 

HOMEWORK 7-3 

Suppose F(t) shown in the figure is the net force acting 
in the +x direction on a particle of mass 2kg.  Find 

a) the impulse imparted to the object by the force.  
b) the final velocity of the object if it had been 
originally at rest. 
c) the final velocity of the object if its initial x velocity 
had been -2 m/s.  

 

 

As mentioned several times, each of our ‘pictures’ is especially well suited to solving a particular 
type of problem.  Newton’s second law and the kinematic equations were useful when the forces 
were constant.  The work energy theorem was useful when there were no non-conservative forces 
doing work (mechanical energy was conserved), and had the advantage of not requiring us 
necessarily to know the path taken by the object of interest or the time that the trip required.  In 
some special cases, the momentum picture is very useful for examining collisions.  A collision is 
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when two or more objects interact with one another.  They do not need actually to touch one 
another, as we may think about, say, automobile collisions. They may exert other forces on each 
other, whether gravitational, electric, nuclear, et c.  

Before we start, let’s define a system.  You may 
be familiar with this term from chemistry.  A 
system is just the collection of objects in which 
we are interested.  A closed system is one for 
which the only forces acting on the objects are 
due to other objects in the system; these are 
called internal forces.  An open system is one for 
which some force or forces are due to agencies 
not included in the system; these are of course 
external forces.  We can mentally draw an 
imaginary box around the system; any force that crosses the box’s boundary will be an external 
force.  In the figure, the system comprises mass 1 and mass 2.  The force exerted on 1 by 2 and the 
force exerted on 2 by 1 are internal forces.  Their weights, however, are exerted by the earth, which 
is not in the box; the weights are therefor external forces. 

As usual, let’s start with a simple case, then generalize. 

DERIVATION 7-2 

Consider two objects, m1 and m2, each with its proper initial velocity, vሬ⃑ ଵ୧and vሬ⃑ ଶ୧.  When the 
objects interact, they exert forces on each other that obey Newton’s third law: 

Fሬ⃑ ଵ,ଶ ൌ  െ Fሬ⃑ ଶ,ଵ  . 

By the second law, 

mଵaሬ⃑ ଵ ൌ  െ mଶaሬ⃑ ଶ  . 

Careful here.  Because the statement above is true instant by instant, it must also be true when 
averaged over the duration of the interaction between the masses, so we can write 

mଵaሬ⃑ ୅୚୉ ଵ ൌ  െ mଶa୅୚୉ ଶ  . 

Note that at this stage, we lose a lot of information about the forces involved.  Remember the 
definition of the average acceleration and substitute: 

mଵ
∆vሬ⃑ ଵ
∆tଵ

ൌ  െ mଶ
∆vሬ⃑ ଶ
∆tଶ

  . 

We can make an argument using the third law that the two time intervals must be the same; if 
they were not, then there would be a time when one object would be exerting a force on the 
other while the other would not be exerting a force on the one. 
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mଵ∆vሬ⃑ ଵ ൌ  െ mଶ∆vሬ⃑ ଶ   

mଵvሬ⃑ ଵ୤ െ mଵvሬ⃑ ଵ୧ ൌ  െmଶvሬ⃑ ଶ୤ ൅  mଶvሬ⃑ ଶ୧ 

mଵvሬ⃑ ଵ୧ ൅  mଶvሬ⃑ ଶ୧ ൌ  mଵvሬ⃑ ଵ୤ ൅  mଶvሬ⃑ ଶ୤  . 

At this point, we might recognize a relationship similar to one we saw in Section 6.  The total 
momentum of the system before the interaction is equal to the total momentum of the system 
after the interaction.  Momentum may well have been transferred from one object to the other, 
but the total momentum was conserved.  Unlike energy, though, momentum does not change 
from one form to another, e.g., from kinetic to potential.  

For future reference, let’s write this last expression as  

 mଵvሬ⃑ ଵ୤ ൅  mଶvሬ⃑ ଶ୤ െ mଵvሬ⃑ ଵ୧ െ  mଶvሬ⃑ ଶ୧  ൌ  Δpሬ⃑ ୘୓୘୅୐ ൌ 0 . 

Before we continue, a number of comments.   

What if, in our derivation, there were an external force?  Let’s redo the work with an external force 
acting on mass 1 as an example.  It would still be true that 

Fሬ⃑ ଵ,ଶ ൌ  െ Fሬ⃑ ଶ,ଵ  . 

But by the second law, 

Fሬ⃑ ଵ,୉ଡ଼୘ ൅  Fሬ⃑ ଵ,ଶ ൌ  mଵaሬ⃑ ଵ  , 

so that 

െ Fሬ⃑ ଵ,୉ଡ଼୘ ൅ mଵaሬ⃑ ଵ ൌ  െ mଶaଶ  . 

Following through to the end, we see that 

െ Fሬ⃑ ଵ,୉ଡ଼୘ ൅  mଵaሬ⃑ ୅୚୉ ଵ ൌ  െ mଶaሬ⃑ ୅୚୉ ଶ  

െ Fሬ⃑ ଵ,୉ଡ଼୘ ൅  mଵ
∆vሬ⃑ ଵ
∆tଵ

ൌ  െ mଶ
∆vሬ⃑ ଶ
∆tଶ

 

െ Fሬ⃑ ଵ,୉ଡ଼୘Δt ൅  mଵ∆vሬ⃑ ଵ ൌ  െ mଶ∆vሬ⃑ ଶ   

െ Fሬ⃑ ଵ,୉ଡ଼୘Δt ൅  mଵvሬ⃑ ଵ୧ ൅  mଶvሬ⃑ ଶ୧ ൌ  mଵvሬ⃑ ଵ୤ ൅  mଶvሬ⃑ ଶ୤  .  

 Fሬ⃑ ଵ,୉ଡ଼୘Δt ൌ  Δpሬ⃑ ୘୓୘୅୐ ് 0  
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and the total momentum is not conserved.  We do not expect the total momentum of a system to 
be conserved if there are external forces. 

However, there are two loopholes.  The first, in analogy with the work energy theorem, is that 
momentum will still be conserved if the net external force is zero, that is, if the external forces 
happen to cancel to zero.2  The other loophole is more common.  Because we used vector notation, 
the derivation is valid for three dimensions.  But remember that when two vectors are equal, their 
x, y, and z components are also independently equal.  This means that the result can be written as 
three separate equations: 

mଵvଵ୶୧ ൅  mଶvଶ୶୧ ൌ  mଵvଵ୶୤ ൅  mଶvଶ୶୤  

mଵvଵ୷୧ ൅  mଶvଶ୷୧ ൌ  mଵvଵ୷୤ ൅  mଶvଶ୷୤  

mଵvଵ୸୧ ൅  mଶvଶ୸୧ ൌ  mଵvଵ୸୤ ൅  mଶvଶ୸୤   . 

Suppose that there are some external forces in the x direction, but none in the y or z directions.  
Then, we can still use conservation of momentum in those two directions.  As an example, think 
of two skydivers falling toward the earth.  If the system is the two divers, there are external forces 
in the vertical direction (their weights), but none in the horizontal directions.  Momentum will still 
be conserved horizontally in any collision the divers may suffer.   

O.K., we are actually in a position to test the idea of conservation of momentum, and Newton’s 
third law as well (remember that we skipped on that in Section 5) since our notion was based on 
Newton’s second law (already tested) and the third law. 

EXPERIMENT 7-1 
 
Let’s look at the results of an 
experiment to give us some 
confidence this is true.  A 
system of two masses were 
placed on an airtrack to reduce 
friction (an external force) and 
collided together under 
different conditions.  The 
vertical forces of weight and 
air from the track should not 
affect the horizontal motions.  
The velocities before and after 
were measured, and the total 
momentums before and after 
calculated and plotted.  If 
conservation of momentum is true, a line of slope one through the origin should be seen.  In these 
                                                 
2 A simple analogous situation for work-energy might be to push a crate parallel to the surface on which it moves 
while balancing a kinetic frictional force. 

y = 0.9837x ‐ 0.0015

‐0.5

‐0.4

‐0.3

‐0.2

‐0.1

0

0.1

0.2

0.3

0.4

‐0.6 ‐0.4 ‐0.2 0 0.2 0.4

To
ta
l F
in
al
 M

o
m
en
tu
m
 (
kg
 m

/s
)

Total Initial Momentum (kg m/s)

Conservation of Momentum



- 163 - 
 

results, the intercept is very small compared to the values measured, and the slope is very close to 
one.  This gives us some confidence that linear momentum is conserved, and indirectly, that the 
third law of motion is supported. 
 

DERIVATION 7-3* 

What if there are more than two masses in the system?  Well, suppose that there are q masses.  
For each mass n, add up the k impulses acting on it. 

෍ J⃑୬,୩

୩

ൌ  ∆pሬ⃑ ୬ 

Add up these terms for all q masses: 

෍෍ J⃑୬,୩

୩

௤

௡ୀଵ

ൌ  ෍∆pሬ⃑ ୬

௤

௡ୀଵ

ൌ  ∆pሬ⃑ ୘୓୘୅୐  . 

We can divide the impulses on the left into two categories, internal and external, in the same 
way we divided forces into conservative and non-conservative forces.  Keep in mind that any 
object in the system won’t exert a force on itself. 

෍෍ J୍⃑୒୘ ୬,୩

௤

୩ୀଵ
୩ஷ୬

௤

௡ୀଵ

൅  ෍෍ J⃑୉ଡ଼୘ ୬,୩

୩

௤

௡ୀଵ,

ൌ ∆pሬ⃑ ୘୓୘୅୐  . 

The second term on the left side is just the sum of the external impulses, so let’s concentrate 
on the first term.  Since J⃑ ൌ  Fሬ⃑  ∆t, 

෍෍𝐹⃑௡,௞ ∆𝑡௡,௞

௤

௞ୀଵ
௞ஷ௡

௤

௡ୀଵ

൅  𝐽ா௑் ்ை்஺௅ ൌ ∆pሬ⃑ ୘୓୘୅୐  . 

Now, Δtn,k = Δtk,n is the time interval during which objects n and k interact; by our third law 
argument above, these time intervals are equal and indeed occur simultaneously.  From the 
third law, 𝐹⃑௡,௞ ൌ  െ 𝐹⃑௞,௡, and so we see that all of the terms in the summation cancel in pairs, 
leaving  

𝐽ா௑் ்ை்஺௅ ൌ ∆pሬ⃑ ୘୓୘୅୐  . 

Brief Review 

Let's review the three pictures:  
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 The velocity of an object will remain constant unless the object is acted on by a force, in 
which case Fሬ⃑ TOTAL = maሬ⃑ . 

 The kinetic energy of an object will remain constant unless the object has work performed 
on it, in which case WTOTAL = K. 

 The momentum of an object will remain constant unless the object is acted on by an 
impulse, in which case J⃑TOTAL = pሬ⃑ . 

These last two we can re-write for systems of objects:  

 The total mechanical energy (E = K + U) of a system will remain constant unless the system 
has work performed on it by non-conservative forces, in which case WNC = ETOTAL. 

 The total momentum of a system will remain constant unless the system is acted on by an 
external impulse, in which case J⃑EXT = pሬ⃑ TOTAL. 

Collisions 

As was noted above, conservation of momentum is particularly useful in analyzing collisions.  You 
may have noticed that, in Derivation 7-X, the details of the forces acting between the objects 
disappeared, which is one of the strengths of this method. We don’t even need to know what kind 
of force acted on the objects!  It is somewhat along the lines of having an object slide down along 
a curved frictionless surface; the details of the path were not necessary to find the speed of the 
object at the bottom. 
 
We’re going to consider only the extremes of the spectrum of collisions.  The easier of the two is 
the completely inelastic collision, one in which the objects stick together after the collision.  Let's 
start by considering a simple situation in one dimension in which there are no external forces (that 
is, the only forces are those that each object exerts on the other): 
 
EXAMPLE 7-2 
 

An object of mass 5 kg is moving at 7 m/s along the +x axis when it strikes a stationary object 
of mass 3 kg.  If they stick together, what is their common final velocity? 
 
First of all, for a problem like this one, it’s convenient to revert to the notation we used in 
Sections 2 through 5: a vector in the +x direction will carry a positive value, while one in the 
-x direction will carry a minus sign. 
 
Assuming the two masses form a closed system, conservation of momentum seems 
appropriate. 
 

mଵvሬ⃑ ଵ୶୧ ൅  mଶvሬ⃑ ଶ୶୧ ൌ  mଵvሬ⃑ ଵ୶୤ ൅  mଶvሬ⃑ ଶ୶୤  . 
 
They have a common final velocity, or, if you prefer, it’s as if they are now one object of mass 
m1 + m2 moving at velocity vf. 
 

mଵvሬ⃑ ଵ୶୧ ൅  mଶvሬ⃑ ଶ୶୧ ൌ  ሺmଵ ൅  mଶሻvሬ⃑ ୶୤  . 
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vሬ⃑ ୶୤  ൌ  
mଵvሬ⃑ ଵ୶୧ ൅  mଶvሬ⃑ ଶ୶୧

mଵ ൅  mଶ
ൌ  

5ሺ൅7ሻ ൅ 3ሺ0ሻ

5 ൅ 3
ൌ  ൅4.38 m s⁄  . 

 
EXAMPLE 7-3 
 

An object of mass 12 kg is moving at 5 m/s along the +x axis has a rear-end collision with an 
object of mass 3 kg travelling at 4 m/s.  If they stick together, what is their common final 
velocity? 
 
First, what does rear-end collision mean?  It’s an expression from automobile collisions 
meaning that the two objects were moving in the same direction.  A head-on collision would 
be one in which they were heading in the opposite directions. 
 
Assuming the two masses form a closed system, conservation of momentum seems 
appropriate.  Also, because they have a common final velocity,  
 

mଵvሬ⃑ ଵ୶୧ ൅  mଶvሬ⃑ ଶ୶୧ ൌ  ሺmଵ ൅  mଶሻvሬ⃑ ୶୤  . 
 

vሬ⃑ ୶୤  ൌ  
mଵvሬ⃑ ଵ୶୧ ൅  mଶvሬ⃑ ଶ୶୧

mଵ ൅  mଶ
ൌ  

12ሺ൅5ሻ ൅ 3ሺ൅4ሻ
12 ൅ 3

ൌ  ൅4.8 m s⁄  . 

 
EXERCISE 7-1 
 

An object of mass 6 kg is moving at 4 m/s along the +x axis has a head-on collision with an 
object of mass 3 kg travelling at 8 m/s.  If they stick together, what is their common final 
velocity? 

 
HOMEWORK 7-4 
 

Three masses of 6 kg, 7 kg, and 2 kg 
move on a frictionless horizontal 
surface with initial speeds of 4 m/s, 2 
m/s, and 5 m/s, respectively, as 
shown in the figure.  If the masses all 
stick together after the collisions, 
what will be the final velocity of the 
combined mass? 

 
HOMEWORK 7-5 
 

Two railcars have a head-on collision, couple together, and stop dead.  If Car A was moving 
four times as quickly as Car B was, and the total mass of both cars together is 90,000 kg, 
what are the masses of each car individually? 

 
DISCUSSION 7-5 
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Consider the result of Exercise 7-1.  We ended up with no momentum because we happened 
to start with no momentum. Sure, each object had some momentum of its own to start, but the 
total was zero.  You may notice, however, that there is something else that we ended with zero 
of, but started with a positive amount of.  What is it?  Where did it go?  Consider an automobile 
accident.  What do the cars look like afterward and what was necessary to make them that way? 

 
In Exercise 7-1, the objects started with 144 joules of kinetic energy, and ended with none.  One 
of the characteristics of totally inelastic collisions is that kinetic energy is lost.  
 
EXERCISE 7-2 
 

Find the total initial and final kinetic energies in Example 7-x. 
 
DERIVATION 7-4 
 

Show that kinetic energy is always lost during the special case of a totally inelastic collision in 
one dimension when one of the objects is initially at rest.  We’ve already shown that 
 

vሬ⃑ ୶୤  ൌ  
mଵvሬ⃑ ଵ୶୧ ൅  mଶvሬ⃑ ଶ୶୧

mଵ ൅  mଶ
    

୫మ ୱ୲ୟ୰୲ୱ ୟ୲ ୰ୣୱ୲
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ     v୶୤  ൌ

mଵvଵ୶୧
mଵ ൅  mଶ

  .  

 
Now we need to show that 

ଵ
ଶ 

mଵvଵ୶୧ 
ଶ ା  

ଵ 
ଶ

mଶvଶ୶୧
ଶ ൐  ଵ

ଶ
ሺ mଵ ൅  mଶሻv୶୤

ଶ  
୫మ ୱ୲ୟ୰୲ୱ ୟ୲ ୰ୣୱ୲
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 

 ଵ
ଶ 

mଵvଵ୶୧
ଶ ൐  ଵ

ଶ
ሺ mଵ ൅  mଶሻ ൬

mଵvଵ୶୧
mଵ ൅  mଶ

൰
ଶ

. 

mଵvଵ୶୧
ଶ ൐  

mଵ

mଵ ൅  mଶ
mଵvଵ୶୧

ଶ  

 
This leads us to the true statement that 
 

1 ൐  
mଵ

mଵ ൅  mଶ
  , 

 
which is equivalent to saying that kinetic energy is always lost in this very special case. 
 

DISCUSSION 7-6 
 
The previous derivation was done for a very special case of one of the masses being initially 
at rest.  After completing Section 7, you should be able to return here and make an argument 
that kinetic energy is lost in any totally inelastic collision regardless of the initial motions of 
the two masses.   
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Let’s examine a particular situation.  Suppose that a bullet is fired into a block of wood.  The bullet 
penetrates a given distance into the block, and the block of course moves a bit in the direction the 
bullet was moving.  The bullet applied a force to the block and the block applied an equal though 
opposite force to the bullet.  The bullet did positive work on the block, and the block did negative 
work on the bullet.  However, the displacements of each object were not the same during this 
process, and so more negative work was done on the bullet than positive work done on the block.  
As a result, kinetic energy was lost. 
 
EXAMPLE 7-4 

 
Let’s try a two-dimensional example.   Suppose you are an insurance 
accident investigator.  Two cars collided at an icy intersection as shown, 
and the wreckage moved off at an angle 59o north of east.  You know 
that Car One (1500 kg) was moving eastward at 30 m/s just before the 
collision, because it was caught on a speed camera.  The question is, 
how quickly was Car Two (2000 kg) moving? 
 
We’ll let the system comprise the cars.  The road is icy, or frictionless, 

so there are no external horizontal forces.  The vertical normal forces and weights will not 
prohibit conservation of momentum in the horizontal directions.  Let east be the +x direction 
and north be the +y direction.  Use conservation of momentum separately in each direction. 
 

x:  mଵvଵ୶୧ ൅  mଶvଶ୶୧ ൌ  ሺmଵ ൅ mଶሻ v୶୤ 
 

y:  mଵvଵ୷୧ ൅  mଶvଶ୷୧ ൌ  ሺmଵ ൅ mଶሻ v୷୤ 
 
In this solution, v1yi and v2xi are both zero, and vxf = vf cos(θ) and vyf = vf sin(θ).   
 

mଵvଵ୶୧ ൌ  ሺmଵ ൅ mଶሻ v୤ cos ሺθሻ 
 

mଶvଶ୷୧ ൌ  ሺmଵ ൅ mଶሻ v୤ sin ሺθሻ 
 
Divide the second equation by the first to obtain 
 

mଶvଶ୷୧
mଵvଵ୶୧

ൌ tanሺθሻ  . 

 
Then, 

vଶ୷୧ ൌ  
mଵ

mଶ
 vଵ୶୧  tanሺθሻ ൌ  

1500
2000

ሺ30ሻ tanሺ59୭ሻ ൌ 37.4 m s⁄  .  

Now, let's consider a totally elastic collision, by which we mean no kinetic energy is lost during 
the collision (although, it can be transferred from one object to the other).  Think of the objects as 
having springs on them; instead of kinetic energy being used to deform the objects, some kinetic 
energy is stored as potential energy, then re-released as kinetic.  For reasons that will be discussed 
later, this derivation will be applicable to problems in one dimension only.   
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DERIVATION 7-5 

We will write one equation representing conservation of momentum (in one dimension only) 
and another representing the fact that the total kinetic energy is the same before and after the 
interaction. 

 
mଵvሬ⃑ ଵ୶୧ ൅  mଶvሬ⃑ ଶ୶୧ ൌ  mଵvሬ⃑ ଵ୶୤ ൅  mଶvሬ⃑ ଶ୶୤   

ଵ
ଶ 

mଵvଵ୶୧
ଶ ൅  ଵ 

ଶ
mଶvଶ୶୧

ଶ ൌ  ଵ
ଶ
 mଵvଵ୶୤

ଶ ൅  ଵ
ଶ
 mଶvଶ୶୤

ଶ  

Typically, we are given the masses and initial velocities and are asked to find the final 
velocities.  Since we have two independent equations and two unknowns, we should be good.  
One solution should be obvious:  v1xi = vx1f and v2xi = vx2f; the equations require merely that K 
and p be conserved, which is certainly the case if no collision actually occurs. However, finding 
the other, more interesting, solution requires about two pages of effort.  So, what we’re going 
to do is what physicists often do when a problem is too difficult; we’ll look at a special case.  
Here, we’ll simplify the problem to require that mass two is initially at rest.  Of course, the 
results we obtain will be valid for only that situation. Our two equations become 

mଵvሬ⃑ ଵ୶୧ ൌ  mଵvሬ⃑ ଵ୶୤ ൅  mଶvሬ⃑ ଶ୶୤   

ଵ
ଶ
 mଵvଵ୶୧

ଶ ൌ  భ
మ

 mଵvଵ୶୤
ଶ ൅  భ

మ
 mଶvଶ୶୤

ଶ  

Reverting to our Section 2 notation, this first equation can be rewritten as 

mଶvଶ୶୤ ൌ  mଵvଵ୶୧ െ  mଵvଵ୶୤ ൌ  mଵሺvଵ୶୧ െ  vଵ୶୤ሻ  

and the second as 

భ
మ

 mଶvଶ୶୤
ଶ ൌ  ଵ

ଶ
 mଵvଵ୶୧

ଶ െ  భ
మ

 mଵvଵ୶୤
ଶ ൌ భ

మ
 mଵ ሺvଵ୶୧ െ  vଵ୶୤ሻሺvଵ୶୧ ൅  vଵ୶୤ሻ  .  

Dividing the second equation by the first and multiplying through by two results in 

vଶ୶୤ ൌ  vଵ୶୧ ൅  vଵ୶୤  ,  

which we substitute into the original momentum equation. 

mଵvଵ୶୧ ൌ  mଵvଵ୶୤ ൅  mଶሺvଵ୶୧ ൅  vଵ୶୤ሻ 

Solving for the final velocity of mass one gives us 

vଵ୶୤ ൌ  
𝑚ଵ െ  𝑚ଶ

𝑚ଵ ൅  𝑚ଶ
vଵ୶୧  . 
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If instead, we substitute to solve for the final velocity of mass two, we get 

vଶ୶୤ ൌ  
2𝑚ଵ

𝑚ଵ ൅  𝑚ଶ
vଵ୶୧  . 

Once again, remember that these solutions are only valid if one mass had been initially at rest, the 
collision was totally elastic, and motion was restricted to one dimension.  To be clear, you should 
label whichever mass was not initially moving as mass two.  If you encounter this type of problem 
in a homework or exam question, you may move directly to these two relationships as your starting 
point. 

EXAMPLE 7-4 

An object of mass 12 kg moving at 5 m/s along the +x axis has a totally elastic collision with 
a stationary object of mass 3 kg.  What are their final velocities? 
 
As allowed above, we will start with the two relationships we derived.  The solution becomes 
‘plug-and-chug.’ 

vଵ୶୤ ൌ  
mଵ െ  mଶ

mଵ ൅  mଶ
vଵ୶୧  ൌ   

12 െ  3
12 ൅  3

5 ൌ 3 m s⁄  . 

vଶ୶୤ ൌ  
2mଵ

mଵ ൅  mଶ
vଵ୶୧ ൌ  

2ሺ12ሻ
12 3

5 ൌ  8 m/s . 

EXERCISE 7-3 

An object of mass 7 kg is moving at 10 m/s along the +x axis has a totally elastic rear-end 
collision with an object of mass 4 kg travelling at 3 m/s.  What are their final velocities? 
 

What if neither mass had been at rest?  Well, we could go back and re-do the derivation with the 
two extra terms, but here is a neat trick: we can make use of the material of Section 4 (relative 
motion) and pick a new frame of reference (indicated below by a prime) in which mass 2 is initially 
at rest, calculate the final velocities in that frame, then convert back to the original frame.   
 
Let’s use the previous Exercise as an example.  For the observer who described the problem, Mass 
1 is moving in the +x direction at 10 m/s before it hits Mass 2 moving the same way at +3 m/s.  If 
we were passengers riding alongside Mass 2, we would of course think that Mass 2 is stationary 
and see Mass 1 approaching us from behind at 7 m/s.  From our point of view, the relationships 
derived above would be perfectly O.K. to use.  Then, we need only calculate what the original 
observer sees.   
 
EXAMPLE 7-5 
 

I like to keep track of this process with a chart.  It also makes the process somewhat mechanical, 
and thereby less susceptible to mistakes.  The information for each mass runs horizontally in 
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the rows.  The first column contains the original values for each mass’s initial velocity.  The 
third column contains the initial velocities in the new frame of reference; the initial velocity of 
Mass 2 here must be zero.  The second column is the process that changes the values.  We ask, 
what must be done to M2’s initial velocity to make it zero?  In this case, we must subtract 3 
m/s.   
 
 
 

vinitial convert to new frame in which v2xi' = 0 vo' 

M1 +10 m/s   

M2 + 3 m/s Subtract 3 m/s      0 m/s 

Of course, if we subtract 3m/s from M2’s velocity, we must do the same for M1: 

vinitial convert to new frame in which v2xi' = 0 vo' 

M1 +10 m/s Subtract 3 m/s + 7 m/s 

M2   +3 m/s Subtract 3 m/s    0 m/s 

Now we have a problem we can solve.  Use the relationships derived, we can find the final 
velocities in the new frame of reference. 

vi convert vi' Find vf' 

M1 
+10 
m/s 

-3 
+7 
m/s 

vଵ௫௙
ᇱ ൌ  

mଵ െ  mଶ

mଵ ൅  mଶ
vଵ௫௜
ᇱ  ൌ   

7 െ  4
7 ൅ 4

7 ൌ 1.91 m s⁄  . 

 

M2 
+3 
m/s 

-3 
0 
m/s 

vଶ௫௙
ᇱ ൌ  

2mଵ

mଵ ൅  mଶ
vଵ௫௜
ᇱ ൌ  

2ሺ7ሻ
7 ൅ 4

7 ൌ  8.91 m/s . 

 

We’re not done, because we need to convert back to the original frame.  We do that by 
reversing the transformation that we did previously, in this example, by adding 3 m/s to the 
results. 

vi convert vi' Find vf' 
convert back to original 
frame by reversing the 
previous transformation 

vf 
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M1 
+10 
m/s 

-3 
+7 
m/s 

vଵ௫௙
ᇱ ൌ  

mଵ െ  mଶ

mଵ ൅  mଶ
vଵ௫௜
ᇱ  ൌ   

7 െ  4
7 ൅ 4

7

ൌ 1.91 m s⁄  . 

 

+3 4.91 m/s 

M2 
+3 
m/s 

-3 
0 
m/s 

vଶ௫௙
ᇱ ൌ  

2mଵ

mଵ ൅  mଶ
vଵ௫௜
ᇱ ൌ  

2ሺ7ሻ
7 ൅ 4

7

ൌ  8.91 m/s . 
+3 11.91 m/s 

Before I give you an exercise to try, let’s do another short derivation.  To be honest, I have never 
found the result of this to be useful, except as a quick check of my results for the chart solution.  
I’ll show you what I mean in a moment. 

DERIVATION 7-6* 

Here is an additional interesting derivation for a totally elastic collision.  Here, we do not need 
to assume that m2 is initially at rest.  That is, the result is valid for any one-dimensional totally 
elastic collision. 

We start with the conditions for conservation of momentum and kinetic energy: 

mଵvሬ⃑ ଵ୶୧ ൅  mଶvሬ⃑ ଶ୶୧ ൌ  mଵvሬ⃑ ଵ୶୤ ൅  mଶvሬ⃑ ଶ୶୤   

ଵ
ଶ 

mଵvଵ୶୧
ଶ ൅  ଵ 

ଶ
mଶvଶ୶୧

ଶ ൌ  ଵ
ଶ
 mଵvଵ୶୤

ଶ ൅  ଵ
ଶ
 mଶvଶ୶୤

ଶ   . 

Let’s re-arrange each: 

mଵሺvଵ୶୧ െ vଵ୶୤ሻ ൌ  mଶሺvଶ୶୤ െ vଶ୶୧ሻ 

mଵሺvଵ୶୧ െ vଵ୶୤ሻሺvଵ୶୧ ൅ vଵ୶୤ሻ ൌ  mଶሺvଶ୶୤ െ vଶ୶୧ሻሺvଶ୶୤ ൅ vଶ୶୧ሻ 

Dividing the second equation by the first leaves 

vଵ୶୧ ൅ vଵ୶୤ ൌ  vଶ୶୤ ൅ vଶ୶୧   . 

So if the chart solution was done correctly, we find that the sums of the masses’ initial and final 
velocities should be the same.  For example, 10 + 4.91 = 3 + 11.91.  You can use this as a quick 
check on your answers.  An agreement won’t guarantee you’re correct, but a failure will tell you 
if you’re wrong. 

HOMEWORK 7-4 
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A 10 kg object initially moving to the right at 20 m/s makes a totally elastic head on collision 
with a 15 kg object which was initially moving to the left at 5 m/s. Find the final velocities of 
each object. 

HOMEWORK 7-5 

A 10 kg object initially moving to the right at 20 m/s has a totally elastic rear-end collision 
with a 15 kg object which was initially moving to the right at 5 m/s. Find the final velocities 
of each object. 

JUSTIFICATION OF ASSUMPTIONS* 
 

In the method discussed above, that is changing to a new frame of reference to solve our 
problem, we assumed that if momentum and kinetic energy are conserved in one frame, that 
they are conserved in the other frame.  We need to justify those assumptions.  It’s not too 
difficult for momentum.  Let’s bite the bullet and do it for three dimensional collisions.  For 
the original frame, we can rewrite the momentum equation as 
 

mଵvሬ⃑ ଵ୧ ൅ mଶvሬ⃑ ଶ୧ െ  mଵvሬ⃑ ଵ୤ െ mଶvሬ⃑ ଶ୤ ൌ 0  .  
 
Let uሬ⃑  be the velocity of the first frame relative to the second frame.  Then in that new frame 
we ask if, 
 

mଵሺvሬ⃑ ଵ୧ ൅ uሬ⃑ ሻ ൅ mଶሺvሬ⃑ ଶ୧ ൅ uሬ⃑ ሻ െ  mଵሺvሬ⃑ ଵ୤ ൅ uሬ⃑ ሻ െ mଶሺvሬ⃑ ଶ୤ ൅ uሬ⃑ ሻ ൌ 0  .  
 
Re-arranging a bit results in 
 

ሺmଵvሬ⃑ ଵ୧ ൅ mଶvሬ⃑ ଶ୧ െ  mଵvሬ⃑ ଵ୤ െ mଶvሬ⃑ ଶ୤ሻ ൅  ሺmଵ ൅ mଶ െ  mଵ െ mଶሻ uሬ⃑ ൌ 0  .  
 
The first term is zero from our knowledge of the initial frame, and the second term is clearly 
zero, and so momentum is conserved in the new frame.  Since there was no restriction put on 
uሬ⃑ , momentum is conserved in every possible frame if it is conserved in any one frame, 
regardless of the type of collision. 
 
Kinetic energy is a bit more difficult because we deal with the 
objects’ speeds, not their velocities.  Let’s review a bit.  
Suppose we add two vectors, Aሬሬ⃑  and Bሬሬ⃑ , that are not in the same 
(or opposite) directions and want to know the magnitude of 
the sum,  หAሬሬ⃑ ൅ Bሬሬ⃑ ห.  Draw Aሬሬ⃑ , Bሬሬ⃑ , and their sum Cሬ⃑  so as to form a 
triangle.  The law of cosines tells us that3  
 

Cଶ ൌ  Aଶ ൅  Bଶ ൅ 2AB cosθ୅,୆ ൌ  Aଶ ൅  Bଶ ൅ 2 Aሬሬ⃑ ∙ Bሬሬ⃑  . 
 

                                                 
3 The angle is defined differently here than is usual. It is the exterior angle rather than the interior angle, which leads 
to the difference in sign. 
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Note that this is a general statement that reduces to the Pythagorean theorem when theta is 90o.   
Now, in our original frame of reference, let’s assume that kinetic energy is conserved during 
the collision.  We can write 
 

ଵ
ଶ
 mଵvଵ୧

ଶ ൅ ଵ
ଶ
 mଶvଶ୧

ଶ െ  ଵ
ଶ
 mଵvଵ୤

ଶ െ  ଵ
ଶ
 mଶvଶ୤

ଶ ൌ 0  .  
 
In the new frame, we’d like to know if 
 

ଵ
ଶ
 mଵ|vሬ⃑ ଵ୧ ൅ uሬ⃑ |ଶ ൅ ଵ

ଶ
 mଶ|vሬ⃑ ଶ୧ ൅ uሬ⃑ |ଶ െ  ଵ

ଶ
 mଵ|vሬ⃑ ଵ୤ ൅ uሬ⃑ |ଶ െ  ଵ

ଶ
 mଶ|vሬ⃑ ଶ୤ ൅ uሬ⃑ |ଶ ൌ 0  .  

 
After multiplying it all out and re-arranging a bit, 
 

ቀଵ
ଶ
 mଵvଵ୧

ଶ ൅ ଵ
ଶ
 mଶvଶ୧

ଶ െ  ଵ
ଶ
 mଵvଵ୤

ଶ െ  ଵ
ଶ
 mଶvଶ୤

ଶ ቁ ൅ ሺmଵvሬ⃑ ଵ୧ ൅ mଶvሬ⃑ ଶ୧ െ  mଵvሬ⃑ ଵ୤ ൅ mଶvሬ⃑ ଶ୤ሻ ∙ uሬ⃑

൅  ଵ
ଶ

 ሺmଵ ൅ mଶ െ  mଵ െ mଶሻ uଶ ൌ 0  . 
 
The contents of the first and second sets of parentheses are zero from our knowledge of the 
original frame of reference (KTOTAL and pሬ⃑ TOTAL were conserved), and that of the third is clearly 
zero, and so if the kinetic energy is conserved in any frame, then it is conserved in every frame.  
We can return to Derivation 7-4 and generalize the result: if kinetic energy is lost during a 
collision in one frame, some is lost in any frame, including any in which both objects were 
initially moving. 
 
This is going to be an important point in Physics Three. 
 
While we’re here, let’s think about a couple of other considerations that students have asked 
about over the years.  What about impulse and work in different frames?  Suppose a mass has 
a force acting on it for a given duration of time.  What is the force in a new frame of reference?  
 

Fሬ⃑ Δt ൌ mሺvሬ⃑ ୤ െ vሬ⃑ ୧ሻ ൌ  mሺvሬ⃑ ୤ െ vሬ⃑ ୧ሻ ൅ mሺuሬ⃑ െ uሬ⃑ ሻ ൌ m൫ሺvሬ⃑ ୤ ൅ uሬ⃑ ሻ െ ሺvሬ⃑ ୧ ൅ uሬ⃑ ሻ൯ 
ൌ mሺvሬ⃑ ୤

ᇱ െ vሬ⃑ ୧
ᇱሻ ൌ  Fሬ⃑ ᇱ∆t  . 

 
So, a force of a certain magnitude in one frame of reference has the same magnitude in any 
other frame of reference, as does the impulse.4  Knowing that, what can we say about the work 
done by a force in two different frames?  We certainly expect that the work could be different 
because the displacements could be different.  The work-energy theorem in the original frame 
will be 
 

W ൌ Fሬ⃑ ∙ ∆r⃑ ൌ  ଵ
ଶ
m൫v୤

ଶ െ  v୧
ଶ൯  . 

 
In a new frame moving at velocity uሬ⃑  with respect to the original frame, we have that 
 

                                                 
4 That is, if the time intervals in each frame are the same, which is a characteristic of Galilean transformations.  The 
problem comes about in relativistic transformations, which we’ll discuss in Semester Three. 
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Wᇱ ൌ Fሬ⃑ ′ ∙ ∆r⃑ᇱ ൌ  Fሬ⃑ ∙ ሺ∆r⃑ ൅ uሬ⃑  ∆tሻ ൌ Fሬ⃑ ∙ ∆r⃑ ൅ Fሬ⃑ ∙ uሬ⃑  ∆t ൌ W ൅ Fሬ⃑ ∙ uሬ⃑  ∆t   . 
 
So, fun fact, if the new frame is moving perpendicularly to the force, the work in each frame 
is the same.  Continuing, 
 

Wᇱ ൌ ଵ
ଶ
m൫v୤

ଶ െ  v୧
ଶ൯ ൅ ൫Fሬ⃑  ∆t൯ ∙ uሬ⃑  ൌ ଵ

ଶ
m൫v୤

ଶ െ  v୧
ଶ൯ ൅ mሺvሬ⃑ ୤ െ vሬ⃑ ୧ሻ ∙ uሬ⃑  

ൌ  ଵ
ଶ
m൫v୤

ଶ െ  v୧
ଶ ൅ 2ሺvሬ⃑ ୤ െ vሬ⃑ ୧ሻ ∙ uሬ⃑ ൅ uଶ െ  uଶ൯ ൌ 

 
ଵ
ଶ
mሺ|v୤ ൅ u|ଶ െ  |v୧ ൅ u|ଶሻ ൌ  ଵ

ଶ
m൫v୤

ᇱଶ െ  v୧
ᇱଶ൯ ൌ  ΔKᇱ  . 

 
So, in any frame, the work done in that frame is the change in kinetic energy in that frame, but 
certainly not necessarily the same change as in another frame, as we expected. 
 

ADMONITION* 
 

When we discussed totally inelastic collisions, we made the point that we could treat a three-
dimensional problem as three separate one-dimensional problems.  You were warned, 
however, not to treat totally elastic problems that way.  Let’s discuss briefly why we can not 
simply use the chart method above three times, one for each direction.  
 
The derivation that resulted in 
those relationships for the final 
velocities required the total 
kinetic energy to be conserved.  
To split the solution up into 
three separate parts would 
require that the contributions to 
the kinetic energy due to motion 
in any one of the directions 
would also need to be 
conserved, which is a much stricter requirement.  Here is an illustration of a two-dimensional 
situation in which this strict requirement would not be met.  Consider two masses heading 
toward each other that undergo a glancing collision, as shown.  Before the interaction, there is 
kinetic energy due to the motions in the x-direction and none due to the y-motion. After, 
however, the situation is reversed.  So the kinetic energy overall is conserved, but it is not 
conserved independently in each direction.  Consequently, the relationships we have been 
using are not valid for anything other than a one-dimensional collision. 

 
DISCUSSION 7-6 
 

Does this mean that it is impossible to solve two-dimensional totally elastic collision problems?  
What is the general rule for solving algebraic systems of equations?   

 
We can solve any of these problems so long as we have enough information and patience, although 
the solution may be difficult algebraically.  Let’s look at two situations. 
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Consider two masses that collide totally inelastically in three dimensions.  Given the masses and 
the initial velocities, can we find the final velocities? 
 

mଵvଵ୶୧ ൅  mଶvଶ୶୧ ൌ  ሺmଵ ൅ mଶሻ v୶୤ 
 

mଵvଵ୷୧ ൅  mଶvଶ୷୧ ൌ  ሺmଵ ൅ mଶሻ v୷୤ 
 

mଵvଵ୸୧ ൅  mଶvଶ୸୧ ൌ  ሺmଵ ൅ mଶሻ v୸୤ 
 
Three equations and three unknowns; we’re good.  In fact, we did a two-dimensional example 
earlier. 
 
Consider two masses that collide totally elastically in three dimensions.  Given the masses and the 
initial velocities, can we find the final velocities? 
 

mଵvଵ୶୧ ൅  mଶvଶ୶୧ ൌ  mଵvଵ୶୤ ൅  mଶvଶ୶୤   
 

mଵvଵ୷୧ ൅  mଶvଶ୷୧ ൌ  mଵvଵ୷୤ ൅  mଶvଶ୷୤   
 

mଵvଵ୸୧ ൅  mଶvଶ୸୧ ൌ  mଵvଵ୸୤ ൅  mଶvଶ୸୤   

ଵ
ଶ 

mଵ൫vଵ୶୧
ଶ ൅  vଵ୷୧

ଶ ൅  vଵ୸୧
ଶ ൯ ൅  ଵ 

ଶ
mଶ൫vଶ୶୧

ଶ ൅  vଶ୷୧
ଶ ൅  vଶ୸୧

ଶ ൯

ൌ  ଵ
ଶ 

mଵ൫vଵ୶୤
ଶ ൅  vଵ୷୤

ଶ ൅  vଵ୸୤
ଶ ൯ ൅  ଵ 

ଶ
mଶ൫vଶ୶୤

ଶ ൅  vଶ୷୤
ଶ ൅  vଶ୸୤

ଶ ൯   

Here, unfortunately, we have six unknowns, but only four independent equations.  We need more 
information. 

EXAMPLE 7-6 

Let's look at a very special case, that of the masses being equal and mass two initially at rest.  
This can be made into a two-dimensional problem, since all of the momentum vectors line in 
a plane (you had a question on Sample Exam One along these lines).  We’ll write the equations 
for conservation of momentum (in vector form) and kinetic energy. 

mଵvሬ⃑ ଵ୧ ൌ  mଵvሬ⃑ ଵ୤ ൅  mଶvሬ⃑ ଶ୤      →     vሬ⃑ ଵ୧ ൌ  vሬ⃑ ଵ୤ ൅ vሬ⃑ ଶ୤       

ଵ
ଶ
 mଵvଵ୧

ଶ ൌ  భ
మ

 mଵvଵ୤
ଶ ൅  భ

మ
 mଶvଶ୤

ଶ      →      vଵ୧
ଶ ൌ  vଵ୤

ଶ ൅ vଶ୤
ଶ       
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The first equation says we can make a triangle with the 
velocity vectors like the one at right, and the second, 
which looks a lot like the Pythagorean theorem, is only 
going to be true if the triangle is a right triangle, so that 
vሬ⃑ ଵ୤ and vሬ⃑ ଶ୤ are at right angles to one another, a nice result.  
Notice however, that this does not give us the actual 
directions or magnitudes of the velocities; to know those, 
we need more information. 

EXERCISE 7-4 
 
Here is a nice synthesis problem.  It requires you to choose 
which of the three 'pictures' we have developed to use in 
each section.  Keep in mind that the three pictures are 
essentially identical, but that one may be much more 
convenient to use than the other two in a given situation.  
 
A 0.2 kg block (m1) is released from rest at the top of a 
frictionless, curved track 1.5 meters above the top of a 1.1 
meter high table.  At the bottom of the track, where it is 
horizontal, this mass collides elastically with a 0.8 kg mass 
(m2) that is initially at rest.  How far from the base of the table does the 0.8 kg mass land?  
 

HOMEWORK 7-6 
 

The ballistic pendulum is a device used to 
measure the muzzle velocity of a bullet.  A 
block of wood of mass M is suspended by a 
string from the ceiling, and the bullet of mass 
m is fired horizontally into it.  As the block 
moves backward with the embedded bullet, it 
swings upward to some maximum height.5  If 
the bullet has mass 2 g, the block has mass 2.5 
kg, and the block/bullet combination rises through a vertical distance of 6 cm, find the initial 
speed vo of the bullet.   

 
Outside the Safety Zone* 
 

Calculus-based textbooks often wrap this section up with the rocket equation.  But we won’t 
need calculus because we’ve already solved the pertinent equation in Section 5.  So, let’s 
concentrate on the physics instead. 
 
DERIVATION 7-6* 
 

                                                 
5 When I was much younger, I taught at a school out west where this was actually done with a .22 in lab class. 
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Consider a rocket of mass M 
travelling past a planet at 
velocity vሬ⃑ R,P.  At that time, it 
has just ejected some exhaust 
(burnt fuel, mass = -ΔM) at a 
velocity vሬ⃑ E,R relative to itself 
and at velocity vሬ⃑ E,P = vሬ⃑ E,R + vሬ⃑ R,P 
relative to the planet.  Next 
comes what I think is the really tricky part: the mass of the rocket changes by amount ΔM, 
which is a negative quantity, but the mass of the ejected exhaust is must be positive, so -ΔM.  
Let’s make use of conservation of momentum, while ignoring gravity, from just before fuel 
ejection to just after.  During that process, the rocket’s velocity increases by amount Δvሬ⃑ R,P.  
Let’s make ‘to the right’ in the figure be positive. 
 

ሺM ൅ ሺെΔMሻሻvୖ,୔୧ ൌ Mvୖ,୔୤ ൅ ሺെ∆Mሻv୉,୔୤  
 

ሺM ൅ ሺെΔMሻሻvୖ,୔୧ ൌ M൫vୖ,୔୧ ൅ ∆vୖ,୔൯ ൅ ሺെ∆Mሻ൫vୖ,୔୧ െ  v୉,ୖ൯ 
 
We can cancel out quite a few terms, and let’s drop the ‘initial’ subscript: 

0 ൌ M∆vୖ,୔ ൅ ∆M v୉,ୖ  , 
 

∆M
∆vୖ,୔

ൌ  െ
1

v୉,ୖ
 M  . 

 
We would like to make this process happen continuously, so we’ll take the limit as ΔvR,P →0,  
which if nothing else would give a smooth ride to the rocket’s crew.6  Remember that we 
worked out that the solution to such an equation, 
 

lim
୴౎,ౌ→଴

∆P
∆q

ൌ CP  , 

is 
 

Pሺqሻ ൌ  P୭eେ୯ , 
so that 
 

Mሺvሻ ൌ  M୭e
ି 
୴ି୴౥
୴ు,౎   . 

 
Here, Mo is the mass of the rocket and all of its fuel at the start of the problem when its speed 
is vo, and M is the mass of the rocket and its unexpended fuel when the speed is v.  It looks a 
bit strange perhaps because there is no explicit time dependence.   

 
EXAMPLE 7-6* 
 

                                                 
6 Unlike Project Orion. 
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The spaceship HMCSS Clark is ‘at rest’ and fully fueled at Space Station TALC.  Her mass is 
2x107 kg, with all but 2 per cent of it fuel.  Her engine expels exhaust at 3 km/s.  What 
maximum speed can she attain relative to Station TALC? 
 
Starting with our previous result, re-arranging, and setting M = 0.02 Mo, 
 

Mሺvሻ ൌ  M୭e
ି 
୴ି୴౥
୴ు,ౌ      →      v ൌ  v୭ ൅  v୉,ୖ ln

M୭

M
ൌ 0 ൅ 3000 ln

1
0.02

ൌ 11,736 m/s   . 

 
HOMEWORK 7-7* 
 

In a severe pinch, Space Force decides to utilize Lenkflugkörper NG missiles to defend earth 
from the Jovian attackers during a deep space battle.  The missiles themselves have a mass of 
3 kg and contain an additional 22 kg of fuel with an exhaust velocity of 465 m/s.  They must 
reach a speed of 700 m/s relative to the launching space vessel.  What is the largest payload 
that could be attached to one? 

 
 

 
EXERCISE 7-1 Solution 
 
Assuming the two masses form a closed system, conservation of momentum seems appropriate.  
Also, because they have a common final velocity,  
 

mଵvሬ⃑ ଵ୶୧ ൅  mଶvሬ⃑ ଶ୶୧ ൌ  ሺmଵ ൅  mଶሻvሬ⃑ ୶୤  . 
 

vሬ⃑ ୶୤  ൌ  
mଵvሬ⃑ ଵ୶୧ ൅  mଶvሬ⃑ ଶ୶୧

mଵ ൅  mଶ
ൌ  

6ሺ൅4ሻ ൅ 3ሺെ8ሻ
6 ൅ 3

ൌ  0 m s⁄  . 

 
EXERCISE 7-2 Solution 
 

K୧ ൌ  ଵ
ଶ
mଵvଵ୧

ଶ ൅ 0 ൌ  ଵ
ଶ
 5 ሺ7ଶሻ ൌ 122.5 J 

 
K୤ ൌ  ଵ

ଶ
ሺmଵ ൅ mଶሻv୤

ଶ ൌ  ଵ
ଶ
 8 ሺ4.38ଶሻ ൌ 76.7 J 

 
EXERCISE 7-3 Solution 
 
Are your answers 3 m/s and 8 m/s?  Did you confirm that the problem meets the criteria for using 
the two relationships derived in class?  Does it? 
 
EXERCISE 7-4 Solution 
 
This problem has three parts.  There is m1 sliding down the incline. There is the collision. There is 
the trajectory of m2 as it travels toward the floor.  Each of these is best treated with one of the three 
pictures we have discussed. 
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As m1 slides down the ramp, it is acted on by a normal force and by its weight.  There is no friction.  
We have no details about the actual shape of the ramp, and apparently we do not care how much 
time it takes for the mass to reach the bottom of the ramp.  This looks like a job for work-energy! 
 
WN = 0 (the normal force is always perpendicular to the path) 
Wg – conservative 
 

0 ൌ  ଵ
ଶ
 mଵ v୤

ଶ െ  ଵ
ଶ
 mଵ v୧

ଶ ൅ gmଵy୤ െ  gmଵy୧ 
starts from rest 

 
Let’s put y = 0 at the foot of the table.  We want to find vf, the speed of m1 just before the collision. 
 

0 ൌ  ଵ
ଶ
 v୤
ଶ ൅ gy୤ െ  gy୧ 

 

v୤ ൌ ඥ2gሺy୧ െ y୤ሻ ൌ  ඥ2ሺ10ሻሺ2.6 െ 1.1ሻ ൌ 4.47 m s⁄  . 
 
The second part of the problem is a collision, and that screams for conservation of momentum.  
During the interaction between the masses, they are moving horizontally with no external 
horizontal forces acting on them. There are vertical external forces (the weights and the normal 
forces from the ramp), but that doesn’t preclude conservation of momentum in the horizontal 
direction.  Because it’s a totally elastic collision in one dimension with mass 2 initially at rest, we 
can jump right to the relationships we derived for just such a situation: 

vଶ୶୤ ൌ  
2𝑚ଵ

𝑚ଵ ൅  𝑚ଶ
vଵ୶୧ ൌ   

2ሺ0.2ሻ
0.2 ൅ 0.8

4.47 ൌ 1.79 m s⁄  . 

The last part of the problem is projectile motion.  Let’s put the origin at the foot of the table, with 
+x to the right and +y upward.  Our inventory is 

xi = 0 m 

xf = ? ← 
vxi = +1.79 m/s 
vxf = +1.79 m/s 
ax = 0 m/s2  
t = ? 

Since there is not enough information on the x-side, we need to look to the y-side and try our 
80% Rule.   

yi = 1.1 m 
yf = 0 m  
vyi = 0 m/s (the ball was travelling horizontally as it left the table) 
vyf = ? 
ay = -10 m/s2 (we chose upward to be positive) 
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t = ? 

KEq. 3: 

y୤ ൌ  y୧ ൅  v୷୧t ൅  ଵ
ଶ
a୷tଶ 

This will become a quadratic equation in t.  Inserting the numbers and re-arranging to the 
standard format leaves us with 

ሺ5ሻtଶ ൅ ሺ0ሻt ൅ ሺെ1.1ሻ ൌ 0 , 

which, it turns out, we can solve directly: 

t ൌ േ ඨ
1.1
5
ൌ  ൅ 0.47 seconds  . 

Take this back to the x-side to find xf. 

x୤ ൌ  x୧ ൅  v୶୧t ൅  ଵ
ଶ
a୶tଶ ൌ 0 ൅ 1.79ሺ0.47ሻ ൅ 0ሺ0.47ଶሻ ൌ 0.84 m  .  
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Sample Exam III 
 

MULTIPLE CHOICE (4 pts each) 
 
1) According to statistical data, the probability that an occupant of an automobile suffers a lethal 

injury during an accident is proportional to the square of the speed of the car (i.e., to the KE!).  
If the probability of death is 3% at 50 mph, what is the probability of death at 75 mph? 

 
A) 3% B) 4.5%  C) 6.8%  D) 9%  E) 14.3% 

 
2) Consider two identical 

boxes being pushed very 
slowly up frictionless ramps, 
one gentle, the other steep.  
Compare the amount of 
work each person does in 
pushing his box up his ramp.  
Assume the applied forces 
are each applied parallel to 
the respective ramp. 

 
 A) A does more work than B. 
 B) B does more work than A. 
 C) A and B do the same amount of work. 
 D) It’s impossible to know who does more work. 
 E) There is no Choice E. 
 
3) The earth orbits the sun on a path 

that is not circular, but elliptical, 
as shown with great 
exaggeration in the figure.  The 
gravitational force from the sun 
on the earth keeps the earth in 
orbit.  At which of the labeled 
points will the earth’s speed be 
least? 

 
 A) A 
 B) B 
 C) C 
 D) D 
 E) E 
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4) Magnetic fields exert forces on electrical charges that are always perpendicular to the velocity 
of the charge and perpendicular to the field itself.  Therefore, the power transferred by the 
magnetic field to a charged particle 

 
 A) is always positive 
 B) is always negative 
 C) is always zero 
 D) depends on the sign of the charge. 
 E) depends on the speed of the particle. 
 
5) Consider two flowerpots in windows of an apartment building.  Pot A is knocked off the third 

floor window ledge by Mr Smith’s cat, and it hits the pavement below.  Pot B, which has half 
the mass of Pot A, is knocked of its twelfth floor ledge by Mrs Jones’s goldfish and it also hits 
the pavement.  Which of these statements is correct? 

 
A)  Pot B will hit the pavement with twice the speed and twice the kinetic energy as does Pot 

A. 
B) Pot B will hit the pavement with the same speed and twice the kinetic energy as does Pot 

A. 
C) Pot B will hit the pavement with twice the speed and the same kinetic energy as does Pot 

A. 
D) Pot B will hit the pavement with twice the speed and four times the kinetic energy as does 

Pot A. 
E) Pot B will hit the pavement with four times the speed and twice the kinetic energy as does 

Pot A. 
 
PROBLEM I (20 pts) 
 
Derive the Work-Energy Theorem, WTOTAL = ΔKE.  Consider the problem in only one dimension.  
Make use of the following relationships: 
 
KE = ½ m v2     W = F Δx (forget the cosine term for this derivation) 
 
Show all work and justify any assumptions.  
 
PROBLEM II (20 pts) 
 
Andy and Bonnie fire identical caliber rifles (of reasonable lengths) using identical shells.  The 
barrel of Andy’s rifle is 2 cm longer than the barrel of Bonnie’s rifle.  The force of the expanding 
gases in the barrel accelerate the bullets. 
 
Which bullet (if either) will have a higher muzzle velocity than the other?  Be sure to explain fully 
(or at least sufficiently). 
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PROBLEM III (20 points) 
  
Consider two cars on in an icy road that 
undergo a completely elastic head-on 
collision.  Car 1 has mass M1 = 3500 kg 
and initial speed v1i = 15 m/s.  Car 2 has 
mass M2 = 2000 kg and initial speed v2i 
= 10 m/s.  Use the technique of relative 
velocities to determine the velocities of 
each car after the collision. 
 
PROBLEM IIII (20 pts) 
 
Consider two massless springs with different spring constants, k1 = 300 N/m and k2 = 500 N/m.  A 
mass M=4 kg is pressed against the left spring, compressing it by 0.2 m.  The mass is released from 
rest, slides across a rough portion of the floor (length L=0.4m and coëfficient of kinetic friction μK 
= 0.25) and hits the spring on the right.  By how much is the second spring compressed? 
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Section 9 – Rotation in a Plane 

Rotation is generally fairly complicated to study and usually involves yet another type of quantity 
beyond scalars and vectors, called tensors.  However, we will restrict ourselves to rotation in a 
plane, usually the x-y plane, which should make things a bit easier. 

The Center of Mass 

Up to now, we have been treating objects as point masses.  That is, if we were asked the location 
of an object, we could respond with as little as a single number, such as x = 3.576 meters.  Extended 
objects, on the other hand, occupy many locations.  A car may be said to be between x= 4.582m 
(at the tip of the front bumper) and x = 8.935 m (at the rear end bumper).  Even that doesn’t give 
many details.  So, we often speak of the average position of a car.  We don’t mean that in the sense 
of a trip from Baltimore to Philly, where the average position is in Wilmington, but average in the 
sense of examining each particle composing the car and averaging their positions.  We call this 
position the center of mass1 of the object, and it is calculated in much the same way that the average 
on an exam is found.   

DISCUSSION 9-1 

How do we find the average on an exam?  If nineteen students each earn one hundred and one 
earns a zero, is the average fifty?  If not, what is? 

For an exam, we take each possible grade (Gn) from zero to one hundred and weight the importance 
of each with the number of students who earned that grade (Nn), then divide by the total number 
of students.  Or, if we were to share all the earned points equally among all students, how many 
would each get? 

G୅୚୉ ൌ  
∑ N୬G୬୬

∑ N୬୬
 

Instead, we look at every possible position and weight each by how much mass is located there.  
Clearly, there are many positions at which there is no mass, and we usually just skip them: 

xେ୑ ൌ  
∑ m୬x୬୬

∑ m୬୬
   . 

Because we like to ease into new things, let’s start by finding the center of mass of a bunch of 
point masses. 

EXAMPLE 9-1 

                                                 
1 You may also hear the term center of gravity.  So long as the gravitational field is uniform, these points are the 
same. 
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Find the center of mass of these four point masses. 

 

xେ୑ ൌ  
∑ m୬x୬୬

∑ m୬୬
ൌ  

4ሺെ7ሻ ൅ 2ሺെ2ሻ ൅ 9ሺ൅1ሻ ൅ 1ሺ൅3ሻ
4 ൅ 2 ൅ 9 ൅ 3

ൌ  
െ20
18

ൌ  െ1.11 m  . 

Of, course, not every object is composed of a linear arrangement of masses.  In three dimensions, 
we can represent the location of each object by the location vector r⃑, so that 

r⃑େ୑ ൌ  
∑ m୬r⃑୬୬

∑ m୬୬
  , 

but in reality, this is just a way of writing three separate equations for xCM, yCM, and zCM. 

HOMEWORK 9-1 

Find the center of mass of the four 
masses shown in the figure.  The 
coördinates are the integers they 
appear to be. 

What about objects that are not made 
up of discrete point masses, but rather 
a continuous structure?  In principle, 
it’s the same process, although the 
process of performing the calculations 
may be quite difficult.  Luckily, we 
don’t need many shapes to get out 
points across in this course. 

DISCUSSION 9-2 

Consider, for example, a thin uniform rod of length L and mass M, like a meterstick.  Where 
do you suppose is the center of mass?  Can you make an argument to support your contention?  

We can make use of the notion of symmetry to make an argument about a few simple shapes. If 
we initially suppose that the center of the rod is at its physical center, we see that for every bit of 
mass on the left side, there is an equal amount of mass on the right side at exactly the same distance 
out.  The positions of these two masses will average out to the center of the rod, the average of the 
averages will of course also be at the center.  We can use this argument for other shapes, such as 
a uniform hoop, uniform disk, and uniform sphere.   
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DISCUSSION 9-3 

What if the rod above were half made of maple and half made of pine?  Where would the center 
of mass be? 

One last thing: although we will be dealing with extended objects for the next few sections, we’ll 
restrict ourselves to rigid objects, where the individual pieces always maintain the same distances 
to all of the other pieces in the object.  So, a hammer would be considered a rigid object, but a 
bucket’s worth of water thrown across the room would not.  We should probably be a bit more 
careful with that definition, but it’s good enough to get the idea across. 

The center of mass has one especially remarkable property that makes life a bit easier for us. 

DERVIATION 9-1 

Consider a system of masses mn with total mass M = n mn : 

r⃑େ୑ ൌ  
∑ m୬r⃑୬୬

∑ m୬୬
  , 

൭෍m୬

୬

൱ r⃑େ୑ ൌ  ෍m୬r⃑୬
୬

  , 

M r⃑େ୑ ൌ  ෍m୬r⃑୬
୬

 . 

Now, find the ITRC2 twice for each side.  The first makes the positions into velocities and the 
second makes the velocities into accelerations. 

M aሬ⃑ େ୑ ൌ  ෍m୬aሬ⃑ ୬
୬

 . 

Now, let's consider all of the forces acting on any one of the masses.  For the nth one, we have 

෍ Fሬ⃑ ௡,௠

௠

ൌ  m୬aሬ⃑ ୬  . 

If we add up all of those equations, we get 

෍෍ Fሬ⃑ ௡,௠

௠௡

ൌ  ෍m୬aሬ⃑ ୬
୬

ൌ  M aሬ⃑ େ୑ . 

                                                 
2 ITRC is the instantaneous time rate of change. 
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In other words, the forces acting on any of the parts of the collection of masses will accelerate the 
center of mass as if it were a single point particle of mass M.  This is how we got away with the 
first half of the course. 

Rotational Kinematics 

Before we proceed, let’s review a bit from Section 3.  Consider a 
point mass m free to move about a circle of radius r.  First, we need 
to be able to specify the object's position.  For this, we will return 
to our convention of measuring angles CCW from the x-axis.  
However, we will for now on think of such angles in radians, not 
degrees.  A radian is the angle such that the arclength s subtended 
is equal to the radius r, or about 57.3o.  Clearly, if we halve the 
angle, we also halve the distance along the arc, so that theta and s 
are proportional by the factor r: 

𝐬 ൌ 𝐫 𝛉  . 

So, there are then 2π radians in a circle, since the circumference is 2πr.  

We should next find a way of describing changes in the position, 
or the angular displacement, Δθ = θf – θi, so that s =  r.  Since 
linear displacement was a vector, we should require the angular 
displacement to be as well.  The magnitude of Δθሬ⃑  will of course 
indicate how much the object has turned.  The direction of Δθሬ⃑  will 
tell us two things: the plane in which the object rotated, and the 
direction in which it rotated.  A plane can be defined by a vector 
that is perpendicular to the plane, and luckily, there are two 
directions, one of which we’ll assign to rotation in one direction 
and the other to the reverse direction.  The choice is arbitrary, but we’ll want to match what 

everyone else does.  We can remember which is which by using 
our right hands.  Curl your fingers like little arrows in the direction 
of rotation, and your thumb will point in the direction of the vector 
Δθሬ⃑ .  Be sure to use your right hands.  Most of the problems you’ll 
encounter here are with objects rotating in the plane of the page; 
in that case, Δθሬ⃑  out of the paper (motion is CCW) is considered to 
be positive, and Δθሬ⃑  into the page (CW motion) is considered to be 
negative.  Of course, as always, you can change this for your 
convenience so long as you are clear and consistent. 

We’re going to work our way through the analogs of all the quantities we discussed in terms of 
linear motion.  We continue with the angular velocity, the angular displacement per unit time:  

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ωሬሬ⃑ ୅୚୉ ൌ  
∆θሬ⃑

∆t
   ;   ωሬሬ⃑ ୍୒ୗ୘ ൌ  lim

∆୲→଴

∆θሬ⃑

∆t
   ;   The direction of ωሬሬ⃑  is the same as for ∆θሬ⃑    .

Looking back to Section 3, a point on the rotating object will possess a speed tangent to its path 
given by 

v୘ ൌ  ω r   . 

Likewise, we can define the angular acceleration as the time rate of change of the angular velocity:  

αሬሬ⃑ ୅୚୉ ൌ  
∆ωሬሬ⃑
∆t

   ;   αሬሬ⃑ ୍୒ୗ୘ ൌ  lim
∆୲→଴

∆ωሬሬ⃑
∆t

   .

A piece of this rotating object will have a tangential acceleration, aT, given by 

a୘ ൌ  α r   . 

Determining the direction of the angular acceleration alpha is sometimes difficult.  Remember 
what we said back in Section 2: if an object (moving in one dimensions) is speeding up, vሬ⃑  and aሬ⃑  
are in the same direction, while if it is slowing down, vሬ⃑  and aሬ⃑  are opposite.  Do the same for ωሬሬ⃑  and 
αሬሬ⃑ .  We’ll leave problems when this is otherwise until your junior year Physics class. 

Of course, there is also the angular jerk, the angular kick, and the angular lurch, et c. 

If we assume that there are situations where the angular acceleration is constant, we can derive 
some kinematic relationships.  Since , , and  share the same relationships as x, v, and a, we 
need not actually perform these derivations, but simply replace each linear quantity with the 
analogous rotational quantity: 

ωሬሬ⃑ ୤ ൌ  ωሬሬ⃑ ୧ ൅  αሬሬ⃑ t 

ωሬሬ⃑  ୅୚୉ ൌ  
ωሬሬ⃑ ୤ ൅  ωሬሬ⃑ ୧

2
 

Δθሬ⃑ ൌ ωሬሬ⃑ t ൅  ଵ
ଶ
 αሬሬ⃑ tଶ 

ω୤
ଶ ൌ  ω୧

ଶ ൅ 2αሬሬ⃑ ൉ Δθሬ⃑   
 

If we restrict ourselves to rotation in a single plane, we can use the same notation (+ or -) for the 
direction of each vector and drop the dot product in KEq 4. 

EXAMPLE 9-2 
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A wheel starts from rest and starts to spin with an angular acceleration of 2.5 rad/s2.  After 34 
seconds, what is the angular speed and through what angle has it turned? 

We treat the problem the same as we did linear kinematic problems, by constructing a table.  
We weren’t told which way the wheel is spinning, so let’s just make that the positive direction. 

θi = 0 (make that the origin) 
θf = ? ← 
ωi = 0 (starts from rest) 
ωf = ? ← 
α = +2.5 rad/s2 
t = 34 sec 
 
KEq 1 gives us the final velocity directly: 

ω୤ ൌ  ω୧ ൅  αt 

ω୤ ൌ  0 ൅  2.5ሺ34ሻ ൌ 85
rad

s
 . 

KEq 3 gives us the displacement directly: 

Δθ ൌ ωt ൅  ଵ
ଶ
 αtଶ 

Δθ ൌ 0ሺ34ሻ ൅  ଵ
ଶ
 ሺ2.5ሻሺ34ଶሻ ൌ 1445 radians  . 

Seem familiar?  Try this one. 

EXERCISE 9-1 

A wheel is turning at 30 rad/s but slows and reverses direction to 40 rad/s.  It does so while 
turning through a net 500 revolutions.  How much time did this take and what as the 
acceleration? 

HOMEWORK 9-2 
 
An object initially rotating at an angular speed of 1.8 rad/sec turns through 50 revolutions 
during the time it experienced an angular acceleration of 0.3 rad/s2.  For how much time did 
the acceleration last and what was the final angular speed? 

Torque 

DISCUSSION 9-4 
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Suppose you go home this evening, open the fridge, and take out a container of your favorite 
beverage.  How will you open it?  For some of you, applying a force will be sufficient, but 
would that work for everyone?  What must the rest of you do? 

 
Back in Section Five, we saw that Newton's second law of motion says that a net force is necessary 
in order for an object to have an acceleration.  We might expect a similar necessary condition in 
order for an object to have an angular acceleration.  Instead of a 'push' or 'pull,' it requires a 
'twist.'  Physics talk for a twist is torque, represented by the Greek letter τ (tau).  So, we might 
guess that, in analogy with NII, that the net torque and the acceleration are proportional, and in the 
same direction: 

෍𝜏௡
௡

~ 𝛼⃑   . 

 
Let’s choose a symbol to make this an equation,  
 

෍τሬ⃑ ୬
୬

ൌ I αሬሬ⃑    , 

 
where I is some measure of the object's 
rotational inertia (how hard it is to 
accelerate rotationally) in the same way 
that the mass m is a measure of its 
translational inertia (how hard it is to 
accelerate linearly).  This quantity I may 
well be the mass, but let’s not jump to any 
conclusion too soon. 

Before we try to justify this relationship, 
let's see if we can work out exactly what 
we mean by torque.  Remember that we 
are the ones who get to define things, and 
if we’re clever, what we define might actually be useful.   

Get yourself a meter stick to play with, if you like, or better yet, walk over to a convenient door.  
Consider an object free to rotate around a particular axis, such as a door about its hinges.  To get 
the door to begin to accelerate rotationally, it seems clear that a force must be applied.  The larger 
the force, the bigger the twist applied.  So, we might guess that  
 ~ F.  

Where the force is applied also seems to matter.  Try pushing the door near the end, then with the 
same force near the center.  See how the former results in more twist than the latter.  Pushing near 
the hinge (axis) results in no twist at all.  So, now we might think that  ~ Fr, where r represents 
the distance from the axis of rotation to the point of application of the force.  
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Lastly, we see that there is a dependence 
on the orientation of the force with respect 
to the door.  Namely, if we pull or push 
along the length of the door, there is no 
twist, and we obtain the maximum twist 
when the force is at right angles to the 
door.  At intermediate angles, it seems 
clear that we need to take the component 
of the force which is perpendicular to the 
r-vector, namely F sin, where  is the 
angle as shown between the force vector 
and the r vector.  So, perhaps  ~ F r sin. 

 

 

We also need to define a direction for the 
torque (after all, we can twist a bottle cap on 
or off).  Assume that the door in the figures 
starts from rest in the example above, then 
starts to turn CCW as a result of the applied 
force shown.  Then, θሬ⃑ is out of the page, 
ωሬሬ⃑ ave is out of the page, and αሬሬ⃑  is out of the 
page.  Since for Newtonian translational 
motion, the net force and the acceleration 
point in the same direction, we will require 
the net torque and the angular acceleration 
to do so as well.  We see that we can get this 
result by defining the torque as the cross-
product of r⃑ and Fሬ⃑ : 

τሬ⃑ ൌ r⃑ ൈ Fሬ⃑      or    |τሬ⃑ | ൌ  |r⃑|หFሬ⃑ ห sinθ୰,୊    ሺRHRሻ . 

Writing this definition as a cross product is really just shorthand; the second version above reminds 
you of what you actually need to do.  Review the discussion of the right-hand rule (RHR) in Section 
1.  The order of the subscripts on theta tells you which finger to use for each vector.   

EXAMPLE 9-3 

Use the right-hand rule to confirm that it gives you the desired direction of the torque in the 
very last figure above. 

Your index finger should be pointed exactly to your right, your middle finger should be at an 
angle to the right and towards the top of the page, and your thumb should be pointing up out 
of the page. 
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Let’s take a moment to 
clarify something that 
seems to confuse.  
Notice that I described 
the angle theta in the 
diagram above as being 
between r⃑ and Fሬ⃑ .  Doesn’t look it though, does it?  You have to remember that r and F there are 
not drawn tail to tail, but tail to tip.  When drawn correctly, it becomes clearer, as in the middle 
drawing.  What some students do is use the angle labeled phi, which is not the correct angle, 
although you can see that it more closely meets the expectation of being the angle ‘between’ the 
vectors.  But here’s the thing.  Theta and phi are supplementary, and the sines of supplementary 
angles are the same.  So, it really doesn’t matter which angle is used, the numerical result will be 
the same.  Since we’ve now discussed it, it’s O.K. with me, just be clear in your solutions. 

Now, like everything else we’ve discussed so far in this course, this result is still tentative, since 
although we think we know on what factors the torque depends, we don't know the exact 
dependence.  Only testing of the usefulness of this definition will vindicate our work here.  

There is no special unit for torque; it's clear then that we can write it in terms of newton-meters.  
In the U. S. Customary System., the unit is the pound-foot, distinct from the foot-pound, the unit 
of work.  Which is an interesting point: the dimension of work and of torque are the same, but they 
quantities are themselves very different (vector v. scalar). 

Occasionally, the torque will be 
expressed as the product of a force 
and its lever arm, l.  A little bit of 
trigonometry shows that l = r sin, so 
this definition is equivalent to, and 
sometimes more useful than, the one 
given above.  The lever arm is found 
by extending the line of action of the 
force and finding the perpendicular 
distance (the lever arm) from the 
pivot to this line.  You must be 
careful when reading other sources; 
some define r as the lever arm and it 
is not.   

 
τሬ⃑ ൌ 𝑙 ൈ Fሬ⃑      →    |τሬ⃑ | ൌ  ห𝑙หหFሬ⃑ ห   ሺRHRሻ  . 

 
HOMEWORK 9-2 
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A pendulum consists of a 2 kg bob at the end of a 1.2 m long light string, suspending the bob 
from a pivot.  Calculate the net torque on the bob about the pivot when the string makes a 6o 
angle with the vertical.  Indicate the direction of this net torque.  Your answer to the direction 
will depend on how you draw your figure.  

 
HOMEWORK 9-3 
 

Calculate the net torque of these forces 
about an axis through Point A that is 
perpendicular to the length of the rod.  
Repeat for an axis through Point B. 

 
The Second Law for Rotation and the Moment of Rotational Inertia 

Following up on the notion of the existence of an analogy between linear and rotational motion, 
we might suspect that that there is a relationship similar to Newton's second law,  
 

෍ Fሬ⃑ ୬
୬

ൌ m aሬ⃑    , 


perhaps of the form 

෍τሬ⃑ ୬
୬

ൌ I αሬሬ⃑    , 

 
where I is a constant whose meaning we still need to divine, but which we suspect might be a 
measure of how difficult it is to accelerate rotationally some object, in the same way that an 
interpretation of the mass is as a measure of the difficulty of altering an object's linear velocity.  

DERIVATION 9-2 

Consider an object (point mass) constrained (for now) 
to move along a circular path, to which forces are 
applied.  However many forces are applied, they can be 
added and resolved into components which are either 
centripetal or tangential, resulting in net force 
components as shown in the figure below.  The 
centripetal component is what keeps the object moving 
in a circle and is of no particular interest to us just 
now.  The tangential component, however, will 
accelerate the object along the circle, that is, 
tangentially: 

෍ F୘୬
୬

ൌ m a୘   . 
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Let's multiply both sides of the relationship by the 
radius of the circle, because, well why not? 

r෍ F୘୬
୬

ൌ m a୘ r  

Distribute the r to get  

෍ r F୘୬
୬

ൌ m a୘ r  .  

Since every tangential force component is (by 
definition) perpendicular to the radius r, we 

recognize the terms in the sum to be the torques exerted by each of the forces, and we remember 
that aT = r, so that  

෍τ୬
୬

ൌ m ሺαrሻ r ൌ mrଶ α   .  

 
So, in this very special case, we see that a rotational form of Newton's second law holds true 
if the proportionality constant is 
 

I୔୭୧୬୲ ୑ୟୱୱ ൌ mrଶ  . 
 
Note that this quantity depends not only on the mass, 
but on the distribution of the mass.  This last 
comment should become clearer after the next 
discussion.  Suppose we have an object that 
comprises several point masses which are somehow 
connected, perhaps with light rigid rods.  I drew 
three, which is enough to make the point, but there 
could be as many as you like.  Without bothering to 
calculate each torque explicitly, we can safely 
assume that there will be some torques applied to 
each object, including external torques due to the 
forces from other objects (make each the net force, if more than one force is desired), and also 
internal torques from the other objects, mediated through the rods.  For each mass mn, we can write 
that 
 

෍τሬ⃑ ୉ଡ଼୘ ୬ ୫

୫

൅  ෍τሬ⃑ ୍୒୘ ୬ ୫

௠

ൌ  m୬r୬ 
ଶ αሬሬ⃑ ୬   . 

  
If the objects rotate as a single object about a common axis, then all the n's are the same.  Let's 
add the equations.   
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෍෍τሬ⃑ ୉ଡ଼୘ ୬ ୫

୫୬

൅  ෍෍τሬ⃑ ୍୒୘ ୬ ୫

୫୬

ൌ  ൭෍m୬r୬ 
ଶ

୬

൱ αሬሬ⃑    . 

 
Let’s concentrate on the internal torques term.  We know from NIII that 
masses a and b exert forces on each other that are equal in magnitude and 
opposite in direction.  If those forces act along the line between ma and mb,3 
then the lever arms associated with those forces about the axis are the same, 
and so the torques generated by those forces will also be equal but opposite 
in direction.  Therefore, the sum of all the internal torques should be zero.   
The sum of the external torques is just the sum of the torques exerted on the 
masses as a unit, so we now have that 
  

෍τሬ⃑ ୉ଡ଼୘ ୯

୯

ൌ  ൭෍m୬r୬ 
ଶ

୬

൱ αሬሬ⃑    . 

 
 
from which we see that the moment of inertial of an extended, rigid object is the sum of the 
moments of its constituent parts:  
 

I୘୓୘୅୐ ൌ  ෍ I୬
୬

ൌ෍m୬r୬ 
ଶ

୬

   . 

 
Because the value for the moment of inertia depends not only on the mass, but also on the 
distribution of the mass in an object, the value for I for a given object may well (and probably will) 
be different for different axes of rotation.  
 
DISCUSSION 9-5  VIDEO 
 

Consider the two cylinders in the video.  They have the same mass, but the blue one is much 
harder to twist around than the red one.  Can you explain why? 

 
DISCUSSION 9-6 
 

Pick up a meter stick at its center and try to twist it back and forth.  Now try the same thing, 
but while holding the stick near the end.  Which was harder to do?  Why? 

EXAMPLE 9-4 

                                                 
3 This is a necessary condition for this argument to work.  Looking ahead to Semester Two, the forces between atoms 
in real objects do indeed act along the line of connection, so we should be alright. 
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Find the moment of inertia of these masses about an axis passing through x = -4 m. 

I ൌ  ෍m୬r୬ଶ

୬

ൌ  4ሺ3ଶሻ ൅  2ሺ2ଶሻ ൅  9ሺ5ଶሻ ൅  1ሺ7ଶሻ ൌ 318 kg mଶ  .  

HOMEWORK 9-4 

 

Find the moment of inertia of these masses about an axis passing through x = +1 m.  What do 
you notice about your answer and the answer to Example 9-x? 

EXPERIMENT 9-1 

Here are the results of an experiment 
that should give us some confidence 
that the second law for rotation is true.  
Similarly to the experiment in Section 
5, a hanging mass pulled a string 
wrapped around a horizontal disc of 
moment I.  The data here are 
presented a bit differently.  The linear 
acceleration of the falling mass is 
plotted against the predicted 
acceleration, based on the concepts 
discussed above.  The results vary 
from prediction by less than 1 %. 

 

Finding the moment of inertia of an object may be conceptually easy, I = n mn rn
2, but actually 

performing this calculation can be quite difficult and is usually accomplished with calculus.  As a 
result, we will restrict ourselves to some common shapes; even then we will need to be fairly clever 
to determine I for each.  Before we start, let’s add to our toolbox with two derivations. 
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The parallel axis theorem states that, if one knows the 
moment of inertia of an object of mass M about an axis 
passing through the center of mass of an object (ICM), then the 
moment about any other axis parallel to that one is given by  
 

I୔୅ୖ୅୐୐୉୐ ൌ  Iେ୑ ൅ Mhଶ   , 
 

where h is the distance the second axis is displaced from the 
first.   

DERIVATION 9-3 

For simplicity of calculation, place the origin at the center of mass, let the original axis of 
rotation be the z-axis, and align the x axis along the direction of the displacement of the axis 
of rotation.  That way, yn = yn’. 

 
The moment about the center of mass is  
 

Iେ୑ ൌ  ෍m୬r୬ଶ

୬

ൌ  ෍m୬ሺx୬ଶ ൅ y୬ଶሻ  .
୬

 

 
The moment about the new axis is  
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I୔୅ୖ୅୐୐୉୐ ൌ  ෍m୬ሺr୬ᇱ ሻଶ

୬

ൌ෍m୬ሺx୬ᇱଶ ൅ y୬ᇱଶሻ ൌ
୬

 ෍m୬ሺሺx୬ െ hሻଶ ൅ y୬ଶሻ
୬

ൌ  ෍m୬ሺx୬ଶ െ 2x୬h ൅ hଶ ൅ y୬ଶሻ
୬

 ൌ 

ൌ  ෍m୬ሺx୬ଶ ൅ y୬ଶሻ െ  2h෍m୬

୬

x୬
୬

൅  ൭෍m୬

୬

൱ hଶ.  

 
The first term we recognize as ICM, the third is Mh2, and the second is 2hM times the x 
coördinate of the center of mass, which we specified was at the origin, so that term is zero.  So,  
 

I୔୅ୖ୅୐୐୉୐ ൌ  Iେ୑ ൅ Mhଶ   . 
 

To sum up, the parallel axis theorem is valid for any rigid object of any shape.  One should know 
the moment of inertia about an axis through the center of mass, but that could be any such axis.  
The moment about any axis parallel to that original axis can be found with the relationship above. 
 
The perpendicular axis theorem is valid for 
conditions very different than for the parallel 
axis theorem.  The object must be 
infinitesimally thin and flat.  The location of 
the center of mass is irrelevant here.  Choose 
a perpendicular set of x- and y- axes in the 
plane of the object; these axes do not even 
need to pass through the object.  Suppose that 
we know the moments of inertia about each 
of the x- and y-axes, Ix and Iy.  The moment 
of inertia about the z-axis, perpendicular to 
the plane of the object and intersecting the 
other two axes, is given by 
 

I୸ ൌ  I୶ ൅  I୷   . 
 
DERIVATION 9-4 
 

I୶ ൌ  ෍m୬r୬୶ଶ

୬

ൌ  ෍m୬y୬ଶ

୬

                 I୷ ൌ  ෍m୬r୬୷ଶ

୬

ൌ  ෍m୬x୬ଶ

୬

     

 

I୸ ൌ  ෍m୬ሺr୬୸ଶ ሻ
୬

ൌ෍m୬ሺx୬ଶ ൅ y୬ଶ ሻ
୬

ൌ  ෍m୬x୬ଶ

୬

൅෍m୬y୬ଶ

୬

ൌ  I୶ ൅  I୷   .  

We’ll return to these theorems later with some examples.  Now, though, we’re in a position to find 
the moments of inertia of some common shapes about specific axes.  We’ll be using a number of 
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approaches, more as a demonstration of the wealth of possibilities for solving problems without 
using calculus.  Some of these are actually easier than using calculus! 

EXAMPLE 9-5 
 

Find the moment of inertia of a thin ring of radius R and mass M 
about an axis through the center perpendicular to the plane of the 
ring. 
 
Let’s break the ring up into very small masses mn, so small that 
they seem like point masses.  Each is a distance rn from the axis.  
We’ve shown that the moment of each point mass is mn rn

2 and 
that the moment of an extended object is the sum of the moments 
of the individual parts.  In this situation, all of the rns are equal 
to R, so 

I ൌ෍m୬r୬ଶ ൌ෍m୬Rଶ ൌ 
୬

൭෍m୬

୬

൱  Rଶ ൌ MRଶ   .
୬

 

 
Remember, this result is good only for the axis described.  Other axes will have different 
distributions of mass. 
 

EXAMPLE 9-6 
 

Find the moment of inertia of a very thin hollow 
spherical shell of mass M and radius R about any one of 
its diameters.   
 
For this solution, let’s make it the z-axis.  Each small 
mass mn is a distance rn from the z-axis.  From the 
Pythagorean theorem, zn

2 + rn
2 = R2, and so we can 

make a substitution as follows: 
 

I୸ ൌ෍m୬r୬ଶ ൌ෍m୬ሺRଶ െ z୬ଶሻ 
୬

 .
୬

 

 
Now, here’s the trick.  Let’s repeat this calculation for rotation around the x axis, 
 

I୶ ൌ෍m୬r୬ଶ ൌ෍m୬ሺRଶ െ x୬ଶሻ 
୬

 ,
୬

 

and the y-axis, 

I୷ ൌ෍m୬r୬ଶ ൌ෍m୬ሺRଶ െ y୬ଶሻ 
୬

 .
୬

 

Next, two things.  First, all of the points xn, yn, zn, must be located where there is mass, i.e,. a 
distance R from the center of the sphere, such that R2 = xn

2 + yn
2 + zn

2.  Second, each of the 
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expressions above are, by symmetry, equal and individually what we’re looking for: Ix = Iy = 
Iz = ISPHERE.  Let’s add them together. 
 
3Iୗ୔ୌ୉ୖ୉ ൌ  I୶ ൅ I୷ ൅ I୸

ൌ෍m୬ሺRଶ െ x୬ଶ ൅ Rଶ െ y୬ଶ ൅ Rଶ െ z୬ଶ ሻ ൌ 
୬

෍m୬ሺ3Rଶ െ ሺx୬ଶ ൅ y୬ଶ ൅ z୬ଶሻ ሻ
୬

ൌ ෍m୬ሺ3Rଶ െ Rଶ ሻ ൌ 2Rଶ෍m୬ ൌ 
୬

 
୬

2MRଶ    

Finally,  

Iୗ୔ୌ୉ୖ୉ ൌ  
2
3

MRଶ   .   

 
EXAMPLE 9-7* 
 

Find the moment of inertia of a disc (mass M, radius R, and uniform areal density σ) about an 
axis through its center perpendicular to its plane. 
 
We’ll modify a procedure developed by Fermat.4  Pick a number q between 0 and 1.  Take the 
disc and split it up into concentric annuluses.  The outermost has outer radius R and inner 
radius qR.  The next has outer radius qR and inner radius q2R, et c., so that the nth one has outer 
radius qnR and inner radius qn+1R.  Note that there will be an infinite number of such annuluses.  
The area of each annulus will be the area of a circle with the outer radius minus the area of a 
circle with the inner radius: 
 

A୬ ൌ πሺq୬Rሻଶ െ  πሺq୬ାଵRሻଶ   . 
 
The mass mn of each is proportional to the its area An,  
 

m୬

M
ൌ  

A୬

πRଶ   , 

 
so, 
 

m୬ ൌ ൬ 
M
πRଶ൰ ሺሺπq୬Rሻଶ െ  ሺπq୬ାଵRሻଶሻ ൌ  Mሺqଶ୬ െ  qଶ୬ାଶሻ  . 

 
For the moment, let’s assume that the mass of each annulus is concentrated at its outer; we’ll 
fix that later.  The moment of inertia of each ring about the central axis is 
  

                                                 
4 Uta C. Merzbach and Carl B Boyer, A History of Mathematics 3rd ed. (Hoboken: Wiley, 2011), 324-5. 
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I ൎ  ෍ I୬

ஶ

୬ୀ଴

ൌ  ෍m୬ r୬ଶ
ஶ

୬ୀ଴

ൌ  ෍Mሺqଶ୬ െ  qଶ୬ାଶሻሺq୬Rሻଶ
ஶ

୬ୀ଴

ൌ  MRଶ ൭෍ qସ୬
ஶ

୬ୀ଴

െ෍ qସ୬ାଶ
ஶ

୬ୀ଴

൱  

ൌ MRଶ෍ሺെqଶሻ୬
ஶ

୬ୀ଴

ൌ MRଶ  
1

1 ൅ qଶ
 .  5 

 
Last, we want to make the annuluses as thin as possible, which also takes care of the problem 
of the mass being at the outside edge of each.  Let q → 1, which pushes the boundaries between 
rings outward toward the edge.  The summation is then equal to ½, and we have 
 

Iୈ୍ୗେ ൌ  
1
2

MRଶ. 

EXAMPLE 9-8* 
 

Find the moment of inertia of a uniform thin rod of mass M and 
length L about an axis through its center perpendicular to its 
length.6 
 
Here’s neat technique that makes use of the parallel axis theorem.  We know from dimensional 
analysis that the moment of inertia will be some numerical coefficient times ML2.  Let’s call 
that value gamma γ.   

Iେ୉୒୘୉ୖ ൌ  γMLଶ  . 
 
We might think of the rod as two half rods rotating about their common ends.  Consider one 
half of the rod rotating about its center; it will have the same value of gamma, but its mass and 
length will each be half as much as for the full rod: 
 

Iୌ୅୐୊ େ୉୒୘୉ୖ ൌ  γ
M
2
൬

L
2
൰
ଶ

ൌ  
γ
8

 MLଶ . 

 
Next, we’ll use the parallel axis theorem to move the axis of rotation a distance L/4 to the 
end of the half rod: 
 

Iୌ୅୐୊ ୉୒ୈ ൌ Iୌ୅୐୊ େ୑ ൅  mୌ୅୐୊hଶ ൌ  
γ
8

 MLଶ ൅ ൬
M
2
൰ ൬

L
4
൰
ଶ

ൌ ൬
4γ ൅ 1

32
MLଶ൰ . 

 
There are two halves, and the sum of their moments will be equal to the moment of the original 
full rod: 

2 ൬
4𝛾 ൅ 1

32
𝑀𝐿ଶ൰ ൌ  𝛾𝑀𝐿ଶ   

                                                 
5 Roger B. Nelson, Proofs Without Words III (Providence: MAA Press, 2015), 157.  This book, along with its 
predecessors, presents a number of graphic proofs for this relationship, including one that makes use of the Fermat 
approach itself.  You could also program Excel to calculate the sum for large n to check its validity. 
6 B. Oostra, “Moment of inertia without integrals,” Phys. Teach. 44 (May 2006): 283–285.  
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4𝛾 ൅ 1

16
ൌ  𝛾 

 
4𝛾 ൅ 1 ൌ 16 𝛾 

 

𝛾 ൌ  
1

12
   

 
The moment of inertial of a thin rod of mass M and length L about an axis through its center 
perpendicular to its length is 1/12ML2. 
 

EXERCISE 9-2* 
 

Find the moment of inertia of a uniform solid sphere of mass M and Radius R about a diameter.  
Use the Fermat method. 

EXAMPLE 9-9 

Suppose that we want to know the moment of inertia about the diameter of a hoop.  We already 
know the moment about an axis through the center, perpendicular to the hoop, is MR2.  We’ll 
make use of the perpendicular axis theorem ‘in reverse’ to solve this problem. 

Let the x-axis be a diameter, and let the y-axis be the diameter perpendicular to the first.  By 
symmetry, we can assert that Ix = Iy. Then, 

I୔୉ୖ୔ ൌ  I୸ ൌ  I୶ ൅  I୷ ൌ 2I୶ ൌ 2Iୈ୍୅୑୉୘୉ୖ      →      Iୈ୍୅୑୉୘୉ୖ ൌ
ଵ
ଶ
I୔୉ୖ୔ ൌ  ଵ 

ଶ
MRଶ   . 

EXAMPLE 9-10 

Find the moment of inertia of a disk (mass M and radius R) about an axis in the plane of the 
disc, passing tangentially through the rim of the disc.  

This time, we’ll make use of both theorems.  First, use the perpendicular axis theorem to find 
the moment of inertial about a diameter; the method is similar to that used in the preceding 
example.  Then use the parallel axis theorem to slide the axis over to the edge.  
 

I୔୉ୖ୔ ൌ  I୸ ൌ  I୶ ൅  I୷ ൌ 2I୶ ൌ 2Iୈ୍୅୑୉୘୉ୖ      →      Iୈ୍୅୑୉୘୉ୖ ൌ
ଵ
ଶ

 I୔୉ୖ୔ ൌ  ଵ
ଶ
ቀଵ
ଶ
MRଶቁ

ൌ  ଵ
ସ
 MRଶ   . 

Since a diameter of a disc passes through the center of mass, we are O.K. with using the parallel 
axis theorem with h = R: 

I୘୅୒ୋ୉୒୘୍୅୐ ൌ  Iୈ୍୅୑୉୘୉ୖ ൅ Mhଶ ൌ  ଵ
ସ
 MRଶ ൅ MRଶ ൌ  ହ

ସ
 MRଶ  . 

 



 

- 204 - 
 

HOMEWORK 9-5 
 
Four masses are connected by very light stiff rods, as shown in the 
figure.  Find the moment of inertia of the four masses about the x-
axis, then about the y-axis, then about the z-axis (out of the page, 
intersecting the other two).  The masses are in kilograms.  Are your 
results consistent with the perpendicular axis theorem? 

 
HOMEWORK 9-6 
 

For the object in the preceding problem what magnitude toque must be applied to give it an 
angular acceleration of 3.5 rad/s2 about the x-axis? The y-axis? The z-axis? 

 
EXAMPLE 9-11 
 

Consider a solid sphere with a light string wrapped around its 
‘equator.’  The radius of the sphere is 3 kg and its radius 0.2 
meters.  If I pull the string in the plane of the equator with a force 
of 45 N, what will be the angular acceleration of the sphere? 
 
The figure is as seen from above the sphere.  There is the weight 
of the sphere is downward (into the page) and there is a normal 
force of some kind holding the sphere up. These forces exert no 
torque because they are exerted at the axis and so their rs are zero. 

 

෍τ୬ ൌ Iα
୬

 

 

ሺ0ሻሺgmሻ sinሺ? ሻ ൅ ሺ0ሻሺF୒ሻ sinሺ? ሻ ൅ RሺTሻsinሺ90୭ሻ ൌ  
2
5

MRଶα 

 
I insert the question marks for a number of reasons.  The angles themselves are undefined because 
there is no measurable angle between the force and a zero vector (r).  Secondly, it maintains the 
format of the terms in the calculation, and so you are less likely to make an error.  Lastly, this 
format tells me right away that you know that the torque term is zero and why its zero.  Continuing, 
 

T ൌ  
2
5

MRα     →      α ൌ  
5T

2MR
ൌ  

5ሺ45ሻ
2ሺ3ሻሺ0.2ሻ

ൌ 188 rad/sଶ  

 
HOMEWORK 9-7 
 

A uniform disc (r = 0.6 m, M = 1.8 kg) is suspended vertically from 
a frictionless axle as shown in the figure.  A string is wrapped around 
the wheel and is connected to a mass (m = 0.5 kg) as shown.  If the 
mass m is released from rest, what is the linear acceleration of the 
mass and the tension in the string? 



 

- 205 - 
 

Rotational Kinetic Energy 

Continuing with the notion of there being quantities in rotational motion which are analogous to 
quantities in translational motion, we might expect that there is such a thing as rotational kinetic 
energy.  
 
DISCUSSION 9-7 
 

Can you guess the formula for rotational kinetic energy?  In rotation, what takes the place of 
linear speed?  What takes the place of the mass?  Does your guess have the correct dimension? 

 
DERIVATION 9-5 
 

Consider a rigid object rotating about some stationary axis.  That is, the object is rotating, but 
not translating.  Each particle of the object, mn, will have kinetic energy by virtue of its motion, 
and the total K will be the sum of the individual Ks: 
 

Kୖ୓୘ ൌ  ෍ଵ
ଶ
 m୬ v୬ଶ

୬

   . 

 
As seen from the axis of rotation, these vns are 
tangential velocities, vTn.  We saw previously that 
there is a relationship between the angular velocity and 
the tangential velocity,  

v୘୬ ൌ  ω୬ r୬  , 

so we can substitute 

Kୖ୓୘ ൌ෍ଵ
ଶ
 m୬ v୘୬

ଶ

୬

ൌ෍ଵ
ଶ
 m୬ ሺω୬ r୬ሻଶ

୬

   . 

But all the s are the same, since it's a rigid body, so factor it (and the half) out of the sum:  

Kୖ୓୘ ൌ  ෍ଵ
ଶ
 m୬ ሺω r୬ሻଶ

୬

ൌ
1
2
൭෍  m୬ r୬ଶ

୬

൱ωଶ   . 

The quantity in parentheses we recognize as the moment of inertia for the object, and so  
 

Kୖ୓୘ ൌ  
1
2

Iωଶ   . 

as expected.  The unit of rotational kinetic energy is still the joule.  Note that, like many of the 
things we discuss, this is a bookkeeping thing; we can think of this energy as the sum of the 
translational kinetic energies of the individual particles, or as the rotational kinetic energy of 
the object as a whole.  Don’t double count! 
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HOMEWORK 9-7 

In the discussion, we noted that rotational kinetic energy is just a 
convenient way of keeping track of the individual kinetic energies of all 
the small particles making up an object. 

Three masses (labeled in kg) are connected in a line by strong light rods.  
They rotate at angular speed 6 rad/s2.  Find the following: 

A) The moment of inertia about the x-axis 
B) The kinetic energy using 1/2Iω2. 
C) The tangential speed vT of each mass as it moves in its circle. 
D) The kinetic energy from Σn ½ mnvTn

2. 

How do the results from Parts B and D compare? 

What happens when an object is rotating in addition to an overall translational motion?  We’ll 
consider a common case in which the axis of rotation maintains its orientation.  In other words, 
the object rotates but doesn’t tumble.   

DERIVATION 9-6* 

Each particle of mass mn will have a velocity vector vሬ⃑ n, as seen by some outside observer, so 
that  

K ൌ  ෍ଵ
ଶ
 m୬ v୬ଶ

୬

ൌ෍ଵ
ଶ
 m୬ vሬ⃑ ୬ ∙

୬

 vሬ⃑ ୬   . 

Now, we can use the concept of relative velocities to write vሬ⃑ n = vሬ⃑ RA + vሬ⃑ Tn, where vሬ⃑ RA is the 
velocity of the rotational axis as seen by our bystander and vሬ⃑ Tn is the tangential velocity of mn 

relative to an observer riding along with the rotational axis.  

K ൌ෍ଵ
ଶ
 m୬ ሺvሬ⃑ ୖ୅ ൅ vሬ⃑ ୘୬ሻ ∙

୬

 ሺvሬ⃑ ୖ୅ ൅ vሬ⃑ ୘୬ሻ

ൌ  ෍ଵ
ଶ
 m୬ ሺvሬ⃑ ୖ୅ ൉ vሬ⃑ ୖ୅ ൅ 2vሬ⃑ ୖ୅ ൉ vሬ⃑ ୘୬ ൅  vሬ⃑ ୘୬ ൉ vሬ⃑ ୘୬ሻ

୬

ൌ  ଵ
ଶ
൭෍𝑚௡

௡

൱𝑣ோ஺
ଶ ൅ vሬ⃑ ୖ୅ ∙ ൭෍𝑚௡

௡

vሬ⃑ ୘୬൱ ൅෍ଵ
ଶ
 m୬ v୘୬

ଶ

୬

   . 

Let’s work on the middle term, which is the hardest. 

Remember that the velocity vሬ⃑  is the instantaneous time rate of change (ITRC) of the position, 
r⃑.  The masses of course do not change. 
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෍m୬

୬

vሬ⃑ ୘୬ ൌ෍m୬ ITRCሺ
୬

r⃑୬ሻ ൌ  ITRC൭෍m୬

୬

r⃑୬൱ ൌ ITRC ൫M r⃑େ୑,ୖ୅൯

ൌ M ITRC൫r⃑େ୑,ୖ୅൯ ൌ M vሬ⃑ େ୑,ୖ୅   . 

This is the velocity of the object’s center of mass relative to the rotational axis.  Finally, we 
obtain 

K ൌ  ଵ
ଶ
Mvୖ୅

ଶ ൅ M vሬ⃑ ୖ୅ ∙ vሬ⃑ େ୑,ୖ୅ ൅
ଵ
ଶ
 Iୖ୅ωଶ  . 

Now, let's consider a very common special case, that of an object which is translating while at the 
same time rotating about an axis passing through the center of mass.  In that case, vሬ⃑ CM,RA= 0 and 
vሬ⃑ RA = vሬ⃑ CM,RA, so that this reduces to:  

K ൌ  ଵ
ଶ
Mvେ୑

ଶ ൅ ଵ
ଶ
 Iେ୑ωଶ  , 

that is, the total kinetic energy is the sum of the translational kinetic energy as if the object were 
not rotating and the rotational kinetic energy as if the object were not translating.   

DISCUSSION 9-8 

How do we transfer energy into or out of a rotating (or rotatable) object?  What did we need to 
do to transfer energy in Section 6?  Can you think of a relationship based on our analogies 
between linear and angular motions? 

DERIVATION 9-7 

We know that work involves forces, so let’s apply a force F to an object at a distance r from 
the axis of rotation.  The point of application of the force moves a distance s along a circle as 
the object rotates by an angle theta.  We’re interested in the component of the force tangent to 
the circle, that is, parallel to the motion of the point of application.  See for example 
HOMEWORK 6-X. 

W ൌ  F∥ s ൌ F୘ s ൌ  F cosሺδሻ s. 
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Since r and FT are perpendicular, the cosine of delta equals the 
sine of phi and s = r Δθ.  Substituting, 

W ൌ  F cosሺθሻ s ൌ F sinሺфሻ r Δθ ൌ  τ Δ θ ൌ  τሬ⃑ ∙ Δθሬ⃑  . 

Since both the toque and the angular displacement are vectors, 
directions matter.  If the torque and displacement are in the same 
direction, either into or out of the page, then the work is positive 
and if they are in opposite directions, then the work is negative 
(remember, we’re dealing only with rotations in a plane). 

The instantaneous power can be written as  

P୍୒ୗ୘ ൌ  τሬ⃑ ∙ ωሬሬ⃑  

We might also be able to define a potential energy associated with rotation.  An example is that of 
a torsional spring.  Consider a wire or string which exerts a torque proportional to the angle through 
which its end has been twisted and in the opposite direction of that angular displacement:  

τሬ⃑ ୘୓ୖୗ୍୓୒ ൌ െ κ Δθሬ⃑    . 
 

Then we would without hesitation assume that there is a corresponding potential energy given by 

𝑈்ைோௌூைே ൌ  ଵ
ଶ

 𝜅ሺΔ𝜃ሻଶ   . 

What about the units?  Well,  is in N m/radians (yet another quantity with the same dimension as 
energy!) and the UTORSION is in (Nm) rad2 or Nm, so this looks O.K. dimensionally.  

DISCUSSION 9-9 

Now we have three types of potential energy and two types of kinetic energy.  Can energy be 
redistributed from any of these to any other? 

HOMEWORK 9-8 

Consider the situation of Homework 9-x.  Using conservation of mechanical energy, find the 
speed of the hanging mass after it has fallen a distance of 3 meters.  Assume both masses are 
initially motionless. 

A special example of an object translating and rotating is one which 'rolls without slipping.'  In 
that case, there is a nice relationship between the angular velocity and the translational velocity of 
the center of mass.  First, let’s show that. 

DERIVATION 9-8* 
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Consider a uniform circular wheel or something similar with radius R rolling without slipping 
across a horizontal floor.  The center of mass has velocity vሬ⃑ CM as seen by an outside observer.  
Relative to the center of mass, a point on the outside edge where the object touches the floor 
will have an angular speed omega and a tangential velocity vሬ⃑ T,CM. such that vT,CM = ωR. But, 
since that point is at the moment not moving,  

vሬ⃑ େ୑ ൅  vሬ⃑ ୘,େ୑ ൌ 0     →      vେ୑ ൌ ωR  . 

Remember that if the object does slip in the surface, then this relationship is almost certainly 
invalid. 

EXAMPLE 9-12 

Let’s repeat an example we’ve already 
done several times.  A disk of mass M = 
5 kg and radius R = 2 cm rests at the top 
of an incline (height h = 1.2 m, length L 
= 2 m).  It's released and rolls without 
slipping down the incline.  What is the 
disk’s speed when it arrives at the foot 
of the incline?  Will it be 4.9 m/s? 

Let's try using conservation of mechanical 
energy.  Set y = 0 at the bottom of the 
incline.  

𝑊ே஼ ൌ  ଵ
ଶ
𝑀𝑣஼ெ௙

ଶ െ  ଵ
ଶ
𝑀𝑣஼ெ௜

ଶ ൅ ଵ
ଶ
𝐼𝜔௙

ଶ െ  ଵ
ଶ
𝐼𝜔௜

ଶ ൅ 𝑔𝑀𝑦௙ െ  𝑔𝑀𝑦௜ 

What forces act on the disk and how much work does each do? 
 
WN = 0 (force is perpendicular to the path) 
Wg – conservative 
Wf = 0 – We’re going to justify this after we’re done.  Be patient! 
 
Then, 

0 ൌ  ଵ
ଶ
𝑀𝑣஼ெ௙

ଶ െ  ଵ
ଶ
𝑀𝑣𝐶𝑀𝑖

ଶ ൅ ଵ
ଶ
𝐼𝜔௙

ଶ െ  ଵ
ଶ
𝐼𝜔௜

ଶ ൅ 𝑔𝑀𝑦௙ െ  𝑔𝑀𝑦௜ 
                                  𝑠𝑡𝑎𝑟𝑡𝑠 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑡   𝑠𝑡𝑎𝑟𝑡𝑠 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑡   𝑦 ൌ 0 𝑎𝑡 𝑏𝑜𝑡𝑡𝑜𝑚 

𝑔𝑀𝑦௜ ൌ  ଵ
ଶ
𝑀𝑣஼ெ௙

ଶ ൅ ଵ
ଶ
𝐼𝜔௙

ଶ 

For a disk rotating about its central axis, I = ½ MR2.  Since it rolls without slipping,   
we can make use of the relationship vCM = Rω.  Lastly, we'll replace yi with h to obtain:  

gMh ൌ  ଵ
ଶ
Mvେ୑୤

ଶ ൅ ଵ
ଶ
ቀଵ
ଶ
MRଶቁ ቀ

vେ୑୤
R

ቁ
ଶ

 . 
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Now some interesting developments.  First, the mass drops out, so our answer is independent of 
the mass of the disk.  Also, R drops out, so the result is independent of the size of the disk. 

gh ൌ  ଵ
ଶ
vେ୑୤
ଶ ൅ ଵ

ସ
vେ୑୤
ଶ ൌ  ଷ

ସ
vେ୑୤
ଶ  

vେ୑୤ ൌ  ඨ
4gh

3
ൌ  ඨ

4ሺ10ሻ1.2
3

ൌ 4 m s⁄  . 

DISCUSSION 9-10 

When we did this example for a block sliding down a frictionless incline, the result was 4.9 
m/s.  Why is this result different?  The block and the disk started with the same potential 
energies.  What happened to that energy?  Which energy determines how quickly an object 
moves?  Does one have more of that kind than the other and if so, where did the rest of the 
potential energy go?  Would the result be different if this were a solid sphere instead of a disk? 

In the Section 6 example, gravitational potential energy was converted into translational kinetic 
energy.  Here, however, there are two types of kinetic energy, translational and rotational.  The 
potential energy must be split between these two categories.  How much goes into each category 
depends on the shape of the object.  For example, repeating the example above with a solid sphere 
where the moment of inertia is 2/5MR2 changes the final velocity to 4.14 m/s.  Less energy 
converted to rotational kinetic energy means more available for translational energy. 

Shape Fraction before MR2 Per cent Translational K Per Cent Rotational K 
Hoop 1 50% 50% 
Hollow Sphere 2/3 60% 40% 
Disk 1/2 66.7% 33.3% 
Solid Sphere 2/5 71.4% 26.6% 

 
The final velocities of these objects down the ramp depend only on the fraction in front of the 
moment of inertial term. 
 
DISCUSSION 9-11  
 

Let’s run a race but placing two shapes at the top of an incline and releasing them 
simultaneously.  Which will arrive first? 
 

Shapes1.mp4  
 
Consider a disk and a hoop with the same masses and radiuses.  Which will win a race rolling 
down an incline? 
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Shapes2.mp4  
 
Consider two disks of the same mass, but C has half the radius of A.  Which will win a race 
rolling down an incline? 
 

Shapes5.mp4  
 
Consider two disks with D having both a radius and a mass much less than A.   Which will win 
a race rolling down an incline? 
 

Shapes4.mp4  
 
Consider sphere F which has the same radius and mass as hoop E.  Which will win a race 
rolling down an incline? 
 
Consider Hoop G and Hoop E with G having both a radius and a mass much less than A.   
Which will win a race rolling down an incline? 
 

Shapes7.mp4  
 
Were any of the results seen in the film different than what you expected?  Can you explain 
why the expected results were not obtained? 

JUSTIFICATION 9-1* 

Let’s clean up the question about work done by static friction.  Consider a ball rolling on a flat 
horizontal surface.  It has translational kinetic energy ½ mvCM

2 and rotational kinetic energy 
1/2I2.  If it is simply rolling without slipping, not being driven by any agency, then there is a 
relationship between vCM and , namely that vCM = R.  The friction, if any, will be static, but 
due to the synchonization of the two types of motion, there is no tendency to slip, and the static 
frictional force, which is only as large as it needs to be, will be zero.   
 
But what about an object on an inclined plane?  Well, we know that the rolling object will have 
a lower speed at the bottom of the incline than will the frictionlessly sliding object, so friction 
must have done some negative work on the rolling object.  It’s easy enough to calculate for the 
example above: 
 

W୤ୗ ൌ  F୤ୗ L cosሺ180୭ሻ ൌ  െF୤ୗ L . 
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The frictional force also exerts a torque on the object about its center that points into the page,  
 

τ୤ୗ ൌ R F୤ୗ sinሺ90୭ሻ ൌ  െR F୤ୗ  . 
 
Since the angular displacement Δθ is also into the page, the work done in terms of rotation is  
 

W୤ୗ ൌ  τ୤ୗ ∆θ cos 0୭ ൌ  ൅R F୤ୗ ∆θ ൌ ൌ  ൅ F୤ୗ ሺR ∆θሻ ൌ  ൅ F୤ୗ L . 
 
So the total work done by the friction is zero.   

 
EXERCISE 9-3* 
 

Here’s a classic problem.  Consider a bowling ball that is released with initial translational 
velocity vo sliding down the lane but not initially rotating.  Calculate the velocity of the ball 
and how far down the alley it is when it begins to roll without slipping.  HINT: What condition 
is met when the ball rolls without slipping? 
 

HOMEWORK 9-14 
 

Consider the loop-de-loop track.  A small round object with 
radius r<<R is placed on the track at altitude h and released.  
It rolls without slipping along the track and just barely makes 
it around the top of the loop.  Find h is the object were a 
 
A) solid sphere. 
B) hollow sphere. 
C) disk. 
D) hoop. 

 
HINT: If you represent the fraction before the mr2 by some symbol, you can do almost all of 
the problems at once. 

 
 

Angular Momentum 

Again as an analogy with linear motion, we might suspect that there is such a thing as angular 
momentum (Lሬ⃑ ), and we might guess that it is defined as Iωሬሬ⃑ (analogous to pሬ⃑  = mvሬ⃑ ).  Let's see:  
 
Starting from the rotational form of the Second Law,  
 

τሬ⃑ ୉ଡ଼୘ ൌ Iαሬሬ⃑     , 
we’ll substitute the definition of angular acceleration (and assume that I is constant!) to get  


𝜏୉ଡ଼୘ ൌ I
∆ωሬሬ⃑
∆t

    ,
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
τሬ⃑ ୉ଡ଼୘ ∆t ൌ I∆ωሬሬ⃑ ൌ  ΔሺIωሬሬ⃑ ሻ ൌ  ∆Lሬ⃑   .

The left-hand side of the preceding relationship is the rotational equivalent of impulse, and we can 
see that, in the absence of any external rotational impulses, the total amount of angular momentum 
is constant, or conserved.  Our result suggests that the angular momentum points in the same 
directions as does the angular velocity.7   

Several observations.  First, for linear momentum, we expected that the masses of objects could 
not change, so that any changes in momentum pሬ⃑  were due to changes in velocity.  For angular 
momentum, we see that a change in angular momentum can be effected by changing either ωሬሬ⃑  or I 
or both.  Secondly, and more interestingly, we remember the constant, droning  repetition that all 
three of the pictures we developed in linear motion (force and acceleration, work and kinetic 
energy, and impulse and momentum) were not only equally valid, but derivable from each 
other.  We might expect the same from the three pictures developed for rotational motion, namely 
torque and angular acceleration, work and rotational kinetic energy, rotational 'impulse' and 
angular momentum.  In the classical world we are studying this semester this is so, but in the real 
world, we find the suggestion that angular momentum is somewhat more fundamental as a concept 
than the other two.  In your chemistry courses, you may have come across the notion that angular 
momentum is quantized, that is, that only certain numerical values are allowed; this can be true of 
energies also, but the values allowed depend on the exact system.  Angular momentum may well 
be the most important topic we cover in this course, and the one we spend the least amount of time 
on. 

DISCUSSION 9-11 

VIDEO 

Rotating student with barbells.  By pulling the barbells in towards his body, he reduces the 
moment of inertia, I.  If there are no external torques, the angular velocity correspondingly 
increases.  This is the same effect used by figure skaters and high divers. 

Student with bicycle wheel.  A non-rotating student holds a wheel that is rotating so as to have 
(say) one unit of angular momentum, pointing upward (call this +1).  Inverting the wheel 
causes the student to begin rotating.  In the absence of external torques, the total angular 
momentum must remain +1.  Inverting the wheel changes its angular momentum to -1, and the 
student then acquires angular momentum +2, so that the sum remains +1.  How does the 
student magically acquire just the right amount of angular momentum? Inverting the wheel 
required that the student apply a torque, and so, by the third law, a torque equal in magnitude 
but opposite in direction was applied by the wheel on the student.  

We can derive analogous relations for the final angular velocities for totally inelastic 'collisions' 
and for totally elastic 'collisions' by substituting moments of inertia for masses and angular 

                                                 
7 Most of our derivations have worked out that way.  For example, J⃑ = Δpሬ⃑  = Δ(mvሬ⃑ ), so we assume that pሬ⃑  = mvሬ⃑ . 
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velocities for linear velocities, although there are some restrictions on when these will be valid 
(the Is should be constant, for example!).  
 
EXAMPLE 9-13 
 

A 10" LP of mass 110 grams is dropped down the spindle onto a freely turning 12" turntable 
platter of mass 1 kg initially turning at 331/3 revolutions per minute (rpm).  What is the final 
speed of the turntable in rpm? 
  
HINT: Assume that both the LP and the platter are discs. 
 
This is like a totally inelastic collision in Section 7 since the two objects have a common final 
angular velocity.  The two objects share a common axis, so the third law of motion is valid for 
torques.  Since the platter is freely turning, there are no external torques and we can use 
conservation of angular momentum: 
 

L୘୓୘୅୐ ୧ ൌ  Iୖωୖ୧ ൅  I୔ω୔୧ ൌ  Iୖωୖ୤ ൅ I୔ω୔୤ ൌ  L୤   , 
 

Iୖω୔୧ ൌ  ሺIୖ ൅ I୔ሻω୤   , 
 

ω୤ ൌ  
Iୖω୔୧

Iୖ ൅ I୔
ൌ  

ଵ
ଶm୔r୔

ଶ

భ
మ୫౎୰౎

మା భమ୫ౌ୰ౌ
మ

 ωୖ୧ ൌ  
ሺ1ሻ12ଶ

ሺ.11ሻ7ଶ ൅  ሺ1ሻ12ଶ
33.3 ൌ  32.1 rpm  . 

 
HOMEWORK 9-9 

 
Many schools have a lab practical to cap off their physics courses.  You are given a closed box 
with a shaft extending from one side.  You are told that the shaft is attached to the center of a 
round symmetrical flywheel of mass 7 kg and radius 0.4 m.   When you attach a constant torque 
motor (11.73 Nm), the system goes from rest to 600 rpm in 3 seconds.  What shape or shapes 
could the flywheel be?  

DERIVATION 9-9* 

Is there a relationship between linear and angular momentum?  Consider a special case of an 
object of mass m moving in a circle of radius r (location vector r⃑) with angular velocity ωሬሬ⃑ .  
From our definition above,  

L ൌ Iω ൌ mRଶ v
R
ൌ Rmv   .  

Magnitude-wise, this looks promising.  Direction-wise, we want L to 
point out of the paper towards us, parallel to omega.  We can do that 
with a cross product.  We can try vሬ⃑  ൈ r⃑, but that points into the paper, 
so we’ll make it r⃑  ൈ vሬ⃑ .  Since in our example, vሬ⃑  and r⃑ are 
perpendicular, the angle between them is 90o and we have 
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Lሬ⃑ ൌ m r⃑  ൈ vሬ⃑ ൌ r⃑  ൈ pሬ⃑       →      หLሬ⃑ ห ൌ m r v sin θ୰,୴ ൌ r p sinθ୰,୮   ሺRHRሻ . 

But what if r⃑ and vሬ⃑  are not perpendicular?  Well, 
since the object is moving in a plane, it’s certain 
that at some time the situation will appear as 
above, but for most of the time, it will look like 
this figure.  What does our proposed relationship 
give us in that situation?  Since R = r sinθ, the 
result is the same, L = Rmv out of the page.  So, 
it seems we have a nice way of writing angular 
momentum in terms of vectors. 

HOMEWORK 9-x 
 

Jimmy runs 2 m/s tangentially to a frictionless playground merry-go-round and jumps on.  If 
Jimmy’s mass is 30 kg and the platform has mass 100 kg and radius 2 m, what is the final 
angular speed of Jimmy and the platform? 

 
HOMEWORK 9-10 
VIDEO 

A professor stands on a freely rotating platform like the one in the demonstration.  With his 
arms outstretched, he has an angular speed of 2 radians/second.  Once his arms are drawn 
inward next to his chest, his speed becomes 6 rad/sec.  What is the ratio of his final kinetic 
energy to his initial kinetic energy? 

 
 

EXERCISE 9-1 Solution 

θi = 0 (make that the origin) 
θf = -500 revolutions = - 3141.6 radians  Why is it negative? 
ωi = +30 rad/s 
ωf = -40 rad/s    reversed direction 
α = ? ← 
t = ?  ← 
 
Try KEq 4: 
 

ω୤
ଶ ൌ  ω୧

ଶ ൅ 2αሬሬ⃑ ൉ Δθሬ⃑  
 

α ൌ
ω୤
ଶ െ  ω୧

ଶ

2Δθ
ൌ  
ሺെ40ሻଷ െ  30ଶ

2ሺെ3141.6ሻ
ൌ  െ0.11 rad/sଶ ൉ 

 
Then KEq 1: 
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ωሬሬ⃑ ୤ ൌ  ωሬሬ⃑ ୧ ൅  αሬሬ⃑ t →    t ൌ  
ω୤ െ  ω୧

α
ൌ
െ40 െ  30
െ0.11

ൌ  636.4 seconds  .  

EXERCISE 9-2 Solution 
 
We’ll set the parameter of interest as the z-axis and slice the sphere into many thin circular 
cylinders of height Δzn, each with mass mn, radius rn, and volume Vn.  The moment of each of 
these cylinders is already known to be ½ mnrn

2.  We’ll write everything in terms of z. 
 
Define a number of positions zn along the z-axis between z = 0 and z = R as zn = qnR with q<1 
and n from zero to infinity.  Then, 

 
∆z୬ ൌ q୬R െ q୬ାଵR ൌ q୬ Rሺ1 െ qሻ , 

r୬ଶ ൌ  Rଶ െ  z୬ଶ ൌ  Rଶ െ  ሺq୬Rሻଶ ൌ  Rଶሺ1 െ qଶ୬ሻ  , 
V୬ ൌ  πr୬ଶ ∆z୬ ൌ  π ൫Rଶሺ1 െ qଶ୬ሻ൯൫q୬ Rሺ1 െ qሻ൯  , 

 
and, 

m୬ ൌ ρV୬ ൌ  
M

4π
3 Rଷ

π ൫Rଶሺ1 െ qଶ୬ሻ൯൫q୬ Rሺ1 െ qሻ൯ ൌ  
3M
4
ሺ1 െ qଶ୬ሻ q୬ ሺ1 െ qሻ  . 

 
Then, the moment of inertia of this slice is  

 

I୬ ൌ  
1
2

m୬r୬ଶ ൌ  ቆ
1
2

3M
4
ሺ1 െ qଶ୬ሻ q୬ ሺ1 െ qሻቇ ൫Rଶሺ1 െ qଶ୬ሻ൯  

ൌ  
3
8

MRଶ ൫ሺ1 െ qଶ୬ሻଶ q୬ ሺ1 െ qሻ൯  . 

 
To find the moment of the entire sphere, we must sum this expression for all of the slices, and of 
course double the result to account for those slices for which -R < z < 0.  Lastly, we will make q 
→ 1 to make the slices as thin as possible. 
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I ൌ  2
3
8

MRଶ lim
୯→ଵ

൭෍൫ሺ1 െ qଶ୬ሻଶ q୬ ሺ1 െ qሻ൯

ஶ

୬ୀ଴

൱

ൌ
3
4

MRଶ lim
୯→ଵ

൭෍ q୬ െ q୬ାଵ
ஶ

୬ୀ଴

െ 2qଷ୬ ൅ 2qଷ୬ାଵ ൅ qହ୬ െ qହ୬ାଵ൱

ൌ  
3
4

MRଶ lim
୯→ଵ

ቌሺ1 െ qሻ ൭෍ q୬
ஶ

୬ୀ଴

െ 2෍ሺqଷሻ୬
ஶ

୬ୀ଴

൅෍ሺqହሻ୬
ஶ

୬ୀ଴

൱ቍ

ൌ  
3
4

MRଶ lim
୯→ଵ

൭ሺ1 െ qሻ ൬
1

1 െ q
െ 2

1
1 െ qଷ

൅
1

1 െ qହ
൰൱

ൌ  
3
4

MRଶ lim
୯→ଵ

൬
1 െ q
1 െ q

െ 2
1 െ q

1 െ qଷ
൅

1 െ q
1 െ qହ

൰

ൌ  
3
4

MRଶ lim
୯→ଵ

൬1 െ 2
1

1 ൅ q ൅ qଶ
൅

1
1 ൅ q ൅ qଶ ൅ qଷ ൅ qସ

൰

ൌ  
3
4

MRଶ ൬1 െ
2
3
൅

1
5
൰ ൌ  

2
5

MRଶ   .   

 
 
EXERCISE 9-3 Solution 
 
There are three forces acting on the bowling ball:  the weight, the normal force from the floor, and 
the kinetic frictional force from the floor.  Using the second law of motion, 
 
൅F୒ െ gm ൌ ma୷ ൌ 0     ;      െF୤୏ ൌ ma୶     ;      F୤୏ ൌ  μ୏F୒      →      a୶ ൌ  െ μ୏g   .    
 
In terms of torques about the center axis, FN has 
angle 180o (or 0o, depending on how you 
measure the angle) and the weight has a lever 
arm of zero, since we have previously 
demonstrated that it can be considered to be 
applied at the center of mass.  That leaves the 
friction: 
 

τ ൌ RF୤୏ sinሺ90୭ሻ ൌ Iα 
 

Rμ୏gM ൌ  ଶ
ହ
MRଶα     

 

α ൌ  
5 μ୏g

2R
 . 

 
We’ll decide that CW rotation is positive to match the positive x-motion to the right (that is, into 
the page will be positive).  Now we might consider setting Δx = R Δθ, but that’s not true because 
of the skidding.  It’s also temping to think that, when the ball stops skidding, a = αR; this is a true 
statement, but both are zero (the friction goes from kinetic to static!) and so that’s not very useful.  
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We have to look at vCM = rω and use KEq 1 for both linear and rotational motions.  Let t be the 
time from ball’s launch to when it rolls without slipping. 
 

v୤ ൌ Rω୤ 
 

v୭ ൅ at ൌ Rሺω୭ ൅  αtሻ 
 

v୭ െ  μ୏g t ൌ R ൬
5 μ୏g

2R
൰ t 

 

v୭ ൌ
7 μ୏g

2
t    →      t ൌ  

2v୭
7μ୏g

 . 

Then, 
 

v୤ ൌ v୭ ൅ ሺെ μ୏gሻ ൬
2v୭

7μ୏g
൰ ൌ  

5
7

 v୭ 

and 
 

x୤ ൌ x୧ ൅ v୧t ൅
ଵ
ଶ
atଶ      →    x୤ ൌ 0 ൅ v୭ ൬

2v୭
7μ୏g

൰ ൅ ଵ
ଶ
ሺെ μ୏gሻ ൬

2v୭
7μ୏g

൰
ଶ

 ൌ   
10
49

v୭ଶ

μ୏g
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Section 1-10 - Static Equilibrium 

DISCUSSION 10-1 
 

Suppose you’re constructing some structure, a bridge or office building.  It’s composed of 
many parts, none of which should move.  What condition should be imposed on an object, such 
as a steel beam or a brick, so that it doesn’t move?  What else shouldn’t the object do?  What 
condition must be met for that motion to be avoided? 

Conditions for Static Equilibrium 

Statics is a sub-topic of physics and engineering which is incredibly important; mechanical 
engineers study it for many semesters because of its applications to the design of buildings and 
other structures.  What is needed are the conditions under which an object or assemblage of objects 
will not shift.  These boil down to:  
 

෍ Fሬ⃑ ୬
୬

ൌ 0     and    ෍τሬ⃑ ୬
୬

ൌ 0     . 

 
That is, we want the objects not to accelerate or rotate.  And, that is it for Section 10. 

I’m sure, however, that you’d like a few examples.  Our convention for this chapter is that we shall 
write the magnitudes of the force and r vectors, then add the appropriate signs in front of each 
torque term; positive for torques out of the page (that is, those which would act to accelerate the 
object CCW), and negative for torques into the page (those which would act to accelerate the object 
CW).  

In the previous section, we considered rotations about specific axes. In this section, the object is 
not rotating about any axis, that is, the torque about any axis you may care to choose will be zero.  
This gives you a fair amount of freedom in solving problems.  In this section, the point about which 
the torques are calculated is called the pivot point.  My suggestion is to write the toque equation 
first, choosing if possible a pivot that makes the torques due to forces of unknown magnitude zero.  
In that way, many problems can be solved by considering only the torque equation without 
involving the force equations.   

Remember from Derivation 9-1 that we can act as if all of the weight of an object is applied at the 
object’s center of mass. 

EXAMPLE 10-1 

Consider a see-saw of length L (6m) and mass m (m = 15 kg) which is pivoted at the 
center.  Anna (mA = 20kg) sits right at the end of the board.  Where should Carli (mC = 35 kg) 
sit so that the board is balanced? 
  
Much as we did back in Section 5, we need to choose an object (or objects) to analyze; in this 
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case, we choose the board.  Let's draw a free body diagram (with +y upward and +x to the 
right) to inventory the forces: 
FNF is the normal force exerted by the 
fulcrum of the see-saw on the board, and 
gmB is the weight of the board, which we 
assume can be thought to act as the center 
of the board.  The forces labelled FNA and 
FNC are not the weights of Anna and Carli, 
but rather normal forces exerted by them 
on the board; remember that the weight of 
each child acts on the child.  Through the 
use of NII and NIII, these forces are numerically equal to those weights. 
 

For Anna, we have from NII that 
 

൅𝐹ே஺ െ  𝑔𝑀஼ ൌ 0 
 

൅𝐹ே஺ ൌ  𝑔𝑀஼ ൌ 10ሺ20ሻ ൌ 200 𝑁  . 
 
The exact same calculation for Carli results in FNC = 350 N. 
 
Let's do the problem twice to illustrate a point. 

 
1) Choose the left end of the board as the pivot.  The torque requirement is1 

෍τሬ⃑ ୬
୬

ൌ ሺ0ሻF୒୅ sinሺ? ሻ ൅ ሺ3ሻሺF୒୊ሻ sinሺ90୭ሻ െ ሺ3ሻሺgm୆ሻ sinሺ90୭ሻ

െ r୐୉୊୘ ୉୒ୈሺF୒େሻ sinሺ90୭ሻ ൌ 0. 

We’re going to need to know FNF, so we’ll go to the vertical force equation: 
 

෍ Fሬ⃑ ୬୶
୬

ൌ 0   and   ෍ Fሬ⃑ ୬୷
୬

ൌ ൅F୒୊ െ  F୒୅ െ F୒େ െ gm୆ ൌ 0  ,     

 
F୒୊ ൌ  F୒୅ ൅ F୒େ ൅ gm୆ ൌ 200 ൅ 350 ൅ 150 ൌ 700 N  . 

Returning to the torque equation, 

  ሺ3ሻሺF୒୊ሻ െ ሺ3ሻሺgm୆ሻ ൌ r୐୉୊୘ ୉୒ୈሺF୒େሻ. 

                                                 
1 Note the question mark inserted as the angle.  Since r = 0 for that force about that pivot, the angle is undefined.  
However, I think that keeping the format of each term uniform lessens the probability of making an error and at the 
same time, indicates to me that you know that that term is zero and why. 
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  r୐୉୊୘ ୉୒ୈ ൌ  ଷ୊ొూିଷ୥୫ా

୊ొి
ൌ ଷሺ଻଴଴ሻିଷሺଵହ଴ሻ

ଷହ଴
ൌ 4.71 m from the left end. 

2) Choose the center of the board as the pivot.  The torque equation is then 

෍τሬ⃑ ୬
୬

ൌ ൅ሺ3ሻF୒୅ sinሺ90୭ሻ ൅ ሺ0ሻሺF୒୊ሻ sinሺ? ሻ െ ሺ0ሻሺgm୆ሻ sinሺ? ሻ

െ rେ୉୒୘୉ୖሺF୒େሻ sinሺ90୭ሻ ൌ 0 ; 

ሺ3ሻF୒୅ ൌ rେ୉୒୘୉ୖሺF୒େሻ  ; 

rେ୉୒୘୉ୖ ൌ  
ሺ3ሻF୒୅

F୒େ
ൌ

3ሺ200ሻ
350

ൌ 1.71 m to the right of the center , 

which is of course the same answer. 

What we see, then, is that a judicious choice of the pivot such as in the second solution can save a 
great deal of effort. 

EXAMPLE 10-2   

Consider a horizontal uniform beam of mass m and length L supporting a sign of mass M.  The 
beam is attached to the wall with a wire which makes an angle  with the beam.  Its other end 
is supported by the friction between the end of the beam and the wall.  How large would the 
co-efficient of static friction need to be to keep the beam from slipping? 

Again using the usual coördinate 
system of +y up and +x to the right, 
and picking the left end of the beam 
as the pivot, we write that: 
 

൅Tଶ െ gM ൌ 0  ; 
 
൅F୒ െ Tଵ cosϕ ൌ 0  ;  
 

F୤ୗ െ gm ൅  Tଵ sinϕ െ  Tଶ ൌ 0  ; 
 

F୤ୗ ൌ  μୗF୒  ሺcrit. sit. ሻ ; 
 
and 
 

ሺ0ሻF୤ୗ sinሺ? ሻ ൅ ሺ0ሻF୒ sinሺ? ሻ െ ୐

ଶ
gm sin 90୭ െ LTଶ sin 90୭ ൅ LTଵ sinϕ ൌ 0  . 

 
Simplifying the torque equation and substituting for T2 results in  
 



 

- 222 - 
 

Tଵ sinϕ ൌ  
gm
2
൅  Tଶ ൌ  

gm
2
൅  gM  . 

 
Now it’s just substitution: 
 

μୗ ൌ  
F୤ୗ
F୒

ൌ  
gm െ  Tଵ sinϕ ൅  Tଶ

Tଵ cosϕ
ൌ  

gm െ  ቀ
gm
2 ൅  gMቁ ൅ gM

൭

gm
2 ൅  gM

sinϕ ൱ cosϕ

ൌ  
m tanϕ
m ൅ 2M

 . 

  . 
HOMEWORK 10-1 
 

A sign weighing 300 N is suspended at the end of a massless 
beam 2 m in length, as shown.  The beam is attached to the 
wall with a hinge, and its other end is supported by a 
wire.  What is the tension in the wire if it makes an angle of 
30o with the beam?  
 

HOMEWORK 10-2 
 

A sign weighing 500 N is suspended at the end of a uniform 300 N beam 5 m in length, as 
shown.  The beam is attached to the wall with a hinge, and its other end is supported by a 
wire.  What is the tension in the wire if it makes an angle of 25o with the beam?  Use the same 
figure as for Homework 10-1. 
 

HOMEWORK 10-3 
 
A sign weighing 200 N is suspended under a uniform 300 N 
beam 4 m in length, as shown.  The beam is attached to the wall 
with a wire which makes a 53o angle with the beam.  Its other 
end is supported by a hinge connected to the wall.  If the 
maximum tension permissible in the wire is 300 N, what is the 
range of distances from the wall that the sign can hang without 
causing the wire to snap? 
 

HOMEWORK 10-4 
 

An 6m long, 110N ladder rests against a smooth wall.  The co-efficient of static friction 
between the ladder and the ground is 0.8, and the ladder makes a 53o angle with the 
ground.  How far up the ladder can an 800N person climb before the ladder starts to slip? 
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Sample Exam IIII 
 
MULTIPLE CHOICE (4 pts each) 
 
1) Consider a solid sphere of radius R and mass M, and a disk of mass m (=½ M) and radius r  

(= ½ R).  In a race rolling (without slipping) down an incline, the solid sphere wins.  Which 
of the following is true? 

 
 A) The solid sphere and disk have the same moment of inertia. 
 B) The moment of inertia of the solid sphere is larger than that of the disk. 
 C) The moment of inertia of the disk is larger than that of the solid sphere. 
 D) There is no way to know which moment of inertia is larger. 
 E) There is no Choice E. 
 
2) Consider a rigid body, not necessarily in equilibrium.  Which of the following statements is 

always true? 
 
 A) If ΣFሬ⃑ ୬ = 0, then Στሬ⃑ ୬ = 0. 
 B) If Στሬ⃑ ୬ = 0, then ΣFሬ⃑ ୬  = 0. 
 C) If ΣFሬ⃑ ୬  ≠ 0, then Στሬ⃑ ୬ ≠ 0. 
 D) If Στሬ⃑ ୬ ≠ 0, then ΣFሬ⃑ ୬  ≠ 0. 
 E) None of these is always true.  
 
3) Consider a solid sphere of mass M and radius R.  What is the sphere’s moment of inertia about 

an axis tangent to the surface of the sphere? 
 
 A) 2/5 MR2 
 B) 3/5 MR2 
 C) 7/5 MR2 
 D) 3/2 MR2 

  E) 2 MR2 
  
4) Consider two point masses on the x-axis.  M1 has mass 45 kg and is at x = 4m, while M2 has 

mass 35 kg and is located at x = 9m.  Where is the center of mass? 
 
 A) 1.0 m 
 B) 6.2 m 
 C) 6.5 m 
 D) 6.8 m 
 E) 38 m 
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5) The moon orbits the earth on a path that 
is not circular, but elliptical, as shown 
with great exaggeration in the figure.  
At which of the labeled points will the 
moon’s speed be greatest? 

   
 A) A 
 B) B 
 C) C 
 D) D 
 E) E 
 
 
 
PROBLEM I (20 pts) 
 
Suppose that a solid sphere (mass M and radius R) 
is launched up an incline, as shown, and 
subsequently rolls without slipping.  How far up the 
incline (L) will the disk go before stopping? 
 
Let M = 4 kg, R = 0.02 m, vi = 12 m/s, and θ = 53o. 
 
 
 
 
 
PROBLEM II (20 pts) 
 
Consider a playground merry-go-round, a disk of mass 80 kg and radius 1.5 meters, rotating 
about a frictionless axis through its center.  There are two twins, each of mass 30 kg, sitting 
at the edge of the disc.  The angular speed of the ride is 7 rad/sec.  Now, one of the twins 
moves to the center of the disk.  What is the new angular speed? 
 
PROBLEM III (20 pts) 
 
Prove that the rotational kinetic energy of a rigid object as it turns about some axis with 
angular velocity ω is KErot = ½Iω2, where I (=Σn mnrn2) is the 
moment of inertia of the object about that axis. 
 

 
 
 
PROBLEM IIII (20 pts) 
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The blade of a circular saw of diameter 0.3 m accelerates uniformly from rest to 2800 
rev/min in 32 seconds. 
 
A) Convert the final angular velocity to radians/second. 
 
B) What is the angular acceleration of the blade? 
 
C) Through what angle did the blade turn in this process? 
 
D) If the mass of the blade is 0.1kg, and the blade can be considered to be a disk, what net 

torque was applied to the blade during this process? 
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Section 11 - Oscillations 

Let’s define a couple of terms.  An oscillator is an object that moves repetitively through a given 
path in a given time period.  In a sense, you are an oscillator, moving from home to school to work 
to home every day.  A simple harmonic oscillator (SHO) is a very special case when an object 
moves through a cycle along a line (perhaps the x-axis) around a central point (we’ll say at x = 0) 
such that its position x is given by  
 

xሺtሻ ൌ A cosሺ2π𝑓t ൅φሻ . 
 
Here, t is time, A is the amplitude, the maximum excursion from the central point, and phi is the 
phase angle that allows us to change the cosine into a sine by shifting the curve in time.  For this 
course, phi will always be set to zero.  The symbol f is the frequency, the number of cycles 
completed per unit of time; one cycle per second is called one hertz (Hz).  Note that we will often 
replace 2πf with the angular frequency, Ω (omega).1  We will also define the period of oscillation, 
P, as the time to complete one cycle, and so necessarily, P = 1/f. 
 
Since the object is not moving with constant velocity, there must be some force acting on it.  More 
specifically, the force acts to return the object back towards the central point.  Such a force is 
described as a restoring force.  Let’s see if we can suss out the nature of the force that causes 
simple harmonic motion (SHM).  Force is related to acceleration, so let’s find the acceleration of 
a SHO.  Given that by definition the location is x(t) = A cos(2πf t), we can find the velocity 
function.  Remember back to Section 3, when we found the instantaneous time rates of change of 
the sine and cosine functions: 
 

ITRC (A cos (ωt)) = −ω A sin(ωt) and ITRC (A sin (ωt)) = ω A cos(ωt). 
 
In this case, we replace ω with Ω = 2πf.  The velocity of the SHO will be 
 

vሺtሻ ൌ ITRC൫xሺtሻ൯ ൌ ITRC ሺA cosሺ2π𝑓tሻሻ ൌ  െ2π𝑓 A sin ሺ2π𝑓tሻ 
 
and the acceleration is 
 

aሺtሻ ൌ ITRC ൫vሺtሻ൯ ൌ ሺെ2π𝑓ሻITRC ሺ A sinሺ2π𝑓tሻሻ ൌ ሺെ2π𝑓ሻ ሺ2π𝑓ሻA cosሺ2π𝑓tሻ
ൌ  െ4πଶ𝑓ଶ xሺtሻ . 

 
The force is then, by NII, 
 

𝐹ሺ𝑡ሻ ൌ  
𝑎ሺ𝑡ሻ
𝑚

ൌ  െ  ቆ
4πଶ𝑓ଶ

𝑚
ቇ  𝑥ሺ𝑡ሻ  . 

 

                                                 
1 The angular frequency is perhaps best explained during a differential equations course.  For now, we’ll use it as an 
abbreviation for 2πf.  In most textbooks, the symbol ω is used, but I am taking this opportunity to try to avoid 
confusion. 
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So, we see that the force required to produce this type of motion must be proportional to the 
displacement of the object from x = 0.   
 
DISCUSSION 11-1 
 

Can you remember a force we discussed that is opposite in direction and proportional to the 
displacement of an object from its equilibrium point?  Is that necessarily the only such force 
that meets those conditions? 

 
CHEESEY EXPERIMENT 11-1 
 

Oscillations.mp4  
We know from previous discussion that springs follow Hooke's relationship, F = - kX, the force 
applied to the mass is proportional to the displacement of the mass from the equilibrium point and 
is directed opposite to that displacement.  If we compare Hooke’s relationship to the requirement 
we developed above, we see that the spring constant would have to be given by 
 

k ൌ  
4πଶ𝑓ଶ

m
   . 

 
Turning it around, if a mass is attached to a spring and set into motion, the frequency of oscillation 
will be 
 

𝑓௢ ൌ  
1

2π
ඨ

k
m

   . 

This special frequency, at which a system 'prefers' to oscillate, is called the natural frequency, 
fo.  If I were to bop a mass on a spring, this is the frequency at which it will oscillate.  If I do it 
again, the mass will again oscillate at the same frequency.  Each of the five times a year I do this 
until I retire, it will oscillate at this same frequency.  Notice that the frequency appears to be 
independent of the amplitude of oscillation, so it doesn't matter how far we pull the mass before 
we release it, the mass will oscillate with the same frequency.  

 

DISCUSSION 11-2 
 

To test this result, it is more convenient to measure the natural period of oscillation, Po = 1/fo: 
 

P୭ ൌ  2π ට
m
k

   . 
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Would we expect that the period proportional to the mass and inversely proportional to the 
spring constant?  How should the data be plotted to obtain a line?  If we were to place 100 
grams of mass at the end of a real spring, how much mass would be oscillating?   

 
EXPERIMENT 11-1 
 

Let’s square both sides of the equation above with the intention of plotting the mass as the 
independent variable: 
 

𝑃௢ଶ ൌ  ቆ
4𝜋ଶ

𝑘
ቇ  𝑚  . 

 
In theory, to obtain a line, the dependent 
variable plotted should be the square of the 
period.  For the data shown in the graph, there 
is a serious problem.  The theoretical 
relationship predicts that the intercept of the 
line should be zero.  We asked a moment ago 
how much mass is actually oscillating.  Since 
this is a real spring and not our abstract 
massless spring, we should take into account 
the parts of the spring that are also moving.  We 
won’t go into it here, but under these 
conditions, we should count one third of the 
mass of the spring.2  Replotting and adding 
more springs result in lines with intercepts very 
close to zero.  We see then that the square of the 
period for each is proportional to the mass plus 
1/3 the mass of the spring.   Now, what’s 
different about these springs?  These are the 
same springs we used for Hooke’s relationship 
in Section 6.  According to the relationship 
above, we can determine each spring constant 
from the slope of the associated line, since 
 

y ൌ ሺslopeሻx ൅ ሺinterceptሻ     ↔      P୭ଶ ൌ ቆ
4πଶ

k
ቇm ൅ 0 

 

slope ൌ
4πଶ

k
     →      k ൌ  

4πଶ

slope
   .  

 
Comparing results from this experiment and from those of section 6, 

                                                 
2 J.G. Fox and J. Mahanty, “The Effective Mass of an Oscillating Spring,” Am. Jour. Phys. 38 No 1 (January 1970): 
98–100.  
 

y = 0.5816x + 0.015

y = 2.4262x + 0.0082

y = 4.689x ‐ 0.0013

0
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Spring Hooke’s relationship experiment Oscillation experiment 
Nr 1 8.25 N/m 8.42 N/m 
Nr 2 16.13 N/m 16.27 N/m 
Nr 3 64.10 N/m 67.88 N/m 

 
gives us a bit more confidence that this relationship is correct. 

In the discussion above, we assumed that the only force acting on the mass was that of the spring.  
That might be appropriate way out in space, or if the mass were mounted horizontally on an 
airtrack.  But often, springs are arranged vertically, and so gravity plays a part.  Turns out, though, 
that this does not affect the results for the frequency of oscillation; the mass will simply hang at a 
lower equilibrium point as more mass is added. 

JUSTIFICATION 11-1* 

When the spring is horizontal, its motion is governed by the second law, 

െkX ൌ ma  . 

When a massless spring is hung vertically, its lower end sits at the equilibrium point, X = 0.  If 
we add some mass to the end and allow the system to come to rest, the new equilibrium point 
will be obtained from the second law: 

െkX୉୕ െ gm ൌ 0     →      X୉୕ ൌ  
െgm

k
   . 

Note that this is negative, because the new equilibrium point will be lower than the original 
one.  Now, let the mass oscillate about this new equilibrium point.  The second law equation 
will be 

െkX െ gm ൌ ma  . 

Substitute: 

െkX െ kX୉୕ ൌ  െkሺX െ  X୉୕ሻ ൌ െkXᇱ ൌ  ma  . 

Here, X’ is the displacement of the object from the new equilibrium point.  This is the same 
force equation (and therefor the same motion) for the case of no gravity, except that the 
equilibrium point will be at XEQ.  
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Let's have a quick discussion about the energy of 
a SHO.  The kinetic energy is K= 1/2mv2 and the 
potential energy is U = 1/2 kx2, and the total is the 
sum of these two.   

E୘୓୘୅୐ ൌ  ଵ 
ଶ

mvଶ ൅  ଵ 
ଶ

kXଶ

ൌ ଵ
ଶ 

mሺെ2π𝑓 A sin ሺ2π𝑓tሻሻଶ

൅  ଵ
ଶ 

kሺA cosሺ2π𝑓tሻሻଶ

ൌ   ଵ
ଶ
 m

k
m

Aଶ sinଶሺ2π𝑓tሻ

൅  ଵ 
ଶ

kAଶ cosଶሺ2π𝑓tሻ ൌ ଵ
ଶ
 kAଶ  . 

So, if we pull back the mass to x = A and release it, the energy will convert from potential to 
kinetic, then back to potential, et c. 

HOMEWORK 11-1 

An oscillator with a 0.23 second period is made from a mass M 
suspended from a spring of constant k.  The mass is then placed on a 
frictionless surface which makes a 45o angle with the horizontal, and 
the spring is attached at the top of the incline as shown.  What is the 
new period of the oscillation?  

EXAMPLE 11-2 

A 0.8 kg air-track car is attached to the end of a horizontal spring of constant k = 20 N/m.  The 
car is displaced 12 cm from its equilibrium point and released.  What is the car's maximum 
speed?  What is the car's maximum acceleration?  What is the frequency fo of the car's 
oscillation? 

The frequency of oscillation is given by  

𝑓௢ ൌ  
1

2π
ඨ

k
m
ൌ   

1
2π

ඨ
20
0.8

ൌ  0.80 Hz . 

The velocity of the object3 is given by  

vሺtሻ ൌ െ2π𝑓௢A sinሺ2π𝑓௢tሻ ൌ െ2πሺ0.80ሻሺ0.12ሻ sinሺ2π𝑓௢tሻ ൌ െ0.60 sinሺ2π𝑓௢tሻ  .  

The speed is a maximum whenever the sine term equals ± 1.  Maximum speed is 0.60 m/s. 

                                                 
3 Remember that we’re always assuming that the object is pulled in the positive direction to X = A and released at 
time = zero. 
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The acceleration is  

aሺtሻ ൌ െ ሺ4πଶ𝑓௢ଶሻA cosሺ2π𝑓tሻ ൌ െ4ሺ9.87ሻሺ0.08ଶሻሺ0.12ሻ cosሺ2π𝑓tሻ ൌ  െ0.03 cosሺ2π𝑓௢tሻ. 

The maximum magnitude acceleration is when the cosine term is ± 1, so |aMAX| = 0.03 m/s2. 

HOMEWORK 11-3 

A mass (0.3 kg) and spring (k = 350 N/m) system oscillates with an amplitude of 6 cm.  What 
is the total mechanical energy of the system?  What is the maximum speed of the mass?  What 
is the maximum acceleration of the mass? 

The Simple Pendulum 

There are many other systems which exhibit simple harmonic motion (SHM), and even more that 
are close enough that we can make use of the results above for a reasonably correct approximate 
solution.  One such system is the simple pendulum, which is a point mass m (the bob) at the end 
of a massless string or stick of length l.  Let's look at the free body diagram for such an object. 
 
DERIVATION 11-1 
 

We are interested in the motion along the 
circular arc.  Let us describe the bob's 
position with s (= l , the displacement 
along the arc which we shall make positive 
to the right and negative to the left.  Theta 
will follow the same convention.  Break 
the forces into tangential and radial 
components. We aren’t really interested in 
the radial components, but tangentially we 
have 
 

െgm sinθ ൌ ma୘  . 
 
The negative sign is necessary to get the direction of the force correct.  When the bob is on  the 
left side of the figure where s and theta are negative, we want the force to be in the positive 
direction. Similarly, when the bob is on the right side of the figure where s and theta are 
positive, the force must be to the negative direction. 
 
We have two types of variables here, one tangential and the other angular.  We need them to 
be the same type.  Substitute s/l for theta: 
 

െgm sin ቀ
s
𝑙
ቁ ൌ ma୘  . 
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Now, this is not the same as the for the mass/spring system, since the force F is proportional 
to the sine of the displacement, not to the displacement itself.  In fact, this is a moderately 
difficult equation to solve, even using calculus.  So, we will do what physicists often do, we 
will look at a special case, when the angle theta is ‘small.’  If an angle is small, the sine of the 
angle is approximately equal to the angle itself in radians.   

 
MATHEMATICAL DIGRESSION 
 

Put your calculator in radians mode.  Take the sine of 0.0001 radians.  How close it the result 
to 0.0001?  Is 0.01% much of a difference?  Repeat for 0.001, 0.01, and 0.1.  Are the two values 
diverging slightly?  Repeat for 0.5 radians and you will see that the result is about 4% off from 
the input.  The art here is determine how much of a divergence is acceptable, or how small is 
‘small.’  In a course like this one, we usually accept the approximation up to about 30o. 

 
Continuing, 
 

െ
gm
𝑙

 s ൌ ma୘  . 

 
Turns out, we’ve already solved this problem.  The acceleration is negatively proportional to 
the position, same as for the mass on a spring.  So, all of the steps we went through to solve 
that problem are the same steps we would go through here, except k is replaced with gm/l.  
Then, 
 

𝑓୭ ୑ୟୱୱ ୭୬ ୗ୮୰୧୬୥ ൌ  
1

2π
ඨ

k
m

      →   𝑓୭ ୗ୧୫୮୪ୣ ୔ୣ୬ୢ୳୪୳୫ ൌ  
1

2π
ඨ

gm
𝑙

m
  ൌ  

1
2π

ට
g
𝑙
   .    

 
Some of you may have verified the relationship between the frequency and the length in lab. 
 

HOMEWORK 11-4 
 
Mary-Kate (m = 50 kg) is swinging on a tire tied by a (light) rope (L = 3 m) to a tree limb.  Her 
twin Ashley comes along and squeezes into the tire with her.  Assume that at all times the 
center of mass of the person(s) riding the tire is at the end of the rope.  What was the period of 
oscillation for Kate alone?  What is the period of oscillation for the twins together? 
 

HOMEWORK 11-5 
 
A pendulum bob on a light string of length L is arranged as 
shown in the figure.  There is a peg stuck into the wall a 
distance L/3 below the point of suspension.  What is the 
period of small oscillations for this system? 
 

DISCUSSION 11-3 
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Because we’re not solving the actual equation for the motion of the simple pendulum, the 
correct result differs to some degree from what we’ve derived.  Do you think that actual period 
of a simple pendulum at large angles is larger or smaller that for small angles?  Try writing the 
force equation in terms of torques instead: 
 

Actual equation: െ
g
𝑙

sin θ ൌ  α                 

Approximation equation: െ
g
𝑙

 θ ൌ  α    . 

 
The Physical Pendulum 
 
DERIVATION 11-2* 
 

Consider an object of indeterminate shape hanging from an 
axis, as show.  This is known as a physical pendulum.  D is 
the distance between the point of suspension and the center 
of mass.  The forces acting on the object comprise a force at 
the suspension point (the pivot) and the weight, which can be 
assumed to act at the center of mass. Consider the torques 
acting on the object when it has been displaced from 
equilibrium by angle theta: 
 

െDgm sinθ ൅ ሺ0ሻFୗ୔ sinሺ? ሻ ൌ Iα   . 
 
If we once again restrict ourselves to ‘small’ angles,  
 

െDgm θ ൌ Iα  ,  
 
we see that this problem is the same as for the mass on a spring (alpha is to theta as a is to x) 
and that we have already solved it.  The result is found by replacing k with Dgm and m with I: 
 

𝑓୭ ୔୦୷ୱ୧ୡୟ୪ ୔ୣ୬ୢ୳୪୳୫ ൌ  
1

2π
ඨ

Dgm
I

     .    

EXAMPLE 11-1* 
 
Find the frequency of small oscillations for a vertically suspended disk of radius 
R and mass M if it is attached to an axis at its top.  
 
We can make use of the results above, but we will need to determine D and I.  
D is the distance between the suspension point and the center of mass, so, D = 
R.  The moment of inertia of a disk about its center is 1/2MR2, but we’ve moved the axis a 
distance h = R, so we’ll invoke the parallel axis theorem: 
 

I୉ୈୋ୉ ൌ Iେ୑ ൅ Mhଶ ൌ   ଵ
ଶ
MRଶ ൅ MRଶ ൌ ଷ

ଶ
MRଶ   .  
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𝑓୭ ୔୦୷ୱ୧ୡୟ୪ ୔ୣ୬ୢ୳୪୳୫ ൌ  
1

2π
ඨ

RgM
య
మ୑ୖ

మ
   ൌ

1
π
ට

g
6R

  .    

HOMEWORK 11-6 
 
First, find the frequency of a simple pendulum with a point mass bob of mass M of a light 
string of length L.  Then, find the frequency of a spherical bob of mass M and radius R = 0.1L 
at the end of that same light string.  Calculate a per cent difference. 
 

EXERCISE 11-1* 
 
A mass is attached to two massless springs as shown in the 
figure.  What is the natural frequency of oscillation fo if M = 7 
kg, k1 = 300 N/m, and k2 = 900 N/m?  Assume no friction. 
 

HOMEWORK 11-7 
 
A mass is attached to two massless springs as shown in the 
figure.  What is the natural frequency of oscillation fo if M = 7 kg, 
k1 = 300 N/m, and k2 = 900 N/m?  Assume no friction. 

Damped Oscillations 

We spoke briefly about damped oscillations.   The discussion above suggest that, if one sets the 
mass/spring system into oscillation, the total energy of the system remains constant and the mass 
will vibrate forever with the same amplitude.   In fact, we know that the mass will slow a bit on 
each pass due to friction with the air (usually assumed to be a drag force of the form Ff=-bv) or 
the table; energy is removed as friction performs negative work on the mass.  
 

The figure shows a lightly 
damped system (black 
curve) and an overdamped 
system (red line), which 
loses so much energy so 
quickly that it never 
oscillates even once.  A 
good example of the 
overdamped system is the 

car shock absorber.  The car (m) is supported by springs (k), so that SHM is possible.  If one were 
to drive over a bump with faulty shocks, the car would then continue to oscillate at about 1 Hz for 
several seconds.  Shock absorbers dampen the system so that the ride smooths out without the 
oscillations.  

DISCUSSION 11-4 
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The natural frequency of a lightly damped oscillation is slightly lower than that of an undamped 
system.  Can you give a brief, non-mathematical reason for this?  Consider the very first swing 
of the bob.  What does the retarding force do to the speed of the bob? 
 

Resonance 
 

If we were to disturb the mass/spring 
system in some way and step back, the 
system will oscillate with natural 
frequency fo = [k/m]1/2/2π.  If it's 
disturbed again in a different manner 
then left to itself, the system will again 
oscillate at that same natural 
frequency, until its energy is 
depleted.  If we want the system to 
continue to oscillate, we must replace 
the energy lost to dissipative 
forces.  Let's jiggle the other end of 

the spring, applying a force though a distance (i.e., doing work), at some frequency f, which is then 
known as the driving frequency.  Let us vary the driving frequency to see the effect on the 
system.  If we jiggle the spring at a very low frequency, we see that the mass oscillates with the 
same frequency at which it is driven, but with a small amplitude.  Changing to very high driving 
frequency, we see once again that the mass oscillates at the driving frequency, but with a very 
small amplitude.  However, if we excite the system at a driving frequency very near to the natural 
frequency, we see that the response of the system, as demonstrated by the amplitude of oscillation, 
increases.  If we plot this response as a function of the driving frequency, we see the curve shown 
in the figure.  Consider this simplified situation: 
 

The green line represents oscillation at 
the natural frequency.  If we were to 
apply the force as the shown by the blue 
line at a frequency less than fo, we would 
see that sometimes the force is acting in 
the direction of motion of the mass, but at 
other times, against the motion.  On 
average, then, no work is done by that 

force.  The red line indicates the force with frequency > fo, and the argument is the same.  When 
we vary the applied force at the same frequency as the natural frequency, we are always applying 
force in the direction of motion of the mass, so all work we do is positive.  If the rate of doing 
work is greater than the rate of energy dissipation, the amplitude of the oscillation will increase.  
The condition when the system is driven at its natural frequency and delivers its greatest response 
is called resonance.  Sometimes resonance is desirable, sometimes not.  For example, if one wants 
to push a small child on a swing, the greatest amount of fun (or terror) is attained when one pushes 
the swing at its natural frequency.  On the other hand, if the ground shakes at the natural frequency 
of a skyscraper, the building may respond with an amplitude beyond the limits of structural 
integrity.  The Tacoma Narrows Bridge collapse occurred because the wind passing over the bridge 
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excited one of the span's torsional oscillation modes, resulting in the collapse about three hours 
later.  Are you surprised at the incredible elasticity of steel and concrete?  Only a dog lost its life 
in the collapse, because the owner left it behind when he abandoned his car on the bridge 
(Hmm!).  The bridge had exhibited strange effects for the three months it was open.  There are 
films of the deck of the bridge oscillating in a vibrational mode much like waves in the ocean; cars 
could actually disappear from view behind the humps which rose and fell in the roadway.  A related 
system is that of tall skyscrapers.  Once again, if the wind were to gust at the natural frequency of 
the building, it might cause collapse; modern buildings often have a mechanism to 're-tune' the 
vibrational modes of the building away from the current driving frequency of the wind.  

 
 
Exercise 11-1 Solution 
 
Suppose that Spring 1 is stretched from its equilibrium length a distance X1.  To do this, a force 
of F1 = k1X1 is required.  This force is applied by Spring 2.  Suppose that Spring 2 is stretched a 
distance X2 from its equilibrium length.  This requires a force F2 = k2X2.  By the third law, this is 
the same magnitude force as F1 and the force applied to the mass.  We want to replace the two 
springs with a single spring of constant kEFF that will apply the same force when it is stretched a 
distance XEFF = X1 + X2. 
 

X୉୊୊ ൌ  Xଵ ൅  Xଶ  
 

F୉୊୊
k୉୊୊

ൌ  
Fଵ
kଵ
൅

Fଶ
kଶ

 

 
All of the forces here are the same magnitude, so 
 

1
k୉୊୊

ൌ  
1
kଵ
൅

1
kଶ

     →      k୉୊୊ ൌ  
kଵkଶ

kଵ ൅ kଶ
ൌ  
ሺ300ሻሺ900ሻ
300 ൅ 900

ൌ 225 N m⁄  . 

 
Then,  
 

𝑓௢ ൌ  
1

2π
ඨ

k
m
ൌ   

1
2π

ඨ
225

7
ൌ  0.90 Hz . 
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Section 12 - Waves and Sound 
 
We covered single oscillators in Section 12.  For the specific example of a mass/spring system, we 
saw that there is a natural frequency at which the system would 'like' to oscillate, given by f = 
[k/m]1/2/2π.  Now, let's consider a chain of such oscillators, in this case identical masses connected 
by identical springs.  If we apply a 
disturbing impulse to the left-end mass, it 
will move to the right, applying its own 
force on the next mass, et c.  The speed of 
this disturbance as it moves down the chain of oscillators should depend on the masses and on the 
spring constants.  For example, if the springs are stiff, the first mass will not need to move very 
far in order to apply a fairly large force on the next mass, while if the spring is flexible, the first 
mass would need to move a good distance to apply a sizable force to the next mass.  In the same 
way, for a given force, smaller masses will respond more quickly and larger masses less quickly.  
We might surmise that the speed of the disturbance should be related to the frequency of oscillation 
of each mass, and based on dimensional analysis, we might suspect the relationship to be  
 

v ~ ඨ
k
m

  . 

 
While this discussion was based on a chain of masses, we can guess that the speed of a compression 
wave in a material should be proportional to the square root of the ratio of an elastic property to 
an inertial property: 

 

v ~ ඨ
elastic property
inertial property

  . 

 
For example, the speed of a 
sound pulse in a metal can be 
shown experimentally to be  
 

v ൌ  ඨ
Y
D

  , 

 
where Y is the Young's modulus, 
a measure of the springiness of 
the material, and D is the mass 
density of the material (inertial 
property).  In the figure, the 

dotted line (which is not a best fit line) shows where the measured value and the theoretical values 
would be equal.   

 
JUSTIFICATION 12-1* 
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The density and the Young’s modulus are both macroscopic quantities.  Let’s see if we can 
correlate this result to microscopic quantities.  From chemistry, we think that the material can 
be modelled by small balls of mass m (representing the atoms) connected by bonds represented 
by springs with stiffness k, and relaxed length lo.  To make things a little easier, we’ll assume 
that the metal’s atoms lie on the corners of cubes, as shown in the figure.1  I omitted the 

‘springs’ in two directions since the 
oscillations will occur in the left-right 
direction and we will assume that the 
plane of atoms will move as a single 
unit.  Each pair of adjacent planes of 
atoms are connected by a large 
number of ‘bond’ springs.   

For simplicity, let’s say that the object 
is a cube of edge Lo and mass M.  The 
cross-sectional area of the left end will 
be A = Lo

2.  Let’s apply forces F along 
the length of the block, as shown. As a 
result, the block will contract along 
that axis: 

F
A
ൌ Y 

∆L
L୭

 . 

Here, F/A is the stress and ΔL/Lo is the strain (cause and effect).   
 
If the cube has mass M and the mass of each atom is m, then there are N = M/m atoms.  There 
will be N1/3 atoms along each edge each separated from its nearest neighbor by distance lo, so  
 

L୭ ൌ  Nଵ/ଷ𝑙୭   . 
 
We might also assert that the compression of the bond length is in the same proportion to the 
compression of the entire length of the cube: 
 

∆𝑙
𝑙୭
ൌ  
∆L
L୭

   . 

 
Similarly, the area of the left end, and therefor of each of our planes, is 
 

A ൌ L଴
ଶ ൌ  ൫Nଵ/ଷ𝑙୭൯

ଶ
 . 

 

                                                 
1 Such an arrangement is called a simple cubic structure.  There is unfortunately only one elemental metal that has 
this structure, polonium, and that is highly radioactive and doesn’t stick around very long before decaying into other 
elements. 
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The number of atoms in such a plane is (N1/3)2, and so the mass of such a plane will be  
 

M୔୐୅୒୉ ൌ  Nଶ/ଷm  . 
 
Each such plane has N2/3 springs connecting it to the adjacent plane.  We saw in a Section 12 
that the effective spring constant of ‘parallel’ springs is the sum of the spring constants, k: 
 

k୔୐୅୒୉ ൌ  Nଶ/ଷk  . 
 
So, as we push on the left end with force F, Hooke’s relationship says that we should see that 
 

F ൌ  k୔୐୅୒୉∆𝑙  . 
 
Finally, of course, the density D is the mass divided by the volume, D = M/Lo

3 = m/lo
3.  So, 

here we go.   
 

v ൌ  ඨ
Y
D
ൌ  ඪ

൬
F/A
∆L/L୭

൰

൬
M
L୭ଷ
൰

ൌ  ඪ
൬

F/A
∆𝑙/𝑙୭

൰

൬
m
𝑙୭ଷ
൰

ൌ  ඨ
F
∆𝑙

1
Nଶ/ଷ

𝑙௢ଶ

m
ൌ  ඨ

k୔୐୅୒୉
Nଶ/ଷ

𝑙௢ଶ

m
ൌ 𝑙୭ඨ

k
m

  .  

 
 
The speed of sound in a fluid (like air) also follows this form: v = [B/D]1/2, where B is the bulk 
modulus, a measure of the elastic properties of a fluid.  

We will be using 
one particular type 
of wave as our 
archtype; things we 
learn about this 
particular wave are 
transferrable to 
most other types of 
waves.   We will 
concentrate on the 
transverse wave on 
a string.  Waves in 
which the 

individual pieces of the medium move along the same line as the direction of propagation of the 
wave are referred to as longitudinal, while waves in which each piece of material moves along a 
line perpendicular to the direction of propagation, such as on a taut string, are 
called  transverse.  Here is a nice non-calculus derivation for the speed of a disturbance on such a 
string.  

DERIVATION 12-1 
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Consider a pulse traveling 
along the string to the right 
at some speed v, and 
further assume that the 
central part of the pulse has 
the shape of a circular arc 
with radius R.  The actual 
value of R doesn’t matter, 
it just needs to be chosen so 
that part of the string lines 
up with the arc.  If the size of the disturbance is fairly small, then the tension T is approximately 
constant along the string, even where the disturbance is.  Now, to make this work, we will shift 
to a reference frame that is moving along with the pulse; in other words the pulse appears 
stationary and the string is moving at speed v to the left, making a small detour around the 
circular arc.  In order to move in that circle, a small piece of the rope of length s (and mass 
m) would need to experience a centripetal force, FC, which is provided by the two components 
of the tension acting toward the center of the circle: 

Fେ ൌ 2T sin ൬
θ
2
൰ ൌ  aେ ൌ Δm 

vଶ

R
 . 

Making use of the small angle approximation for the sine function, 

2T ൬
θ
2
൰ ൌ Tθ ൌ  Δm 

vଶ

R
  , 

v ൌ  ඨ
T θR
∆m

ൌ  ඨ
T Δs
∆m

  . 

While we presumably know the tension T in the string, we made no specific choices about the 
sizes of Δs or Δm, which should depend on theta and R.  But luckily, it doesn’t matter; the 
ratio Δm/Δs depends only on the string itself.  We call this ratio the linear mass density, or just 
the mass per unit length, μ.  Then, 

v ൌ  ඨ
T 
μ

  . 

Once again, the speed is given by the square root of the ratio of an elastic property (how’ 
snappy’ the string is) to an inertial property.  

Here is an interesting example: whips are constructed so that the linear mass density decreases 
nearer the tip (that is, they get thinner near the end).  A pulse sent down a whip will therefor travel 
more and more quickly, and it is possible that some of the pieces near the end will move more 
quickly than the speed of sound, causing a mini sonic boom (see below).  
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Reflections 

We next looked at reflections of pulses on a string.  We noted that a pulse traveling down the string 
is reflected with the same orientation if the end of the string is free to move, and reflected with an 
inverted orientation if the end of the string is fixed.  Although this could be proven mathematically, 
we based our assertion on experiment.  We can visualize what's happening, however, by imagining 
that the string continues beyond its actual end, and that an imaginary wave is traveling back down 
the string towards the end from the imaginary side.  We invoke the principle of superposition, the 
notion that the total displacement of the medium is the sum of the individual displacements due to 
each pulse; in this way, we know that the reflected pulse for a fixed end must be inverted, since 
this is the only way the total displacement at the end of the string can always be zero, and then 
clearly, the wave and its reflection must add together in the case of a free end.  Here is an animation 
illustrating the two types of reflections/  INSERT 
 
Now, instead of considering the two extreme cases (completely fixed or completely free ends), 
think about what would happen if the end of a string were tied end to end to another string.  In all 
cases, we would expect that some of the wave would continue down the second string with the 
same orientation (and frequency) as the original wave; this is called the transmitted wave.  The 
argument we can give is that the end of the first string does the same thing to the second string as 
the hand or other agent did to the first string at the other end.  We also notice that there is a reflected 
wave, the orientation (and size) of which depends on whether (and by how much) the second string 
is 'heavier' or 'lighter' than the first.  Watch this demonstration video.  INSERT 
 
DISCUSSION 12-1 
 

What do you notice about the size of the pulses that are transmitted and reflected?  Why does 
this happen? 

 
The quantity used to measure the difficulty of a wave in passing through some medium is called 
the impedance, Z.  If Z2  > Z1, the reflected wave is inverted; if Z2 < Z1, the reflected wave is 
upright.  This is a general result, even though the exact values of the impedances are calculated in 
different ways for different media.  In the specific example of transverse waves on a string, we 
have that (asserted without proof)  
 

𝑍 ൌ  ඥ𝑇𝜇  . 
 
In that case, we see that our original examples correspond to Z2 = 0 (end of string loose, so 2 = 
0) and Z2 = infinity (end of string tied to wall, so 2 = infinity). The impedances also tell us how 
much energy is reflected and how much is reflected. 

DISCUSSION 12-2 

What would happen if the two media had the same impedance?  Are there occasions when we 
would want the incoming wave to be totally reflected?  Are there occasions when we would 
want the incoming wave to be completely transmitted?  Suppose you are walking across 
campus and see a friend on the other side of the quad.  How would you get his attention (do 
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not say ‘text him’)?  If he didn’t hear you, what might you do with your hands?  Why does this 
work? 

Abrupt changes in impedances between two media results in strong reflection.  To minimize 
reflections, the transition from one material to the other should be made as gradual as possible.  
Cupping your hands around your mouth makes the transition from a tube of several centimeters 
diameter to the wide-open atmosphere smoother, resulting in more transmission of sound.  
Coxswains of racing shells often use megaphones, a hollow truncated cone used to amplify the 
voice.  Some of you may remember the days of rabbit ear antennas for your televisions.  The 
impedance of the ribbon cable is 300 ohms,2 which matches that of the screw terminals on the back 
of the TV.  When cable came along, people with older TVs had to buy matching transformers to 
convert the cable’s 75 ohm impedance to the TV’s 300 ohms.  Failure so to do resulted in multiple 
reflections, appearing as ‘ghosts’ on the screen. 

Sinusoidal Waves 

Instead of pulses, let's discuss a more commonly studied 
type of wave, one in which the system is driven by a 
sinusoidal force with frequency f.  Now, the wave which 
is produced will have the same frequency as the driving 
force, even though the speed of propagation will be 
determined by the natural frequency of the individual 
oscillators.  Let’s start by defining some of the 
characteristics of a wave.   
 

 the frequency (f) counts how many oscillations each piece of material experiences each 
second, or alternatively, how many peaks pass by an observer each second.  The period P 
is as before the reciprocal of the frequency. 

 the amplitude (A) describes the maximum deviation from equilibrium.  This is easy to 
visualize in the example above where A refers to the maximum displacement rom 
equilibrium, but it can also refer to the maximum excess of pressure over average 
atmospheric as in sound, or the maximum electric field strength as in light, et c. 

 the speed (discussed above). 
 the wavelength () measures the physical distance between corresponding points on 

adjacent waves (e.g., from peak to peak). 

 
There is a relationship among f,  and v, which we can deduce from the 'railcar analogy.'  
 
Suppose that a train with cars of length L passes you at speed v.  You count N cars in time t.  The 
distance traveled by the train in that time is d = NL.  The speed of the train is v = d/t = (NL)/t = 

                                                 
2 An ohm is a unit for electrical impedance. 
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(N/t)L.  We recognize (N/t) as the 
frequency f (the number of peaks 
that pass per unit of time) and L as 
the analog of , so v = f   

Although we won't prove it, 
sinusoidal waves moving along the 
x-axis are described mathematically 
by the expression: 

yሺx, tሻ ൌ A sin ൬
2π
λ

x ∓ 2π𝑓t ൅ φ൰   . 

where φis a phase angle that allows us to change the function to cosine or to some combination 
of sine and cosine.  As in the last section, we’ll let the phase angle be zero for simplicity. 

Since we didn’t derive this relationship, we’ll at least show that it is correct and does what we need 
it to do.  Let’s examine each term one by one. 

1) The shape of the curve is obviously sinusoidal. 
2) The sine function varies between +1 and -1, and this function y(x, t) varies between +A 

and -A. 
3) We’ve already addressed phi. 
4) Suppose we freeze the wave at t = 0.  Since we can assign the value of zero to any particular 

time we choose, this works for any instant.  The equation reduces to 

yሺx, 0ሻ ൌ A sin ൬
2π
λ

x൰   . 

Let’s consider the location x = 0, then follow the curve though one cycle or one wavelength.  
The function then goes from  

y ൌ A sinሺ0ሻ to  A sin ൬
2π
λ
λ൰ ൌ A sinሺ2πሻ   ,   

which corresponds to one mathematical cycle, as desired. 

5) Now, let’s examine what happens at the particular location x = 0.  Again, we can set the 
origin to be anywhere for our convenience.  The equation reduces to  

yሺ0, tሻ ൌ A sinሺ∓2π𝑓tሻ  . 

We’ll follow that bit of medium through one cycle or one period, P = 1/f.  The function 
then goes from  

y ൌ A sinሺ0ሻ to y ൌ A sinሺ∓2π𝑓Pሻ ൌ  A sinሺ∓2πሻ  , 
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which corresponds to one mathematical cycle, forward or backward as desired. 

6) Lastly, we’ll confirm that the negative sign between the terms corresponds to the wave 
moving to the +x-direction, and the positive sign to movement in the – x-direction.  
According to the equation, 

yሺx, tሻ ൌ A sin ൬
2π
λ

x െ 2π𝑓t൰   , 

there will be a peak in the curve when the argument of the sine function is equivalent to 
90o.  As time increases, the second term will become more positive, but there is negative 
sign which makes the argument more negative.  In order to keep the argument at 90o, the x 
value must increase.  That is, the position of the peak will move toward positive x.  For the 
other case, 

yሺx, tሻ ൌ A sin ൬
2π
λ

x ൅ 2π𝑓t൰   , 

 
as time increases, the argument will become more positive, so to keep it constant at 90o, 
the x value must become more negative, that is, the position of the peak will move toward 
negative x. 

So, it appears that this formula does everything we would expect of it.  Note from Item 6 that it is 
the interplay between the spatial and temporal terms that accounts for the wave’s motion.  

Standing Waves 

The principle of superposition states that, if more than one wave is passing through a given point, 
the total displacement is the sum of the displacements due to each individual wave.  
Suppose that we set up two sinusoidal waves in a (one dimensional) medium which are identical 
in every way except their directions.  A specific example would be two waves moving in opposite 
directions along a very long string, each end being jiggled at the same amplitude and 
frequency.  What happens when these waves meet?  We use the principle of superposition to find 
the result by adding the two individual waves.  We saw that the resulting wave did not appear to 
travel at all; this type of wave is called a standing wave, although stationary wave might be more 
apt. Let's examine this more mathematically. 
 
DERIVATION 12-2 
 

yଵ ൌ A sin ቀଶ஠
஛

x െ 2π𝑓tቁ   ሺmoves to the rightሻ,    and 

 

yଶ ൌ A sin ቀଶ஠
஛

x ൅ 2π𝑓tቁ   ሺmoves to the leftሻ  . 

 
We’ll expand these out using the trig identity 
 

sinሺα േ  βሻ ൌ  sinα  cosβ  േ  cosα  sin β   . 
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y୘୓୘୅୐ ൌ  yଵ ൅  yଶ

ൌ  A ቂsin ቀଶ஠
஛

xቁ cosሺ2π𝑓tሻ െ cos ቀଶ஠
஛

xቁ sinሺ2π𝑓tሻቃ

൅  A ቂsin ቀଶ஠
஛

xቁ cosሺ2π𝑓tሻ ൅ cos ቀଶ஠
஛

xቁ sinሺ2π𝑓tሻቃ    ൌ 2A sin ቀଶ஠
஛

xቁ cosሺ2π𝑓tሻ  . 

 
Here, we see that, in contrast to the original waves which had mixed spatial and temporal 
components, this wave has separate spatial and temporal components.  Each piece of the medium 
undergoes SHM, but with an amplitude that depends on its x-position.  
 INSERT VIDEO ANIMATION 
  
We can see that there are spots that never oscillate (nodes) and spots that have maximum oscillation 
(anti-nodes).  Each type of location is separated from its adjacent neighbor by one-half of the 
wavelength.  

This little derivation assumes that the strings are very long.  In the real world, string (or other 
similar systems) have a finite length.  In such systems, there will be many reflections from each 
end which will have to be added to determine the overall behavior of the string.   

VIDEO 

We started with a string fixed at each end, and we excited waves with different frequencies.  In 
some cases, we noted that the waves all added up to a random pattern, eventually canceling out.  In 
other cases, we saw that the initial and reflected waved added to produce a standing wave.  What 
conditions need to be met to do this?  We could do a very mathematical derivation of this, but it is 
just as correct to base our investigation on observation.  

System ‘fixed’ at one end and ‘free’ at the other - 
We saw a series of patterns like those shown in the 
figure as we increased the frequency at which the 
system was excited.  The lines indicate the limits of 
the oscillations of the string (the envelope).  The 
fixed end must always correspond to a node (no 
motion) and the free end, where the string can move 
the most, corresponds to an antinode.  As we 
increase the frequency (or shorten the wavelength), 

we must always add in an additional node and an additional antinode to fulfill the conditions above, 
thereby adding two quarter wavelengths.  We notice that the length of the system must be an odd 
natural number multiple of a quarter wavelength, or 

L ൌ  
nλ
4

  , n ൌ 1, 3, 5, 7, …  . 

 
Since we already know that v = f λ, we can solve for the allowed frequencies for these stationary 
waves: 
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𝑓୬ ൌ  
nv
4L

     𝑛 ൌ 1, 3, 5, 7, …   . 

 
System ‘fixed’ at both ends - We saw a series of 
patterns like those shown at left as we increased 
the frequency at which the system was 
excited.  Here, we see that the length is an even 
natural number multiple of a quarter wavelength: 

 

L ൌ  
nλ
4

  , n ൌ 2, 4, 6, 8, …  , 

and so, 
 

𝑓୬ ൌ  
nv
4L

     𝑛 ൌ 2, 4, 6, 8, …   . 

 
 
Finally, when both ends are ‘free,’ we see that the result 
is the same as for both ends fixed but with the nodes and 
anti-nodes reversed. 
 
So, now we have an easy-ish relationship and an easy 
way to remember which numerical values to insert: if 
the ends are of the same type, or ‘even,’ use the even 
values and if the ends are different, or ‘odd,’ use the odd 
values.  We see that, unlike for a single oscillator with a 

single natural frequency, we here have a 
system with many natural frequencies: 

Remember that, even though we derived 
these results for transverse waves on a 
string, the results are valid for other 
system.  For example, consider a stopped 
organ pipe, which means that it is open at 
one end and closed off at the other.  At the 
open end, air is free to vibrate, while at the 
closed end, no vibration is possible 
because of the stopper.  This pipe will 
support standing waves of the form f n = 
nv/4L, n  = 1, 3, 5, ....  How are these 
frequencies produced?  In an organ, air is 
pumped into the pipe against a sharp edge, 
which produces all 
frequencies.  However, those frequencies 
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which do not correspond to the favored frequencies reflect back and forth in the pipe and, on 
average, cancel themselves.  But the few special frequencies re-inforce one another and produce 
standing waves.  These frequencies are often referred to as the harmonics of the system.  On 
occasion, they are referred to as the fundamental (n = 1) and the overtones (n > 1).  

EXERCISE 12-1 

The human ear canal is about 3 cm long.  If it is regarded as a tube open at one end and closed 
at the other, what is the fundamental frequency of a standing wave in the ear??  
Let vsound = 340 m/s.  Since these frequencies are re-inforced in the ear canal, human hearing 
is just a little bit better at this frequency that at others.   

HOMEWORK 12-1 

A tuning fork is sounded above a (narrow) resonating tube as in lab.  The first resonant situation 
occurs when the water level is 0.08 m from the top of the tube, and the second when the level 
is at 0.24 m from the top.  Let vsound = 340 m/s. 
a) Where is the water level for the third resonant point? 
b) What is the frequency of the tuning fork? 
 

HOMEWORK 12-2 
 
A 2 m long air column is open at both ends.  The frequency of a certain harmonic is 400 Hz, 
and the frequency of the next higher harmonic is 480 Hz.  Find the speed of sound in the air 
column. 

DISCUSSION 12-3 

Now here's a question.  How can a listener distinguish different musical instruments that are 
playing the same note?   

For example, an oboe and a clarinet are both 
essentially cylindrical tubes, closed at one end 
and open at the other, and so they produce the 
same sequence of harmonics, fn = nv/4L.  The 
answer is that, because of the exact shape of the 
bore, they each put slightly different amounts of 
energy into the different harmonics, and it is 
that distribution that your brain remembers and 
labels as one instrument or the other.  The same 
goes for vowels in speech.    
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In the figure, you can see the spectra of three long 
vowels as pronounced by an Upstate New Yorker.  
The axes are logarithmic, with frequency along the 
horizontal axis and the strength of each frequency 
along the vertical axis.  The actual frequencies 
produced are the same in each case, but the strengths 
of each are very different for the three sounds. 

Also, it is possible to suppress certain 
harmonics.  Those of you who play guitar know that 
plucking the string in different spots produced 
different sounds on the same fundamental.  Plucking 
a string at its center will deliver more energy into 
frequencies with an anti-node there, i.e. n = 4, 8, 12, 
16, et c.  Touching a string lightly one third of the 
way from one end will suppress any frequencies with 
an anti-node there.   

DEMONSTRATION  12-1 

VIDEO al rod 

Non-Sinusoidal Waves* 

We've been concentrating on sinusoidal 
waves.  What about waves that are not 
sinusoidal?  Waves that are repetitive in time can be 
approximated by adding up different amplitudes of 
many sinusoidal waves of different frequencies 
(Fourier decomposition):  
 

yሺtሻ ൌ  ෍A୬

୬

sinሺn2π𝑓tሻ    n ൌ 1, 2, 3, …  . 

We can represent these amplitudes An graphically 
with a figure like this one, similar to what was shown 
on the screen of the spectrum analyzer above.  
For example, a 'ramp' wave is composed of waves 
with the form n = 1, 2, 3, … with An decreasing as 
1/n.  
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A ‘square wave’ is the sum of waves of the form n = 1, 3, 5, ... and the amplitude An decreasing 
as 1/n.  A triangular wave is the sum of waves of the form n = 1, 3, 5, ... and the amplitude An 
decreasing as 1/n2.  

Intensity 

A wave can be defined as a transfer of energy without a net movement of matter.  For example, if 
I send a pulse down a string, the other end of the string can exert a force on some object to which 
it is tied, and possibly do work.  For sound (and later, light), we measure the rate of energy transfer 
per unit area as the intensity, I, with the corresponding units of watts/m2.   
 
Consider a fire siren which broadcasts isotropically P joules of sound energy per second.  Draw 
an imaginary sphere of radius R with the center at the siren; all the energy must eventually pass 
through that sphere, and the intensity will be  
 

I ൌ  
P

4πRଶ   . 

 
We see that if we make the sphere larger, the energy will be distributed over a larger area, and 
the intensity will be reduced (that is, each square meter of area will receive less energy).  This 
1/r2 dependence is fairly common, and we shall see it again.  
 
EXAMPLE 12-1 
 

At noon, you can hear two towns’ sirens going off.  If Siren A has twelve times the intensity 
of Siren B, what is the ratio of their distances from you? 
 
So, if we assume that the sirens are identical, the power outputs should be the same: 
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P୅ ൌ  P୆ 
 

I୅4πr୅
ଶ ൌ I୆4πr୆

ଶ   
 

r୅
r୆
ൌ  ඨ

I୆
I୅
ൌ  ඨ

I୆
12I୆

ൌ  ඨ
1

12
ൌ 0.29 

EXERCISE 12-2 
 

If Star A and Star B appear equally bright to your eye, but you know that Star B is twenty times 
further away from earth than is Star A, what is the ratio of the powers radiated by each? 

 
HOMEWORK 12-3 
 

At the fireworks show, a particularly loud explosion occurred 100m directly above Susique’s 
head.  Hank is 50 meters from Susique and Earl is 100 meters from Susique.  Compare the 
intensities heard by each. 

An alternate way of expressing intensity is in units of decibels.  The decibel scale is logarithmic, 
and thus follows more closely the actual size of the signal sent from human ear to human 
brain.  The bel is named for Alexander Graham Bell, who was not, as one might suppose, 
American, but rather a Scot-born Canadian working in Boston.  A reference intensity Io is defined 
as 10-12 W/m2, which corresponds roughly to the quietest sound a normal human can hear.  The 
intensity to be converted is compared to this standard, and the log base ten is taken of the 
ratio.  This gives the number of bels, so the number of decibels (dB) must be ten times more:  

 

β ൌ 10 logଵ଴
I

I୭
  . 

EXAMPLE 12-2 

Suppose that the sound that one professor produces from the front of the classroom has an 
intensity of 10-7 W/m2.  How many dB does this correspond to?  

β ൌ 10 logଵ଴
10ି଻

10ିଵଶ
ൌ  10 logଵ଴ 10ହ ൌ 10 ሺ5ሻ  ൌ 50 dB  . 

 
EXERCISE 12-3 
 

Now, suppose there are ten professors at the front of the room, talking incoherently.3  How 
many decibels would ten professors produce? What about one hundred?  

                                                 
3 No jokes, please.  Here, incoherent means that there are no particular relationships among the sounds produced by 
N profs, in which case the intensity is simply N times the intensity die to one prof.  If they were all chanting or 
reciting together, the sounds would be coherent and the result more complicated. 
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Note that this is not a linear relationship.  A multiplicative factor of ten in intensity is an additive 
increase of ten in decibels.  

Here are the intensity levels of some common situations:  

Situation Intensity Intensity level 

Threshold of Hearing 10-12 W/m2 0 dB 

Library Reading Room 10-9 W/m2 30 dB 

Conversation 10-6 W/m2 60 dB 

Vacuum Cleaner 10-3 W/m2 90 dB 

Rock Concert 10-1 W/m2 110 dB 

Thunder 10 W/m2 130 dB 

Of course, these values depend on the distance between source and listener.  Prolonged exposure 
to sounds above 90 dB will cause permanent damage, and exposure to sounds over 110dB will be 
painful.  Here are some helpful hints: ALWAYS wear ear protection in noisy situations, such as 
lawn mowing or vacuuming and on up.  If you must wear headphones to listen to music, place 
them just in front of your ears, not right over them.  

HOMEWORK 12-4 

After Route 100 was built through Columbia, some homes experienced an average decibel 
level of 110 dB, caused by 200 cars passing per minute.  When the inspector arrived to test 
this, there were only 25 cars passing per minute.  What average decibel level did the inspector 
measure? 

HOMEWORK 12-5 

Five identical machines operating in a factory produce an average sound intensity level of 87 
dB.  If three additional machines are put online in the same location, what will the new average 
sound intensity level be? 

Beats 

DERIVATION 12-3 
 
Suppose that we have two nearly identical waves passing through a spot in space (call it the origin 
so x = 0), so that the time dependences (we'll ignore the spatial dependence) are given by  
 

yଵ ൌ A sinሺ2π𝑓ଵtሻ   and   yଶ ൌ A sinሺ2π𝑓ଶtሻ  . 
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Using the principle of superposition, we get the total 'displacement' from equilibrium from the sum 
of these two expressions:  
 

y୘୓୘୅୐ ൌ A sinሺ2π𝑓ଵtሻ  ൅  A sinሺ2π𝑓ଶtሻ  . 
 

Now, we'll make use of a trig identity, sin a + sin b = 2 sin[(a+b)/2] cos[(a-b)/2], so that  

y୘୓୘୅୐ ൌ 2A cos ൬2π൬
𝑓ଵ െ 𝑓ଶ

2
൰ t൰  sin ൬2π൬

𝑓ଵ ൅ 𝑓ଶ
2

൰ t൰  . 

From this we see that the frequency of 
oscillation is the average of the two original 
frequencies, but also that the amplitude of the 
oscillation is modulated by an envelope with 
a frequency equal to the difference of the 
original frequencies, |f1 -  f2|.  The formula 
says that the frequency of the envelop is half 
the difference in the frequencies, but there are 
two pulses, or beats, per cycle.  

This can be (and often is) used as a method for tuning pianos and other such instruments.  Once a 
'C' string is tuned to the correct pitch, it and the 'G' a fifth above it above are struck 
simultaneously.  The third harmonic of the C and the second harmonic of the G are the same note, 
and so the G string's tension is adjusted until no beats are heard between those two harmonics (or 
in other tuning schemes, a certain number of beats per second should be heard, but that's a whole 
'nother story...).  

Beating is also used in some radar guns. An example will follow in the next section. 

HOMEWORK 12-6 

Consider two identical strings under the same tension but with different lengths.  The n = 2 
harmonic of the first string (400 Hz) beats at 6 Hz with the n = 2 harmonic of the longer string.  
What is the difference in the lengths of the strings if the speed of transverse waves on these 
strings is 120 m/s? 

The Doppler Effect 

You're probably familiar with this effect: a car or train passes you while blowing its horn, so that 
the pitch of the sound rises while the vehicle is moving toward you, but sounds lower when the 
vehicle is moving away from you.  We shall look at a couple of special cases, and then integrate 
the results for all such cases into a single relationship.  Note, however, that the results will only be 
true if there is no wind, that is, the medium (usually air or water) is stationary.  Also, our 
derivations will be done for a one dimensional universe.  
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DERIVATION 12-4 
 

 
Consider a source moving at speed vSource 
toward (approaching) a stationary observer (or 
listener, if you insist).  Instead of having the 
source emit a sinusoidal wave, let's assume that 
it emits pulses; we can later correlate these 
pulses to the peaks of a sinusoidal wave, if 
necessary.  Let the frequency of the pulse 
emitted by the source be fo, and the time 
between the emission of pulses be Po = 1/ fo.  
Here at t = 0, the source releases a pulse, which 
then travels to the right at speed vSound.  Now, 
let's look at the locations of everything a time t 
= T later.  
Pulse 1 has traveled a distance dSound = vSound T,  
while the source has traveled a distance  
dSource = vSource T, at which point it emits Pulse 

2.  
Now, the wavelength that the observer will 

measure is the distance between the two pulses:  


λᇱ ൌ  dୗ୭୳୬ୢ െ dୗ୭୳୰ୡୣ ൌ  vୗ୭୳୬ୢT െ  vୗ୭୳୰ୡୣT   .

Now, T is the period between pulses as ‘heard’ by the source, and so we remember that f  = 1/T 
and that f = vwave, and so this last expression can be re-written as  
 

vୗ୭୳୬ୢ
𝑓ᇱ

ൌ  
vୗ୭୳୬ୢ
𝑓୭

െ  
vୗ୭୳୰ୡୣ
𝑓୭

   , 

 

𝑓ᇱ ൌ 𝑓୭  
vୗ୭୳୬ୢ

vୗ୭୳୬ୢ െ  vୗ୭୳୰ୡୣ
    . 

 
Now, if the source had instead been moving the other way (receding), those two distances would 
have had to have been added, changing the minus sign to a plus sign:  
 

𝑓ᇱ ൌ 𝑓୭  
vୗ୭୳୬ୢ

vୗ୭୳୬ୢ ൅  vୗ୭୳୰ୡୣ
    . 

Now, suppose instead that it were the observer moving toward (approaching) the stationary source 
at speed vObserver.  Once again, let the source emit pulses at an interval of T.  Let t = 0 when Pulse 
1 arrives at the observer.  The second pulse arrives at the observer at time T', during which interval 
the pulse has traveled distance (to the right) dSound = vSound T' and the observer has traveled distance 
(to the left) dObserver = vObserver T'.  T' is now the time between pulses, as heard by the observer.  
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The sum of these distances is the original wavelength as 
produced by the source, o:  

λ୭ ൌ  dୗ୭୳୬ୢ ൅ d୓ୠୱୣ୰୴ୣ୰ ൌ  vୗ୭୳୬ୢTᇱ ൅  vୗ୭୳୰ୡୣTᇱ   .

Remembering that f ‘ = 1/P’ and that  f ’ ’= vwave, we 
substitute to obtain  

vୗ୭୳୬ୢ
𝑓௢

ൌ  
vୗ୭୳୬ୢ
𝑓′

൅  
𝑣୓ୠୱୣ୰୴ୣ୰

𝑓′
   , 

 

𝑓ᇱ ൌ 𝑓୭  
vୗ୭୳୬ୢ ൅ v୓ୠୱୣ୰୴ୣ୰

vୗ୭୳୬ୢ
    . 

Once again, if the observer had been receding from the 
source, there would have been a sign reversal to 

  

𝑓ᇱ ൌ 𝑓୭  
vୗ୭୳୬ୢ െ v୓ୠୱୣ୰୴ୣ୰

vୗ୭୳୬ୢ
    . 

Now, we can combine all these relationships, if we're careful.  First, we need to define better the 
terms 'approach' and 'recede.' 'Approach' is to head in the direction of the other object, regardless 
of whether the distance between the objects is becoming smaller or not, and 'recede' means to head 
in the opposite direction of the other object, whether the distance between is increasing or 
not.  Then, 

𝑓ᇱ ൌ 𝑓୭  
vୗ୭୳୬ୢ േ v୓ୠୱୣ୰୴ୣ୰
vୗ୭୳୬ୢ ∓ vୗ୭୳୰ୡୣ

    , 4 

 
where the upper sign is used if that object is approaching and the lower sign if that object is 
receding.  

DISCUSSION 12-3 

What exactly would one do if there were wind?  

EXAMPLE 12-3 

A police car moving at 150 kph is chasing a speeder traveling at 100 kph on a calm day.  If the 
cop’s siren has a frequency of 500 Hz, what frequency will the speeder hear? 

First, what is the speed of sound on a calm day?  We typically use 340 m/s as a default value.  
The cop is approaching the speeder, while the speeder is receding form the cop.  Remember 

                                                 
4 For light, the result is somewhat different. 
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that these terms have nothing to do with the distance between them increasing or decreasing.  
Converting the speeds to meters per second, we get 

𝑓ᇱ ൌ 𝑓୭  
vୗ୭୳୬ୢ േ  v୓ୠୱୣ୰୴ୣ୰
vୗ୭୳୬ୢ ∓  vୗ୭୳୰ୡୣ

 ൌ 500
340 െ 27.8
340 െ 41.7

ൌ 523.3 Hz  .   

AN ADMONITION 

It’s tempting to try to cut a corner and use relative velocities.  Bad idea.  Let’s try it.  Suppose 
the speeder is motionless and the cop is approaching him at 50 kph.   

𝑓ᇱ ൌ 𝑓୭  
vୗ୭୳୬ୢ േ  v୓ୠୱୣ୰୴ୣ୰
vୗ୭୳୬ୢ ∓  vୗ୭୳୰ୡୣ

 ൌ 500
340 െ 0

340 െ 13.9
ൌ 521.3 Hz  .   

These values are close, but the second is wrong because we left out the fact that there is now a 
100 kph wind blowing against the motion of the cop.  The speed of sound is therefore not 340 
m/s but rather 312.2 m/s.  Let’s try again. 

𝑓ᇱ ൌ 𝑓୭  
vୗ୭୳୬ୢ േ  v୓ୠୱୣ୰୴ୣ୰
vୗ୭୳୬ୢ ∓  vୗ୭୳୰ୡୣ

 ൌ 500
3312.2 െ 0

312.2 െ 13.9
ൌ 523.3 Hz  .   

HOMEWORK 12-7 

If you move at 15 m/s (relative to the ground) toward a sound source (3000 Hz) which is also 
moving toward you at 45 m/s (relative to the ground), what frequency will you hear from the 
object?  Assume that vsound = 340 m/s. 

DISCUSSION 12-4 

What happens if the source travels 
more quickly than sound?  Consider 
the denominator of the Doppler 
relationship we derived. 

The upper left figure shows the locations 
of the crests of three pulses emitted by a 
source such as a jet while it is 
stationary.  The pulses move out in a 
spherical form centered on the spot at 
which they were produced.  The upper 
right figure shows the same when the 
source is moving to the right at about 0.5 
the speed of sound; note that the 
wavelengths will be shorter for listeners 
in the path of the source, but longer for 
listeners from which the source is 
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receding.  When the source reaches the speed of the wave in that medium, a bow shock wave is 
generated; this is most easily seen when generated by a boat, but recent photos of jets breaking the 
'sound barrier' have caught these shock waves as they condensed water gas in the air.  Once the 
speed of the source exceeds the speed of the wave in that medium, the crests of all waves co-incide 
to produce a giant shock wave (red line); for jets, this results in the familiar sonic boom.  It can 
also be seen as the bow wave of a boat in water. 

Some random notes: 

1) The reason the Concorde was so quiet (to the passengers anyway, not to those living on the 
flight path) during supersonic flight is that the noise from the engines could not keep up with 
the cabin; one could hear only the noise transmitted through the body of the plane. 

  
2) The apex angle () of the cone formed by the shockwave 
depends on the speed of the source.  The wave shown was 
generated at the instant that the source was at its center.  In 
time interval t, the source moved to the right a distance vsourcet 
and the sound moved outward a distance vsoundt.  Consider the 
right triangle formed in the diagram.  We see that 
 

sinθ ൌ  
vୗ୭୳୬ୢt
vୗ୭୳୰ୡୣt

ൌ  
vୗ୭୳୬ୢ
vୗ୭୳୰ୡୣ

   . 

 
The inverse of this ratio is referred to as the Mach 

number.  The official speed record of any jet aircraft is about Mach 9.6, set by the unmanned 
X43A.  The Space Shuttle (when we had a set) entered earth's atmosphere at about Mach 25.  
Be aware though that the Mach speed is NOT just a multiple of the speed of sound at sea level 
(340 m/s); the speed of sound varies with altitude. 

EXERCISE 12-1 Solution 
 
Since the two ends are different, or ‘odd,’ 
 

f୬ ൌ  
nv
4L

     n ൌ 1, 3, 5, 7, …   . 

 

fଵ ൌ  
1 ൈ 340
4 ൈ 0.03

ൌ  2833 Hz  . 

 
Let’s just keep increasing n until we exceed the limit of human hearing at 20,000 Hz: 
 
8500 Hz, 14,167 Hz, 19, 833 Hz. 
 
 
EXERCISE 12-2 Solution 
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The same brightness means the same intensity as seen from earth.  So, 
 

𝐼 ൌ  
𝑃஺
𝜋𝑟஺

ଶ ൌ
𝑃஻
𝜋𝑟஻

ଶ  

 
𝑃஺
𝑃஻

ൌ
𝑟஺
ଶ

𝑟஻
ଶ ൌ  

𝑟஺
ଶ

ሺ20𝑟஺ሻଶ
ൌ 2.5 ൈ 10ିଷ  . 

 
Or the other way round, Star B produces 400 times more energy each second than does Star A. 
 
EXERCISE 12-3 
 
Assume that the sources are incoherent, ten professors would have an intensity of 10×10-7 W/m2.  
Then, 
 

βଵ଴ ൌ 10 logଵ଴
10 ൈ 10ି଻

10ିଵଶ
ൌ  10 logଵ଴ 10଺ ൌ 10 ሺ6ሻ  ൌ 60 dB   

and 

βଵ଴଴ ൌ 10 logଵ଴
100 ൈ 10ି଻

10ିଵଶ
ൌ  10 logଵ଴ 10଻ ൌ 10 ሺ7ሻ  ൌ 70 dB  . 

As was stated, a factor of ten in intensity I is an addition of 10 in intensity level beta. 
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Sample Exam V 
 
MULTIPLE CHOICE (4 pts each) 
 
1) A mass M = 4 kg slides along a frictionless 

horizontal floor.  At time = zero, it encounters a 
spring of constant k = 8 N/m.  How long does it 
take the mass to come to rest? 

 
 A) 0 seconds 
 B) 0.2 seconds 
 C) 1.1 seconds 
 D) 35.8 seconds 
 E) 204.2 seconds 
 
2) Consider a mass M oscillating at the end of a massless spring of constant k with amplitude A.  

At what distance(s) from the equilibrium point (x = 0) will the kinetic and potential energies 
be the same? 

   
 A) x = 0 
 B) x = ± 0.5A 
 C) x = ± 0.71A 
 D) x = ± A 
 E) The K and the USPRING are never the same. 
  
3) A fisherman notices that the wave crests on the water pass his anchored boat every 4 seconds.  

He measures the distance between crests to be 9 m.  How fast are the waves traveling? 
 
 A) 0 m/s 
 B) 0.03 m/s 
 C) 0.44 m/s 
 D) 2.25 m/s 
 E) 36 m/s 
 
4) Consider a particle oscillating with amplitude A.  Through what distance does the 

particle move in one cycle?  What is its displacement after one cycle? 
 
 A) distance = 0, displacement =2A 
 B) distance = 2A, displacement = 4A 
 C) distance = 4A, displacement = 0 
 D) distance = 0, displacement = 4A 
 E) distance = A, displacement = 0 
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5) The wail from an air-raid siren has an intensity of 1 
Watt/m2 at a distance of 1km.  How far from the siren 
should you stand so that the intensity is only 0.01 
Watt/m2 ? 

 
 A) 0.01 km 
 B) 0.1 km 
 C) 1 km 
 D) 10 km 
 E) 100 km 
 
PROBLEM I (20 pts) 
 
Consider a simple pendulum of length L and mass M.  Show that if the angle θ is kept small, the 
period of oscillation P is given by: 

   

 

 
HINT: Compare the pendulum with a mass on a spring, for which the N II equation is 
 

 
 
and for which we have previously shown that  

 

 
PROBLEM II (20 pts) 
 
In shallow water, the speed of a surface wave is given by the formula 

 

 
where d is the depth of the water and g is the gravitational field strength.  ‘Shallow’ is a relative 
term that means that the depth of water is much less than the wavelength of the wave, d<<λ.  This 
condition is met by tsunami waves in mid-ocean. 
 

A) Estimate the speed of a tsunami in the open ocean, where the mean ocean depth is 5.6 km. 
 

B) How long would it take such a wave to travel the approximately 9000 km from its source in, 
say, the mid-Pacific Ocean to, say, the California coast? 

P
L

g
 2

 kx ma

P
m

k
 2 .

v gd ,
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PROBLEM III (20 pts) 
 
Suppose that you have a clock that operates on the motion of a mass on a spring and which keeps 
perfect time.  Now, you take it with you when you vacation on Mars, where gravity is only one-
third that on the earth.  If you set your clock correctly at 12:00, what time will the clock read one 
hour later? 
 
PROBLEM IIII (20 pts) 
 
Consider a mass M2 which sits upon a larger mass M1, which in turn slides along a frictionless 
floor.  M1 is connected to a spring with constant k.  The 
coëfficient of static friction between M1 and M2 is μS = 0.6.  With 
what maximum amplitude can M1 oscillate back and forth 
without having M2 slide off?  HINT: Until the masses actually 
lose contact, you can treat them as if they were a single mass. 
 
A) What type of force accelerates M2 back and forth?  (4 pts) 
 
B) What is the maximum value this force can possibly have?  (4 pts) 
 
C) What is the maximum acceleration M2 can experience without slipping? (4 pts) 
 
D) Since M2 hasn’t slipped yet, we can still treat the two blocks as if they were one.  Write 

Newton’s second law for the motion of the combined blocks in the horizontal direction.? (4 
pts) 

 
E) Use the expression you found in Part D to find the maximum amplitude of oscillation so that 

M2 does not slide. (4 pts) 
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