
HW 11-7 Soln) 
  
First, find the effective spring constant, keff .  That  is, we replace the two springs with a single 
spring that exerts the same force for the same amount of stretching as do the two springs. 
 
Both springs exert forces on the mass:  F1 = -k1x   and F2 = -k2x  
The total force F = F1 + F2 = -k1x + -k2x =  -(k1+ k2)x = -keff x  
Comparison of these results gives that  keff  = k1+ k2  
 
Now, we know that  
f o= 1/2[keff/m]1/2  =  1/2[(k1+ k2)/m]1/2  = 1/2[(300 + 900)/7]1/2  = 2.08 Hz  
 

 
 
For the really interested:  
 
One might say that this makes sense if the two springs have the same equilibrium point, but what 
if they don't?  Actually it doesn't matter:  
 
Let yo be the eq. pt for spring 1 and zo be the eq. pt for spring 2.  Let's assume that yo > zo, although 
it doesn't really matter, since the reverse case will introduce two negative signs which will cancel 
one another anyway.  If we hook them together as in the diagram, the system will come to a new 
equilibrium point we'll call xo, at which one spring is compressed and the other stretched so that 
the magnitudes of the two spring forces will be equal:  
 
k1(yo - xo) = k2(xo - zo)  
 
We can re-arrange this into something which will eventually be useful:  
 
(k1 + k2)xo = (k1yo + k2zo)  
 
Now, let's displace the mass to some new position x.  The total force on the box will be:  
 
Ftot = k1(x - yo) + k2(x - zo)  
Ftot = k1x - k1yo + k2x - k2zo  
Ftot = (k1 + k2)x - (k1yo + k2zo)  
 
From above, we remember that the last term is (k1 + k2)xo  
 
Ftot = (k1 + k2)x - (k1 + k2)xo = (k1 + k2) (x - xo), as we suspected.  
   
   


