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Section 11 - Oscillations 

Let’s define a couple of terms.  An oscillator is an object that moves repetitively through a given 
path in a given time period.  In a sense, you are an oscillator, moving from home to school to work 
to home every day.  A simple harmonic oscillator (SHO) is a very special case when an object 
moves through a cycle along a line (perhaps the x-axis) around a central point (we’ll say at x = 0) 
such that its position x is given by  
 

x(t) = A cos(2π𝑓t + φ) . 
 
Here, t is time, A is the amplitude, the maximum excursion from the central point, and phi is the 
phase angle that allows us to change the cosine into a sine by shifting the curve in time.  For this 
course, phi will always be set to zero.  The symbol f is the frequency, the number of cycles 
completed per unit of time; one cycle per second is called one hertz (Hz).  Note that we will often 
replace 2πf with the angular frequency, ω (omega).  We will also define the period of oscillation, 
P, as the time to complete one cycle, and so necessarily, P = 1/f. 
 
Since the object is not moving with constant velocity, there must be some force acting on it.  More 
specifically, the force acts to return the object back towards the central point.  Such a force is 
described as a restoring force.   
 
DISCUSSION 11-1 
 

Can you remember a force we discussed that is opposite in direction and proportional to the 
displacement of an object from its equilibrium point?  Is that necessarily the only such force 
that meets those conditions? 

 
One such force is that exerted by a spring, F = (-) kX.  Let’s attached a mass m to the spring such 
that the end of the spring and the location of the mass are the same, i.e. X = x, and set it in motion.  
Following Newton’s second law, 
 

Fୗ୮୰୧୬ =  −kx = ma = m
𝑑ଶx

𝑑tଶ
   . 

 
So, we’re looking for a function x(t) that is proportional to its own second derivative.  Two such 
functions come to mind: the exponential function and the cosine function: 
 

x(t) = Ae୲ା   and x(t) = A cos(𝜔t + φ) . 
 
The presence of the phase angle φ allows for combinations of sine and cosine functions.  Let’s be 
a little bit more discerning; the second derivative is to be proportional to the negative of the original 
function, which disqualifies the exponential.  So, we have that 
 

x(t) = A cos(𝜔t + φ) . 
 
Then, 
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𝑑x

𝑑t
=  −ωA sin(ωt + φ)      and    

𝑑ଶx

𝑑tଶ
=  −ωଶA cos(ωt + φ)   . 

 
 
Let’s substitute into each side of the NII equation: 
 

−kA cos(𝜔t + φ) = m൫−ωଶA cos(ωt + φ)൯ 
k = mωଶ  . 

 
We see that our guess is a solution, but only if  
 

ω =  ඨ
k

m
   . 

 
The physical interpretation of this is that the frequency of oscillation is determined by these two 
parameters of the mass-spring system.  This is called the natural frequency of the system.  
Occasionally, the frequency is expressed in cycles per second rather than in radians per second; in 
that case, the conventional unit is the Hertz (Hz) 
 
CHEESEY EXPERIMENT 11-1 
 

Oscillations.mp4  

 

DISCUSSION 11-2 
 

To test this result, it is more convenient to measure the natural period of oscillation, Po = 1/fo: 
 

P୭ =  2π ට
m

k
   . 

 
Would we expect that the period proportional to the mass and inversely proportional to the 
spring constant?  How should the data be plotted to obtain a line?  If we were to place 100 
grams of mass at the end of a real spring, how much mass would be oscillating?   

 
EXPERIMENT 11-1 
 

Let’s square both sides of the equation above with the intention of plotting the mass as the 
independent variable: 
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𝑃
ଶ =  ቆ

4𝜋ଶ

𝑘
ቇ  𝑚  . 

 
In theory, to obtain a line, the dependent 
variable plotted should be the square of the 
period.  For the data shown in the graph, there 
is a serious problem.  The theoretical 
relationship predicts that the intercept of the 
line should be zero.  We asked a moment ago 
how much mass is actually oscillating.  Since 
this is a real spring and not our abstract 
massless spring, we should take into account 
the parts of the spring that are also moving.  We 
won’t go into it here, but under these 
conditions, we should count one third of the 
mass of the spring.1  Replotting and adding 
more springs result in lines with intercepts very 
close to zero.  We see then that the square of the 
period for each is proportional to the mass plus 
1/3 the mass of the spring.   Now, what’s 
different about these springs?  These are the 
same springs we used for Hooke’s relationship 
in Section 6.  According to the relationship 
above, we can determine each spring constant 
from the slope of the associated line, since 
 

y = (slope)x + (intercept)     ↔      P୭
ଶ = ቆ

4πଶ

k
ቇ m + 0 

 

slope =
4πଶ

k
     →      k =  

4πଶ

slope
   .  

 
Comparing results from this experiment and from those of section 6, 
  

Spring Hooke’s relationship experiment Oscillation experiment 
Nr 1 8.25 N/m 8.42 N/m 
Nr 2 16.13 N/m 16.27 N/m 
Nr 3 64.10 N/m 67.88 N/m 

 
gives us a bit more confidence that this relationship is correct. 

                                                 
1 J.G. Fox and J. Mahanty, “The Effective Mass of an Oscillating Spring,” Am. Jour. Phys. 38 No 1 (January 1970): 
98–100.  
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In the discussion above, we assumed that the only force acting on the mass was that of the spring.  
That might be appropriate way out in space, or if the mass were mounted horizontally on an 
airtrack.  But often, springs are arranged vertically, and so gravity plays a part.  Turns out, though, 
that this does not affect the results for the frequency of oscillation; the mass will simply hang at a 
lower equilibrium point as more mass is added. 

JUSTIFICATION 11-1* 

When the spring is horizontal, its motion is governed by the second law, 

−kX = ma  . 

When a massless spring is hung vertically, its lower end sits at the equilibrium point, X = 0.  If 
we add some mass to the end and allow the system to come to rest, the new equilibrium point 
will be obtained from the second law: 

−kX୕ − gm = 0     →      X୕ =  
−gm

k
   . 

Note that this is negative, because the new equilibrium point will be lower than the original 
one.  Now, let the mass oscillate about this new equilibrium point.  The second law equation 
will be 

−kX − gm = ma  . 

Substitute: 

−kX − kX୕ =  −k(X − X୕) = −kXᇱ =  ma  . 

Here, X’ is the displacement of the object from the new equilibrium point.  This is the same 
force equation (and therefor the same motion) for the case of no gravity, except that the 
equilibrium point will be at XEQ.  

Let's have a quick discussion about the energy of 
a SHO.  The kinetic energy is K= 1/2mv2 and the 
potential energy is U = 1/2 kx2, and the total is the 
sum of these two.   

E =  
ଵ 

ଶ
mvଶ +  

ଵ 

ଶ
kXଶ

=
ଵ

ଶ 
m(−2π𝑓 A sin (2π𝑓t))ଶ

+  
ଵ

ଶ 
k(A cos(2π𝑓t))ଶ

=   
ଵ

ଶ
 m

k

m
Aଶ sinଶ(2π𝑓t)

+  
ଵ 

ଶ
kAଶ cosଶ(2π𝑓t) =

ଵ

ଶ
 kAଶ  . 
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So, if we pull back the mass to x = A and release it, the energy will convert from potential to 
kinetic, then back to potential, et c. 

HOMEWORK 11-1 

An oscillator with a 0.23 second period is made from a mass M 
suspended from a spring of constant k.  The mass is then placed on a 
frictionless surface which makes a 45o angle with the horizontal, and 
the spring is attached at the top of the incline as shown.  What is the 
new period of the oscillation?  

EXAMPLE 11-2 

A 0.8 kg air-track car is attached to the end of a horizontal spring of constant k = 20 N/m.  The 
car is displaced 12 cm from its equilibrium point and released.  What is the car's maximum 
speed?  What is the car's maximum acceleration?  What is the frequency fo of the car's 
oscillation? 

The frequency of oscillation is given by  

𝑓 =  
1

2π
ඨ

k

m
=   

1

2π
ඨ

20

0.8
=  0.80 Hz . 

The velocity of the object2 is given by  

v(t) = −2π𝑓A sin(2π𝑓t) = −2π(0.80)(0.12) sin(2π𝑓t) = −0.60 sin(2π𝑓t)  .  

The speed is a maximum whenever the sine term equals ± 1.  Maximum speed is 0.60 m/s. 

The acceleration is  

a(t) = − (4πଶ𝑓
ଶ)A cos(2π𝑓t) = −4(9.87)(0.08ଶ)(0.12) cos(2π𝑓t) =  −0.03 cos(2π𝑓t). 

The maximum magnitude acceleration is when the cosine term is ± 1, so |aMAX| = 0.03 m/s2. 

HOMEWORK 11-3 

A mass (0.3 kg) and spring (k = 350 N/m) system oscillates with an amplitude of 6 cm.  What 
is the total mechanical energy of the system?  What is the maximum speed of the mass?  What 
is the maximum acceleration of the mass? 

                                                 
2 Remember that we’re always assuming that the object is pulled in the positive direction to X = A and released at 
time = zero. 
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The Simple Pendulum 

There are many other systems which exhibit simple harmonic motion (SHM), and even more that 
are close enough that we can make use of the results above for a reasonably correct approximate 
solution.  One such system is the simple pendulum, which is a point mass m (the bob) at the end 
of a massless string or stick of length l.  Let's look at the free body diagram for such an object. 
 
DERIVATION 11-1 
 

We are interested in the motion along the 
circular arc.  Let us describe the bob's 
position with s (= l , the displacement 
along the arc which we shall make positive 
to the right and negative to the left.  Theta 
will follow the same convention.  Break 
the forces into tangential and radial 
components. We aren’t really interested in 
the radial components, but tangentially we 
have 
 

−gm sinθ = ma  . 
 
The negative sign is necessary to get the direction of the force correct.  When the bob is on  the 
left side of the figure where s and theta are negative, we want the force to be in the positive 
direction. Similarly, when the bob is on the right side of the figure where s and theta are 
positive, the force must be to the negative direction. 
 
We have two types of variables here, one tangential and the other angular.  We need them to 
be the same type.  Substitute s/l for theta: 
 

−gm sin ቀ
s

𝑙
ቁ = ma  . 

 
Now, this is not the same as the equation for the mass/spring system, since the force F is 
proportional to the sine of the displacement, not to the displacement itself.  In fact, this is a 
moderately difficult equation to solve.  So, we will do what physicists often do, we will look 
at a special case, when the angle theta is ‘small.’  If an angle is small, the sine of the angle is 
approximately equal to the angle itself in radians.   

 
MATHEMATICAL DIGRESSION 
 

Put your calculator in radians mode.  Take the sine of 0.0001 radians.  How close it the result 
to 0.0001?  Is 0.01% much of a difference?  Repeat for 0.001, 0.01, and 0.1.  Are the two values 
diverging slightly?  Repeat for 0.5 radians and you will see that the result is about 4% off from 
the input.  The art here is determine how much of a divergence is acceptable, or how small is 
‘small.’  In a course like this one, we usually accept the approximation up to about 30o. 
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Continuing, 
 

−
gm

𝑙
 s = ma  . 

 
Turns out, we’ve already solved this problem.  The acceleration is negatively proportional to 
the position, same as for the mass on a spring.  So, all of the steps we went through to solve 
that problem are the same steps we would go through here, except k is replaced with gm/l.  
Then, 
 

𝑓୭ ୟୱୱ ୭୬ ୗ୮୰୧୬ =  
1

2π
ඨ

k

m
      →   𝑓୭ ୗ୧୫୮୪ୣ ୣ୬ୢ୳୪୳୫ =  

1

2π
ඨ

gm
𝑙

m
  =  

1

2π
ට

g

𝑙
   .    

 
Some of you may have verified the relationship between the frequency and the length in lab. 
 

HOMEWORK 11-4 
 
Mary-Kate (m = 50 kg) is swinging on a tire tied by a (light) rope (L = 3 m) to a tree limb.  Her 
twin Ashley comes along and squeezes into the tire with her.  Assume that at all times the 
center of mass of the person(s) riding the tire is at the end of the rope.  What was the period of 
oscillation for Kate alone?  What is the period of oscillation for the twins together? 
 

HOMEWORK 11-5 
 
A pendulum bob on a light string of length L is arranged as 
shown in the figure.  There is a peg stuck into the wall a 
distance L/3 below the point of suspension.  What is the 
period of small oscillations for this system? 
 

DISCUSSION 11-3 
 
Because we’re not solving the actual equation for the motion of the simple pendulum, the 
correct result differs to some degree from what we’ve derived.  Do you think that actual period 
of a simple pendulum at large angles is larger or smaller that for small angles?   

 
EXAMPLE 11-X* 
 

Let’s try to solve the simple pendulum correctly.  This is a difficult calculation, and one which 
I think is only worth setting up, not necessarily solving.  Consider the time t necessary for the 
bob to move from its greatest displacement at o to the bottom of its arc; this is then one quarter 
of the period, P/4.  In time interval dt, the bob moves a distance ds along the arc, such that 
 

𝑑t =  
𝑑s

v
  . 
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We can find an expression for the speed v by using conservation of mechanical energy; the 
tension does no work and the weight is a conservative force and is considered as a potential 
energy difference term. 
 

gmy୭ = gmy +  
1

2
mvଶ    →    v =  ඥ2g(y୭ − y)    . 

 
The altitudes of the bob above the lowest point of the swing can be written in terms of the 
angle the string makes with the vertical: 
 

y = L − L cosθ   , 
 
so that 
 

 v =  ඥ2gL(cosθ − cosθ)   . 
 
Next, ds can be written in terms of the angle as well: 
 

𝑑s = L 𝑑θ  . 
Put it together: 
 

𝑑t =  
𝑑s

v
=  

L 𝑑θ

ඥ2gL(cosθ − cosθ)
=  ඨ

𝐿

2𝑔
 (cosθ − cosθ)ିଵ/ଶ 𝑑θ. 

 
Finally, we integrate both sides corresponding to the travel from highest point to lowest point 
 

න 𝑑t

/ସ



=  ඨ
𝐿

2𝑔
න(cosθ − cosθ)ିଵ/ଶ 𝑑θ



ఏ

 

 
I’ll do the left hand integral, you can do the right hand one: 
 

𝑃 =  4ඨ
𝐿

2𝑔
න(cosθ − cosθ)ିଵ/ଶ 𝑑θ



ఏ

   . 

 
The Physical Pendulum 
 
DERIVATION 11-2 
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Consider an object of indeterminate shape hanging from an 
axis, as show.  This is known as a physical pendulum.  D is 
the distance between the point of suspension and the center 
of mass.  The forces acting on the object comprise a force at 
the suspension point (the pivot) and the weight, which can be 
assumed to act at the center of mass. Consider the torques 
acting on the object when it has been displaced from 
equilibrium by angle theta: 
 

−Dgm sin θ + (0)Fୗ sin(? ) = Iα   . 
 
If we once again restrict ourselves to ‘small’ angles,  
 

−Dgm θ = Iα  ,  
 
we see that this problem is the same as for the mass on a spring (alpha is to theta as a is to x) 
and that we have already solved it.  The result is found by replacing k with Dgm and m with I: 
 

𝑓୭ ୦୷ୱ୧ୡୟ୪ ୣ୬ୢ୳୪୳୫ =  
1

2π
ඨ

Dgm

I
     .    

EXAMPLE 11-1* 
 
Find the frequency of small oscillations for a vertically suspended disk of radius 
R and mass M if it is attached to an axis at its top.  
 
We can make use of the results above, but we will need to determine D and I.  
D is the distance between the suspension point and the center of mass, so, D = 
R.  The moment of inertia of a disk about its center is 1/2MR2, but we’ve moved the axis a 
distance h = R, so we’ll invoke the parallel axis theorem: 
 

Iୈୋ = Iେ + Mhଶ =   
ଵ

ଶ
MRଶ + MRଶ =

ଷ

ଶ
MRଶ   .  

𝑓୭ ୦୷ୱ୧ୡୟ୪ ୣ୬ୢ୳୪୳୫ =  
1

2π
ඨ

RgM
య
మ

ୖమ
   =

1

π
ට

g

6R
  .    

HOMEWORK 11-X 
 

Find the natural frequency of oscillation of a thin rod of length L and mass M rotating about 
an axis through an end. 

 
HOMEWORK 11-6 

 
First, find the frequency of a simple pendulum with a point mass bob of mass M of a light 
string of length L.  Then, find the frequency of a spherical bob of mass M and radius R = 0.1L 
at the end of that same light string.  Calculate a per cent difference. 
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EXERCISE 11-1* 
 
A mass is attached to two massless springs as shown in the 
figure.  What is the natural frequency of oscillation fo if M = 7 
kg, k1 = 300 N/m, and k2 = 900 N/m?  Assume no friction.  HINT: 
Find the effective spring constant of the two springs is they were replaced by a single spring 
that does the same job. 
 

HOMEWORK 11-7 
 
A mass is attached to two massless springs as shown in the 
figure.  What is the natural frequency of oscillation fo if M = 7 kg, 
k1 = 300 N/m, and k2 = 900 N/m?  Assume no friction. 

Damped Oscillations 

We spoke briefly about damped oscillations.   The discussion above suggest that, if one sets the 
mass/spring system into oscillation, the total energy of the system remains constant and the mass 
will vibrate forever with the same amplitude.   In fact, we know that the mass will slow a bit on 
each pass due to friction with the air (usually assumed to be a drag force of the form FDrag= -bv) 
or the table; energy is removed as friction performs negative work on the mass.  A typical NII 
equation for laminar flow of a fluid around a moving object is 
 

−kx − b
𝑑x

𝑑t
= m

𝑑ଶx

𝑑tଶ
   . 

 
 
The figure shows a lightly damped system (black curve) and an overdamped system (red line), 
which loses so much energy so quickly that it never oscillates even once.  A good example of the 

overdamped system is the 
car shock absorber.  The 
car (m) is supported by 
springs (k), so that SHM is 
possible.  If one were to 
drive over a bump with 
faulty shocks, the car 
would then continue to 
oscillate at about 1 Hz for 
several seconds.  Shock 

absorbers dampen the system so that the ride smooths out without the oscillations.  

DISCUSSION 11-4 

The natural frequency of a lightly damped oscillation is slightly lower than that of an undamped 
system.  Can you give a brief, non-mathematical reason for this?  Consider the very first swing 
of the bob.  What does the retarding force do to the speed of the bob? 
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The frequency of oscillation for a lightly damped system is given by3 
 

ωᇱ =  ඨ
k

m
−

bଶ

4mଶ
 

HOMEWORK 11-X 
 

Show that when the damping coëfficient b is high enough, oscillation is not possible.  Find that 
critical value of b. 
 

Resonance 
 
If we were to disturb the mass/spring system in some way and step back, the system will oscillate 
with natural frequency ωo = [k/m]1/2.  If it's disturbed again in a different manner then left to itself, 
the system will again oscillate at that same natural frequency, until its energy is depleted.  If we 
want the system to continue to oscillate, we must replace the energy lost to dissipative forces.  Let's 
jiggle the other end of the spring, applying a force though a distance (i.e., doing work), at some 
frequency f, which is then known as the driving frequency.  Let us vary the driving frequency to 
see the effect on the system.  If we jiggle the spring at a very low frequency, we see that the mass 
oscillates with the same frequency at which it is driven, but with a small amplitude.  Changing to 
very high driving frequency, we see 
once again that the mass oscillates at 
the driving frequency, but with a 
very small amplitude.  However, if 
we excite the system at a driving 
frequency very near to the natural 
frequency, we see that the response 
of the system, as demonstrated by 
the amplitude of oscillation, 
increases.  If we plot this response as 
a function of the driving frequency, 
we see the curve shown in the figure.  
Consider this simplified situation: 
 

The green line represents oscillation at 
the natural frequency.  If we were to 
apply the force as the shown by the blue 
line at a frequency less than fo, we would 
see that sometimes the force is acting in 
the direction of motion of the mass, but at 
other times, against the motion.  On 
average, then, no work is done by that 

force.  The red line indicates the force with frequency > fo, and the argument is the same.  When 

                                                 
3 If you like, you can check this.  Assume a solution of the form x(t) = Aeiω’t, where i is the root of -1. 
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we vary the applied force at the same frequency as the natural frequency, we are always applying 
force in the direction of motion of the mass, so all work we do is positive.  If the rate of doing 
work is greater than the rate of energy dissipation, the amplitude of the oscillation will increase.  
The condition when the system is driven at its natural frequency and delivers its greatest response 
is called resonance.  Sometimes resonance is desirable, sometimes not.  For example, if one wants 
to push a small child on a swing, the greatest amount of fun (or terror) is attained when one pushes 
the swing at its natural frequency.  On the other hand, if the ground shakes at the natural frequency 
of a skyscraper, the building may respond with an amplitude beyond the limits of structural 
integrity.  The Tacoma Narrows Bridge collapse occurred because the wind passing over the bridge 
excited one of the span's torsional oscillation modes, resulting in the collapse about three hours 
later.  Are you surprised at the incredible elasticity of steel and concrete?  Only a dog lost its life 
in the collapse, because the owner left it behind when he abandoned his car on the bridge 
(Hmm!).  The bridge had exhibited strange effects for the three months it was open.  There are 
films of the deck of the bridge oscillating in a vibrational mode much like waves in the ocean; cars 
could actually disappear from view behind the humps which rose and fell in the roadway.  A related 
system is that of tall skyscrapers.  Once again, if the wind were to gust at the natural frequency of 
the building, it might cause collapse; modern buildings often have a mechanism to 're-tune' the 
vibrational modes of the building away from the current driving frequency of the wind.  

 
 
Exercise 11-1 Solution 
 
Suppose that Spring 1 is stretched from its equilibrium length a distance X1.  To do this, a force 
of F1 = k1X1 is required.  This force is applied by Spring 2.  Suppose that Spring 2 is stretched a 
distance X2 from its equilibrium length.  This requires a force F2 = k2X2.  By the third law, this is 
the same magnitude force as F1 and the force applied to the mass.  We want to replace the two 
springs with a single spring of constant kEFF that will apply the same force when it is stretched a 
distance XEFF = X1 + X2. 
 

X =  Xଵ +  Xଶ  
 

F

k
=  

Fଵ

kଵ
+

Fଶ

kଶ
 

 
All of the forces here are the same magnitude, so 
 

1

k
=  

1

kଵ
+

1

kଶ
     →      k =  

kଵkଶ

kଵ + kଶ
=  

(300)(900)

300 + 900
= 225 N m⁄  . 

 
Then,  
 

𝑓 =  
1

2π
ඨ

k

m
=   

1

2π
ඨ

225

7
=  0.90 Hz . 


