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Section 1 - Background 

Introduction 

In this semester, we will study what is now known as Newtonian mechanics.  The laws we shall 
discuss are unfortunately only approximately true, special case limits of the actual laws of the 
universe.  However, they are sufficiently correct to agree to high precision with reality so long as 
certain conditions are met.  The diagram below shows a rough breakdown of the approaches 
necessary to a given situation.  

 
Let’s consider special relativity as an example.  Special relativity concerns ‘ordinary sized’ objects 
moving at high speeds.  The relationships developed there are generally more complex than those 
in Newtonian physics but match experimental observations much more closely. We require that 
these relativistic relationships should always agree with Newtonian physics when velocities tend 
toward zero.  This last notion is called the correspondence principle, and we will require it to hold 

for quantum mechanics in Semester Three, as 
well.  As an example, here is a graph of a 
particular property of a bowling ball calculated 
with the Newtonian physics approximation and 
with the correct special relativity relationship 
as a function of the ball’s speed.  The two tend 
toward agreement as the speed of the bowling 
ball goes to low values.  We have somewhat 
arbitrarily decided that Newtonian results are 
sufficiently valid for this course so long as the 
speed is under 10% of the speed of light, in 

which case the difference between the two models is under 0.5%. 

So long as the speed of an object is less than about 10% of the speed of light, and the object is 
larger than an atom but smaller than a star, we will probably be alright.  

 

Dimensional Analysis 
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Since, unlike most fields of academic inquiry, the conclusions of physics must agree with objective 
reality, we must be prepared to make measurements of various physical properties.  Modern 
physicists have determined that any physical quantity can be constructed from some combination 
of only seven basic, fundamental quantities or dimensions, the choice of which is somewhat 
arbitrary but currently standardized:  
 
[Length]  
[Mass]  
[Time]  
[Electrical Current]  
[Number of Particles]  
[Thermodynamic Temperature]  
and  
[Light Intensity].  
 
When we talk about the dimension of a quantity, we don’t mean dimension in the sense of the 
width, length, and height of a box.  Each of these specific measurements is a [Length].  The 
dimension of the volume of a box is [Length]3.  Although we haven’t defined it yet, you probably 
have an idea of the meaning of speed; the dimension of speed is [Length]/[Time]. 
 
So, for example, next semester you will encounter the electric potential, which has the dimensions 
of [Mass][Length]2/[Current][Time]3.  Note that this construct is independent of the actual units 
used.  For example, this quantity is often called the voltage, since the volt is the standard unit for 
electric potential, but of course other units could just as easily be used instead.  The unit might 
change, but the dimension will remain the same.  
 

DISCUSSION 1-1 

Dimensional analysis can be a useful tool for gaining insight into the relationships among 
quantities that determine the behavior of a system.  For example, can we make a prediction for 
the dependence of the period (P, the time to complete one cycle) of a simple pendulum without 
knowing much physics?  On what parameters of the system could this depend?  What are the 
dimensions of these quantities?  

EXAMPLE 1-1 

A list of such quantities would perhaps include the length l of the string, the mass m of the 

bob, the amplitude of oscillation (A, the angle through which the bob swings), and perhaps 
the earth's gravity g, whatever that is.   

period T = [Time]  
mass m = [Mass]  

string length l = [Length]  
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amplitude A = [1] (dimensionless, the radian is the ratio of two distances)  
gravitational field strength g = [Length]/[Time]2 (O.K., I had to give you this one.)  

Since we’re looking for an expression for the period, whatever combination of parameters we 
decide on must have dimension of [Time].  Let’s suppose that  
 

P ∼  mୟ gୠ 𝑙௖ θ୅
ୢ   , 

 
where a, b, c, and d are powers of their respective variables and are to be determined.  Then, 
looking at the dimensions, 
 

[T]ଵ = [M]ୟ ൬
[L]

[T]ଶ
൰

ୠ

[L]ୡ(1)ୢ  =  [M]ୟ[T]ିଶୠ[L]ୠାୡ(1)ୢ    . 

 
If we’re going to have an equation, clearly both sides of the equation must have the same 
dimension.  We see that there is no [Mass] on the left side, so a = 0.  Continuing, 
 
a = 0; 
1 = -2b  →  b = -1/2; 
0 = b + c → b = -c = +1/2; 
d can not be determined. 

The angle, being measured in dimensionless radians,1 can’t be determined.  But, if we try a 
little experiment, we find that A in fact has no effect on the period, so d = 0.  Our final result 
is that we expect the period of a simple pendulum to go as  

P ∼  gି
ଵ
ଶ 𝑙

ଵ
ଶ   = ඨ

𝑙

g
    . 

The correct answer, as we'll see at the end of the course after much toil is  

P  = 2πඨ
𝑙

g
    . 

Since 2 is a dimensionless quantity, this method could not detect it.  Even so, we got a good 
idea of how the period depends on the parameters of the system with relatively little effort.  

EXERCISE 1-1 

                                                 
1 The radian is defined as the ratio of two distances. 
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If we drop a marble from a height H above a table, it takes a certain amount of time to fall 
through distance H to the table.  Work out roughly the relationship between the time t and the 
height H. 

Units 

DISCUSSION 1-2 

Which weighs more, a pound of rocks or a pound of feathers? Which weighs more, an ounce 
of gold or an ounce of potatos?  Which weighs more, a pound of gold or a pound of potatos?  

Making measurements requires that we develop units for the measurements, and standards for 
these units, so that we may all understand what the measurements mean.  In the example above, 
an ounce of gold actually weighs more than an ounce of potatos, because gold, being a precious 
metal, is measured in troy ounces, which are larger than the avoirdupois ounces used for food.  On 
the other hand, a pound of potatos weighs more than a pound of gold, because there are 16 
avoirdupois ounces in an avoirdupois pound but only 12 troy ounces in a troy pound.  So, not only 
do we need to define units, we need to define which particular system of units they are associated 
with. 
 
In this class, we shall use the système international, also known as the MKSA system (for meter, 
kilogram, second, ampère).2,3  You are probably much more familiar with the U.S. Customary 
Units System, which is a patchwork of bizarre quantities and units.  Only three nations in the world 
have avoided an official change to the SI; in the U.S., the conversion was to have been 
accomplished by 1970.  Metric road signs are in use on some federal highways in Ohio, Kentucky, 
Tennessee, Arizona, Vermont, New Hampshire, Maine, and New York (some New York signs are 
also in French!), and exits are numbered by km on Rte 1 in Delaware. Here is a partial list of units 
used to measure distance in the United States:  
 
inch;  
foot; 1 foot = 12 inches  
yard;  1 yard = 3 feet  
fathom; 1 fathom = 2 yards  
rod; 1 rod = 16 2/3 ft  
ell; 1 ell = 2 ft  
mil; 1000 mils = 1 inch  
furlong; 1 furlong = 220 yards  
chain; 1 chain = 66 feet  
link; 100 links = 1 chain  
mile; 1 mile = 5280 feet = 1760 yards = 8 furlongs  
league; 3 miles = 1 league 
hand; 1 hand = 4 inches 

                                                 
2 There is more than one metric system, so we need to be specific.   
3 The metric system survives as one of the innovations of the First Republic (the calendar was not so lucky, but then 
how would we know when not to eat oysters?).  
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span; 1 span = 9 inches 
palm; 1 palm = 3 inches 
finger; 1 finger = 7/8 inch 
digit; 1 digit = 1/16 foot 
shaftment; 1 shaftment = 6 inches 
 
Do you know any others? 

When we describe the distance from one point to another, we usually like to use units for which 
the number is of a reasonable size.  What I mean is, if I describe the distance between my stapler 
and my computer, I would say, 21/2 feet, not 4.7x10-4 miles.  The distance between Catonsville and 
D.C is 39 miles, not 3120 chains.  However, the conversion factors between units are quite 
unwieldy.  The structure of the SI makes conversion between large and small units much more 
convenient.  There is a small number of basic units, and all other units with the same dimension 
are some power of ten larger or smaller, usually specified with a Latin or Greek prefix:  

giga = 109  
mega = 106  
kilo = 103  
milli = 10-3  
micro = 10-6  
nano = 10-9  
et c.  

For example, the meter is the basic unit for length, and other units include the kilometer (1000 m), 
the milllimeter (1/1000 m), et c. So, I would express the distance from Catonsville to D.C. as 62 
kilometers, not as 62,000 meters. 

The definitions of each unit are also well specified, although many of the definitions have 
evolved.  For example, the meter was initially defined in the 1790s as 1/10,000,000 of the distance 
from the equator to the North Pole along the meridian passing through Paris.4  Since this is not an 
easy standard to use, it was redefined in 1889 as the distance between two scratches on a platinum-
iridium bar, kept just outside Paris.  Since taking a long trip to compare measurements with the 
bar is inconvenient, a number of other nations were provided with their own bars (ours is in 
Gaithersburg).  As the necessity of making more precise measurements increased, the definition 
of the meter was changed so that anyone with the proper equipment could reproduce the standard; 
in 1960, the definition was changed to the distance covered by a 1,650,763.73 wavelengths of a 
particular orange emission line generated by 86Kr.  Finally, the definition of the meter was changed 
again in 1983 to be the distance traveled by light in 1/299,792,458 of a second.  

Although it seems as if the progressive definitions of the metre are making it more difficult to 
compare our measurements to the standard, it is actually the reverse; by liberating the standard 
from a particular piece of matter and basing it more on the laws of the nature, which are universal, 

                                                 
4 The current 2°20′14.03″ meridian. 
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anyone with the appropriate equipment can reproduce the standard  in the comfort of his own 
laboratory.   

Students often find converting units difficult.  The factor label method is useful and 
straightforward; one only need multiply by one, albeit in a particular form. 

EXAMPLE 1-2 

Suppose that we wish to find out how many seconds X there are in 3 years:  

X seconds = 3 years   . 

Note that the units are different on each side, but that the dimensions are the same, [Time].  
We'll multiply the right hand side of the equation by a quantity equal to one; we do that 
because multiplying a number by one does not change its value.  The quantity we choose to 
multiply by is (12 months/1 yr).  Since the numerator equals the denominator and since both 
have dimensions of [Time], the quotient equals one, and the right hand side is still equal to 
three years.  We cancel the units and see  that :  

X seconds = 3 years ൬
12 months

1 year
൰ = 36  months  . 

Continuing, a complete calculation would look like this: 

X seconds = 3 years ൬
12 months

1 year
൰ ൬

30 days

1 month
൰ ൬

24 hours

1 day
൰ ൬

60 minutes

1 hour
൰ ൬

60 seconds

1 hour
൰

= 9.33 × 10଻seconds. 

EXERCISE 1-2 

A meter is 100 centimeters.  Find the volume in cubic centimeters of a box with a volume of 
one cubic meter.  

HOMEWORK 1-1 

The interior of a typical ranch-style home may measure 50 ft x 24 ft x 8 ft.  What is the volume 
of this home in cubic ft?  Convert this result to cubic inches and to cubic centimeters. 

Coördinate systems 

As we shall soon see, we'll need a way of keeping 
track of the positions of objects, as well as other 
quantities.  In one dimension, that's fairly easy; we 
use the equivalent of the 'number line' we learned 
back in third grade, with some arbitrary point chosen as the origin (and usually chosen to maximize 
our convenience).  
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When we go to two dimensions, there are quite a 
number of systems, but the two most useful are 
the rectilinear or Cartesian system and the polar 
system.  In the first, two 'number lines' are set up 
at right angles with the origins at the same spot 
and with equal unit spacing.  We must however 
realize that these are not necessarily the x and y 
axes, but for now, let's say that they are.  

 
The location of an object in two dimensions can 
be specified uniquely by reporting two numbers 
in an ordered pair in the form (a, b).  The 
meaning is to start at the origin, move 'a' units in 
the x-direction and 'b' units in the y-direction; in 
this example, the location is (3, 2).  The position 
can also be specified as a direction (usually 
reported as the angle measured counter-clockwise from the x-axis) and the distance from the 
origin, (r, ).  A negative angle is interpreted as being measured CW from the x axis.  Conversion 
between these systems is possible through the use of the trig functions and the Pythagorean 
theorem: 
 

sin θ =  
opposite

hypotenuse
=

y

r
  →   y = r sin θ 

 

cos θ =
adjacent

hypotenuse
=  

x

r
  →   x = r cos θ 

 

tan θ =
opposite

adjacent
=  

y

x
  →   θ = arctan ቀ

y

x
ቁ

∗

 

 

hypotenuseଶ =  oppositeଶ + adjacentଶ  → r =  +ඥxଶ + yଶ  
 
Note that r is never negative. 
 
EXERCISE 1-3 
 

Find r and theta for the point (3, 2) as shown in the figure above. 
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Now, we usually think of the lengths of the sides of a triangle as being positive numbers, which is 
why I introduced these relationships in the first quadrant.  I assert, however, that with one small 
warning, these are valid in all four quadrants.  
 
DISCUSSION 1-3 
 

Keeping in mind that r is never negative, in which quadrants is x/r positive and where is it 
negative?  Where is cos θ positive and where is it negative? Do these match up?  What about 
y/r and sin θ? 
 
Now, here is why there is an asterisk next to the arctan function.  Get your calculator and find 
the arctangent of (2/3).  Which quadrant is 33.7o in?  Now find the arctangent of (-2/-3).  In 
which quadrant should the answer be? 

 
The problem is that your calculator does the division first, then the arctangent.  It doesn’t know 
the distinction between (-2/-3) and (2/3).  Your calculator will always give you an angle between 
-90o and +90o; it’s up to you to fix this each time.  Here’s my suggestion.  If the angle is in fact in 
Quadrant I or IIII where x is positive, then the angle your calculator gives you is already correct, 
so you do nothing.  On the other hand, if the angle is in II or III where x is negative, you must add 
180o.  So, the easiest test is to look at x.  If x is positive, you’re good.  If x is negative, that’s bad, 
and you need to fix it.  I require this: if no correction is necessary, you must still indicate that you 
checked to see if one was necessary.  I’ll be happy with a √ Q on your paper. 

EXERCISE 1-4 

Find the polar coördinates for the cartesian location (-3, -1).  

Find the cartesian coördinates for the polar location (4, 120o) 

HOMEWORK 1-2 

How far from the origin is a point located at (1 m, 4 m)? 

Scalars and Vectors 

In this course, we deal with two types of quantities, scalars and vectors.  There are other types of 
quantities, such as tensors, that thankfully we will not need to worry about.  A scalar is a quantity 
that possesses only a size or magnitude.  A vector possesses a magnitude and a direction. 

DISCUSSION 1-4 

Consider the evening weather report.  Which quantities are vectors and which are scalars? 
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The notation for vectors is to use bold type or to place a half arrow above the symbol:  A or Aሬሬ⃑ .  
The magnitude only is written as A or less ambiguously as หAሬሬ⃑ ห.  During this course, we will 
sometimes drop the arrow and rely on your sense of context to know which quantities are vectors. 

We often represent vectors with arrows drawn on for example a paper sheet.  Arrows also have 
two properties we can make use of: they have direction and they have length.  We can make the 
directions be the same, and make the length of the arrow be proportional to the magnitude of our 
vector. 

We want to investigate some properties of vectors.  To do so, let’s jump the gun a bit and introduce 
the vector displacement.  The displacement represents the movement of an object.  We can think 
of it as pointing from the starting position to the final position. This makes the visualization a bit 
easier at the start.  Later, vectors will represent much more abstract quantities, such a momentum, 

magnetic fields, or nuclear spin.  We 
do need to be careful; once a vector is 
defined, it has only two properties, 
magnitude and direction.  We can 
move the vector around as much as 
we wish so long as those two 
properties remain constant.  For 
example, in the figure, vector Aሬሬ⃑  was 
constructed to represent the 
displacement from the START to the 
FINISH, but all of the other vectors 
drawn are just as validly vector Aሬሬ⃑ . 

We can visualize adding vectors in terms of displacements: Aሬሬ⃑  + Bሬሬ⃑  says that we should start at our 
origin and travel A meters in a direction given by A, then from that intermediate destination, travel 
B meters in the direction given by B.  Conceptually, this is known as the tail-to-tip method of 
addition.5  The red vector is the sum, or resultant, of Aሬሬ⃑  + Bሬሬ⃑ .  Now, look at the bottom diagram.  If 
we were to perform the motion described by Bሬሬ⃑  first, then perform Aሬሬ⃑ , we would wind up in the same 
place.  That means that vector addition is commutative.  The order of addition doesn’t matter: 

Aሬሬ⃑ + Bሬሬ⃑ = Bሬሬ⃑ + A ሬሬሬ⃑   . 

                                                 
5 Well, O.K. it’s actually called the tip-to-tail method, but that makes no sense.  Let’s make it a thing. 
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An alternate, but equivalent, method of addition is the 
parallelogram method.  This helps explain the 
contention of commutativity; the two long sides are 

each A and the 
two short sides 
are each B.  The 
resultant will be 
the diagonal of 
the parallelo-
gram. 

 

When more than two vectors are added graphically, we 
must do one at a time, so 

Aሬሬ⃑ + Bሬሬ⃑ + Cሬ⃑ + Dሬሬ⃑ = ቀ൫Aሬሬ⃑ + Bሬሬ⃑ ൯ + Cሬ⃑ ቁ + Dሬሬ⃑  

Vector addition is also associative: 

Aሬሬ⃑ + ൫Bሬሬ⃑ + Cሬ⃑ ൯ = ൫Aሬሬ⃑ + Bሬሬ⃑ ൯ + Cሬ⃑  

 

EXERCISE 1-5 

Make an argument that vector addition is associative.  Try a graphical solution with three 
vectors.  

HOMEWORK 1-3 

Anne walks a certain distance due north, then turns due east and walks twice as far.  At the end 
of her trip, she is 450 meters from her starting point, as the crow flies.  What is the length of 
each leg of the trip?  What is the direction of her displacement relative to north? 

I have no idea how to subtract vectors, but I know a trick from grade school.  When I learned to 
add, for example 5 + 2, I started at the origin of the number line and moved five to the right, then 
another two to the right.  To subtract, say 5 – 2, I moved five to the right, then two to the left, that 
is, I did 5 + (-2).  Let’s try this: 

Aሬሬ⃑ − Bሬሬ⃑ = Aሬሬ⃑ + ൫−Bሬሬ⃑ ൯ . 
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The question is then, what is -Bሬሬ⃑ ?  I think we would want to require  

𝐵ሬ⃑ + ൫−𝐵ሬ⃑ ൯ = 0ሬ⃑   , 6 

That is, -Bሬሬ⃑  must have the same magnitude as Bሬሬ⃑ , but point in 
exactly the opposite direction 

Comparison to the parallelogram method reveals that Aሬሬ⃑  – Bሬሬ⃑  is 
the other diagonal of the parallelogram (as is Bሬሬ⃑  – Aሬሬ⃑ , the same 
diagonal but pointing in the other direction).  

Once again, to add vectors graphically, one would take paper, 
ruler and protractor, choose a scale, and draw arrows to represent the vectors such that the length 
of each is proportional to the magnitude of the corresponding vector.  To find the resultant, 
measure the length of the resultant with the ruler and back convert to find the magnitude, and use 
the protractor to find the direction. 

Well, we really don’t want you adding vectors with 
rulers and protractors for the rest of the semester.  Let’s 
investigate an analytic method.  Now that we can add 
vectors, we can also see that any given vector (shown 

in black) can be written as the sum of 
two (or more) other vectors.  In the 
diagram, you can see that the black 
vector is the sum of the two red vectors, 
but it is also the sum of the two green 
vectors as well as the sum of the two 
blue vectors.  If that's true, we might as 
well choose two vectors that will be 
convenient for us.  If we make the two vectors perpendicular, we might be able to use trig 
relationships to suss out some info.  
 
Ax is called the x-component of A and Ay is the y-component of A, that is, how much the vector 
points in each direction.  Ax and Ay are actually scalars, although they can be positive or negative 
or even zero.  We convey the directional information through the use of the unit vectors ı̂ (x 
direction), ȷ̂ (y direction), and k෠ (z direction).  Unit vectors have length one and are dimensionless 
(that information is carried in the components).  Sticking with two dimensions for now, we can 
write that Aሬሬ⃑  = Axı̂ + Ayȷ̂.  From trig, we see that Ax = A cosA and that Ay = A sinA.  Note that if 

                                                 
6 Technically speaking, this zero is also a vector, the null vector. 
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we measure A CCW from the x axis, that the signs of the trig functions correctly give the signs 
of the components.   
 
EXAMPLE 1-3 

 
Let Aሬሬ⃑  be 15 m at A= 120o, which is in the second quadrant.  We find that  
 

A୶ = A cos θ୅ = (15 m) cos 120୭ =  −7.5 m      
A୷ = A sin θ୅ = (15 m) sin 120୭ =  +13 m    

 
So, Aሬሬ⃑  =  −7.5 ı̂  +  13 ȷ̂ meters   . 
 
and the signs of these components match what we know about the direction of Aሬሬ⃑ .  
 

HOMEWORK 1-4 

The direction of a vector is 127o measured from the x-axis, and its y-component is 12.0 
units.  Find the x-component of the vector and the magnitude of the vector.  

Now, we have an alternate manner of adding vectors using the components.  Let Cሬ⃑  = Aሬሬ⃑  + Bሬሬ⃑ .   

I hope it’s clear that Cx = Ax + Bx and Cy = Ay + By.  We might say that the components of the 
sum are the sums of the components.  Once we have the components of Cሬ⃑ , we can convert them 
back to a magnitude and a direction angle. 

EXAMPLE 1-4 

Let Cሬ⃑  = Aሬሬ⃑  + Bሬሬ⃑ .  Find the magnitude and direction angle of Cሬ⃑ .   
 
A = 7 m    θA = 35o 
B = 12 m  θB = 155o 
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First, we find the components of Aሬሬ⃑  and Bሬሬ⃑ : 
 
A୶ = A cos θ୅ = (7 m) cos 35୭ =  +5.73 m 
A୷ = A sin θ୅  = (7 m) sin 35୭ =  +4.02 m 
B୶ = B cos θ୆ = (12 m) cos 155௢ =  −10.88 m 
B୷ = B sin θ୆  = (12 m) sin 155௢ =  +5.07 m   .    
 
Then we do with the components what we’re asked to do with the vectors: 
 

C୶ = A୶ + B୶ = 5.73 + (-10.88) =-5.15 m  
C୷ = A୷ + B୷ = 4.02 + 5.07 = 9.09 m   .  

 
Then, we reconstitute the components of Cሬ⃑  back into a magnitude and direction: 
 

C = +ටC୶
ଶ + C୷

ଶ = ඥ(-5.15)ଶ + 9.09ଶ = 10.45 m  , 

θେ = arctan ൬
C୷

C୶
൰

*

= arctan ൬
9.09

-5.15
൰  = arctan(-1.76) = -60.47୭  . 

 
Are we done?  No, we need to check the quadrant of the angle to see if the calculator’s answer 
is correct.  In this case, it is not.  Because Cx<0, we need to add 180o to the result.  So 

 
θେ  =  −60.47 + 180 = 119.53୭   . 

HOMEWORK 1-5 
 
Vector Aሬሬ⃑  has magnitude 8.0 units at an angle of 60o from the x-axis.  Vector Bሬሬ⃑  has magnitude 
6.0 at an angle of -30o from the x-axis.  Find the magnitude and direction of vector Cሬ⃑  = Aሬሬ⃑  + Bሬሬ⃑ . 

 
Vector Multiplication 
 
There are a number of ways vectors can be multiplied; we’ll deal with three.   
The first type of multiplication is perhaps familiar from grade school.  Let’s multiply Aሬሬ⃑  by a scalar, 
3, and call that Cሬ⃑ :   
 

Cሬ⃑ = 3 Aሬሬ⃑   . 
 
This type of multiplication is repeated addition.   
 

Cሬ⃑ = Aሬሬ⃑ + Aሬሬ⃑ + Aሬሬ⃑  . 
 
We can see that Cሬ⃑  is in the same direction of Aሬሬ⃑  but with three times the magnitude.  It should be 
easy to see that we could expand this notion to non-integer multiples as well.  It’s a little more 
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complicated when the scalar is not a dimensionless number, but the notion is the same; the value 
and dimension of the magnitude will change, but the direction will remain the same.7 
 
Next, we will define the scalar product (also called the inner product or the dot product) of two 
vectors Aሬሬ⃑  and Bሬሬ⃑  to be: 
 

𝐴  ∙ 𝐵ሬ⃑ =  ห𝐴หห𝐵ሬ⃑ ห cos 𝜃஺,஻  , 
  

that is, the magnitude of Aሬሬ⃑  times 
the magnitude of Bሬሬ⃑  times the 
cosine of the angle between them 
if they were placed tail to 
tail.  The dot product is defined to 
be a scalar.  One interpretation of 
this definition is that we are 
multiplying the magnitude of Aሬሬ⃑  
by the component, or projection,8 

of Bሬሬ⃑  that lies in the direction of Aሬሬ⃑ :  
 

Aሬሬ⃑  ∙ Bሬሬ⃑ =  A B|| = A (B cos θ୅,୆) =  หAሬሬ⃑ หหBሬሬ⃑ ห cos θ୅,୆  , 
 
as shown in the figure on the left.  Clearly, though, we could just as well think of it as the magnitude 
of Bሬሬ⃑  times the projection of Aሬሬ⃑  on Bሬሬ⃑ : 
 

หAሬሬ⃑ หหBሬሬ⃑ ห cos θ୅,୆ = B (A cos θ୅,୆) =  B A|| = Bሬሬ⃑  ∙ Aሬሬ⃑    . 
 
The dot product is therefor commutative. 
 
Keep in mind that there is nothing magical about the dot product.  It is simply a shorthand way of 
writing a particular process; as the course progresses, we’ll see that we are often interested in how 
much of one vector is in the direction of another. 
 
DERIVATION 1-1* 
 
Alternatively, we can write the vectors Aሬሬ⃑  and Bሬሬ⃑  in terms of the unit vectors ı̂, ȷ̂, and k෠.  Remember 
that ı̂ ∙ ı̂ = ȷ̂ ∙ ȷ̂ = k෠ ∙ k෠ = 1 and ı̂ ∙ ȷ̂ = ȷ̂ ∙ k෠ = k෠ ∙ ı̂ = 0.  Then, 
 

Aሬሬ⃑  ∙ Bሬሬ⃑ =  ൫A୶ı̂ + A୷ȷ̂ + A୸k෠൯ · ൫B୶ı̂ + B୷ȷ̂ + B୸k෠൯

= A୶B୶ı̂ ∙ ı̂ +  A୶B୷ı̂ ∙ ȷ̂ + A୶B୸ı̂ ∙ k෠ + A୷B୶ı̂ ∙ ȷ̂ + A୷B୷ȷ̂ ∙ ȷ̂ +  A୷B୸ȷ̂ ∙ k෠ 

+ A୸B୶ı̂ ∙ k෠ + A୸B୷ȷ̂ ∙ k෠ +  A୸B୸k෠ ∙ k෠  

                                                 
7 Looking way ahead, the momentum p of an object is given by the mass times the velocity v. Momentum and velocity 
are in the same direction, but they have very different dimensions. 
8 You can think of a projection as analogous to a shadow, the shadow that Bሬሬ⃑  casts on Aሬሬ⃑ . 
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= A୶B୶ + A୷B୷ + A୸B୸  
 
Another type of vector multiplication is the vector product or the cross product, which we define 
in two parts.  We define the magnitude of the cross product to be 
 

หAሬሬ⃑ × Bሬሬ⃑ ห =  หAሬሬ⃑ หหBሬሬ⃑ ห sin θ୅,୆  . 
 
that is, we’re taking the magnitude of A and multiplying by the 
component of B that is perpendicular to A.  One interpretation of the 
cross product's magnitude is that it is the area of the parallelogram 
formed by the vectors A and B when they are placed tail to tail.  
Using an argument like the one for the dot product, we see that 
 

หAሬሬ⃑ × Bሬሬ⃑ ห = หBሬሬ⃑ × Aሬሬ⃑ ห   . 
 
However, there is a second part to the cross product, direction.  We 
define the direction of Aሬሬ⃑  × Bሬሬ⃑  to be perpendicular to the plane that 
contains Aሬሬ⃑  and Bሬሬ⃑ .  That leaves two possible directions, for example, in the diagram, into the page 
or out of the page.  We define the direction sense using the right-hand-rule (RHR).  Point your 
index finger of your right hand in the direction of Aሬሬ⃑  and your middle finger in the direction of Bሬሬ⃑ ; 
your right thumb then points in the direction of the cross product.  You can then see that 
 

Aሬሬ⃑ × Bሬሬ⃑ = − Bሬሬ⃑ × Aሬሬ⃑    . 
 
DERIVATION 1-2* 
 

Alternatively, we can write the vectors Aሬሬ⃑  and Bሬሬ⃑  in terms of the unit vectors ı̂, ȷ̂, and k෠.  
Remember that ı̂ × ı̂ = ȷ̂ × ȷ̂ = k෠ × k෠ = 0 and ı̂ × ȷ̂ = k෠, ȷ̂ × k෠ = ı̂, and k෠ × ı̂ = ȷ̂.  Then, 
 
 
Aሬሬ⃑  × Bሬሬ⃑ =  ൫A୶ı̂ + A୷ȷ̂ + A୸k෠൯ × ൫B୶ı̂ + B୷ȷ̂ + B୸k෠൯

= A୶B୶ı̂ × ı̂ +  A୶B୷ı̂ × ȷ̂ + A୶B୸ı̂ × k෠ + A୷B୶ȷ̂ × ı̂ + A୷B୷ȷ̂ × ȷ̂ +  A୷B୸ȷ̂ × k෠ 

+ A୸B୶k෠ × ı̂ + A୸B୷k෠ × ȷ̂ +  A୸B୸k෠ × k෠  

= ൫A୷B୸ − A୸B୷൯ ı̂ +  (A୸B୶ − A୶B୸ ) ȷ̂ +  ൫A୶B୷ −  A୷B୶൯ k෠ . 
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There is a quick way of remembering how to do this.  Arrange 
the components into a table as seen in the top figure.  Rewrite 
the first two columns at the right of the table, as shown in the 
middle figure.  Lastly, multiply the quantities along each 
diagonal as shown.  If the diagonal is to the down and to the 
right (red), add the product and if it's to the left (blue), subtract. 

 
HOMEWORK 1-6* 
 

Given that  
 

Aሬሬ⃑ = 3ı̂ − 4ȷ̂ + k෠    and Bሬሬ⃑ =  −ı̂ + 3ȷ̂ + 2k෠     ,  
 
find Aሬሬ⃑ ∙ Bሬሬ⃑  and Aሬሬ⃑ × Bሬሬ⃑   . 

 
It is also sometimes useful to combine successive multiplications.  Consider the scalar triple 
product.  We’ll be using this for one problem only, but this seems like the appropriate time to 
introduce it.  Consider three vectors, not all in the same plane.  The scalar triple product has an 
interesting useful property: 
 

Aሬሬ⃑ ∙ ൫Bሬሬ⃑ × Cሬ⃑ ൯ = Bሬሬ⃑ ∙ ൫Cሬ⃑ × A൯ = Cሬ⃑ ∙ ൫Aሬሬ⃑ × Bሬሬ⃑ ൯  . 
 
DERIVATION 1-3* 
 

The three vectors Aሬሬ⃑ , Bሬሬ⃑ , and 
Cሬ⃑ , when paced tail to tail to 
tail, are the edges of a 
parallelepiped solid.  As 
discussed above, the 
magnitude of the cross 
product of Aሬሬ⃑  and Bሬሬ⃑  gives the 
area of the parallelogram-
shaped base of the solid.  
The volume V of the solid 
will be the base area times 
the height, H: 
  

𝑉 = 𝐻หAሬሬ⃑ × Bሬሬ⃑ ห   . 
 
The height H is the projection of Cሬ⃑   on Aሬሬ⃑ × Bሬሬ⃑ , so  
 

𝑉 = Cሬ⃑ ∙ ൫Aሬሬ⃑ × Bሬሬ⃑ ൯   . 
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Now, we do need to be a little careful, in that Cሬ⃑  should be on the same side of the AB plane as 
Aሬሬ⃑ × Bሬሬ⃑ ; if not, then we get the negative of the volume instead.   
 
Now, imagine that we were to roll the solid onto its BC face.  The volume would be 
 

𝑉 = Aሬሬ⃑ ∙ ൫Bሬሬ⃑ × Cሬ⃑ ൯   . 
Rolling it over again onto its AC side, 
 

𝑉 = Bሬሬ⃑ ∙ ൫Cሬ⃑ × Aሬሬ⃑ ൯   . 
 
Since rolling the solid over doesn’t change its volume, we have a useful relationship: 
 

Aሬሬ⃑ ∙ ൫Bሬሬ⃑ × Cሬ⃑ ൯ = Bሬሬ⃑ ∙ ൫Cሬ⃑ × A൯ = Cሬ⃑ ∙ ൫Aሬሬ⃑ × Bሬሬ⃑ ൯  . 
 

Lastly, let’s consider the vector triple product, Aሬሬ⃑ × ൫Bሬሬ⃑ × Cሬ⃑ ൯.  I assert that 
 

Aሬሬ⃑ × ൫Bሬሬ⃑ × Cሬ⃑ ൯ =  ൫Aሬሬ⃑  ∙ Cሬ⃑ ൯Bሬሬ⃑ −  ൫Aሬሬ⃑  ∙ Bሬሬ⃑ ൯Cሬ⃑   . 
 
DERIVATION 1-4* 
 

The straightforward path is to write each vector in terms of the unit vectors ı̂, ȷ̂, and k෠, then 
perform the operations required on each side of the equation.  Let’s try to see if we can do it in 
a less tedious way.9 
 
The vector Bሬሬ⃑ × Cሬ⃑  is of course perpendicular to the plane containing both Bሬሬ⃑  and Cሬ⃑ .  When we 
cross Aሬሬ⃑  with that vector, the result is perpendicular to Bሬሬ⃑ × Cሬ⃑ , which means it lies back in the 
B-C plane.  Therefore, we can write the triple product in terms of some additive combination 
of Bሬሬ⃑  and Cሬ⃑ : 
 

Aሬሬ⃑ × ൫Bሬሬ⃑ × Cሬ⃑ ൯ =  α Bሬሬ⃑ +  β Cሬ⃑    , 
 
where alpha and beta are real numbers.  The triple cross product must for this same reason also 
be perpendicular to Aሬሬ⃑ , so  
 

Aሬሬ⃑ ∙ ൫α Bሬሬ⃑ +  β Cሬ⃑ ൯ = 0 , 
 

α Aሬሬ⃑ ∙ Bሬሬ⃑ =  − β Aሬሬ⃑ ∙ Cሬ⃑     . 
This requires that  
 

α = γ Aሬሬ⃑ ∙ Cሬ⃑      and     β = − γ Aሬሬ⃑ ∙ Bሬሬ⃑    , 
 

                                                 
9 Ercelebi, Atilla, “A×(B×C).pdf,” accessed 12/4/2020, www.fen.bilkent.edu.tr/~ercelebi/Ax(BxC).pdf. 
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with gamma some presently unknown number that will cancel out upon substitution back into 
the previous equation.10  This relationship should be correct for any vectors, so let’s see if we 
can determine gamma by applying these relationships to a specific set of vectors, ı̂, ȷ̂, and k෠: 
 

ı̂ × (ı̂ × ȷ̂) =  α ı̂ +  β ȷ⃑   , 
 

ı̂ × k෠ =  (γ ı̂ ∙ ȷ̂) ı̂ +  (− γ ı̂ ∙ ı̂) ȷ⃑   , 
 

−ȷ̂ =  (0) ı̂ +  (− γ) ȷ⃑   , 
 

γ = 1  . 
 
Now we have that  
 

Aሬሬ⃑ × ൫Bሬሬ⃑ × Cሬ⃑ ൯ =  α Bሬሬ⃑ +  β Cሬ⃑ =  ൫Aሬሬ⃑ ∙ Cሬ⃑ ൯ Bሬሬ⃑ − ൫Aሬሬ⃑ ∙ Bሬሬ⃑ ൯ Cሬ⃑   . 

 

 
EXERCISE 1-1 Solution 

What quantities might affect the time and what are their respective dimensions?  Well, we have  

height H = [Length]  
time t = [Time] 
mass m = [Mass] 
gravitational field strength g = [Length]/[Time]2  

We might guess that  
 

t ~ Hୟmୠgୡ  . 
 

[𝑇]ଵ =  [𝐿]௔[𝑀]௕ ൬
[𝐿]

[𝑇]ଶ
൰

௖

= [𝐿]௔ା௖[𝑀]௕[𝑇]ିଶ௖   .  

 
Then, 
 
0 = a+c; 
b = 0; 
1 = -2c → c = -1/2; 
a = -c = +1/2. 
 

                                                 
10 In other words, α = A·C, β = A·C is not the only possible solution; α = 6.7 A·C, β = 6.7 A·B would fit as well.  We 
need an unambiguous solution. 
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t ~ Hଵ/ଶgିଵ/ଶ =  ඨ
𝐻

𝑔
  . 

 
The correct relationship, as we will see in the next section, is 
 

t =  ඨ
2𝐻

𝑔
  . 

 
 
EXERCISE 1-2 Solution 
 

X cmଷ = 1mଷ ൬
100 cm

1 m
൰ ൬

100 cm

1 m
൰ ൬

100 cm

1 m
൰ =  10଺cmଷ  . 

 
Note that you must cancel each of the three meters in the original value. 
 
EXERCISE 1-3 Solution 
 

θ = arctan ቀ
y

x
ቁ

∗

= arctan ൬
2

3
൰ =  33.7୭ 

 

r =  +ඥxଶ + yଶ  =  +ඥ3ଶ + 2ଶ = 3.61 
 
EXERCISE 1-4 Solution 
 
x = -1, y = -3 (There were no units.) 
 

r =  +ඥxଶ + yଶ =  +ඥ(−3)ଶ + (−1)ଶ =  √10 = 3.16 
 
Be sure to square the negative signs! 
 

θ = arctan ൬
−3

−1
൰

∗

=  arctan(3)∗ =  71.6୭ 

 
But, x is negative, so we need to add 180o to get 251.6o as the correct answer. 
 
For the second part of the exercise, we have r = 4, θ = 120o.  In this direction, there’s no ambiguity. 
 

x = r cos θ = 4 cos 120଴ =  −2 
 

y = r sin θ = 4 sin 120୭ = 3.46 
 
 
EXERCISE 1-5 Solution 
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This is a demonstration, not a proof: 
 
The green vector is the sum of 𝐴, 𝐵ሬ⃑ , and 𝐶, and 
can be written as (𝐴+𝐵ሬ⃑ ) + 𝐶, or as 𝐴+ (𝐵ሬ⃑ +𝐶). 
 
 
 
 

    
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   


