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Section 13 – A Synthesis Topic 

As always, our discussions here will be greatly simplified. 

DISCUSSION 13-1 

You’re quite a ways into the course now, so let me ask you a question.  Suppose you have two 
theories. Each is capable of making predictions that can be tested against measurements in the 
real world.  Theory A’s predictions are off by a bit, but Theory B’s are off by twice as much.  
Which would you accept as the ‘correct’ theory?   

Congratulations! You just decided that the sun orbits the earth!  The notion that the earth orbits 
the sun can be traced back to at least the second century B.C.  It was discounted for a number of 
reasons, but one argument was the lack of an observable stellar parallax that argued against the 
earth’s motion.  As we know now, the parallax is too small to have been measured with the 
instruments of the time.  However, it was known that the motions of the other planets were not 
circular, which eventually led to the geo-centric Ptolemaic model, which you may remember 
required each planet to move along an epicycle while moving around the sun.  Copernicus’s model 
asserted that the planets, including the earth, orbit the sun in circles, but the error of this model in 
predicting the positions of the planets was somewhat greater than that of the Ptolemaic model.  It 
was left to Kepler to suggest that the planets orbit the sun in elliptical orbits.1 

We’re going to go through these concepts in an ahistorical order.  We will assume that the planets 
each orbit the sun in a circular orbit, unless specified otherwise.  Mercury and Pluto have very high 
eccentricities, for different reasons; of the other seven, the worst is Mars at just under 0.1. 

What do We Know about the Earth?  

DISCUSSION 13-2 

What shape is the earth?  Can you think of three pieces of evidence to support your claim?2   

DISCUSSION 13-3 

Does the earth rotate, or does the sun move around the earth?  Does the earth itself translate 
through space?  Can you think of three pieces of evidence to support your claim?   

DISCUSSION 13-4 

How big is the earth?  Can you think of three ways you might measure it? 

How Big is the Solar System? 

                                                           
1 If you want to know more, read an Astronomy book. 
2 Clark, Daniel J., director: 2018. Behind the Curve. Netflix.  If you have time, take a look at this film that follows a 
group of flat-earthers who design perfectly good experiments to test whether the earth rotates or not. 
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For some of our discussion, we’re going to need to know the 
distances to the planets in our solar system.  Finding the relative 
distances is fairly easy, although finding the values in meters is 
quite a bit more difficult.  For convenience, let’s define the 
radius of the earth’s orbit as 1 Astronomical Unit (A.U.).  Now 
let’s consider an inferior planet (Mercury or Venus).  Because 
they orbit inside the orbit of the earth, they are never seen too 
far away from the sun.  As they and the earth move, we see them 
rise just before sunrise (a morning star), later and later until they 
disappear into the glare of the sun, only to reappear on the other 
side as an evening star that sets soon after the sun. The process 
then reverses.  When looking at this diagram, remember that the 

earth is also orbiting.  What we need to know is the maximum 
elongation of the inferior planet, that is, the maximum angular 
separation between the planet and the sun as seen from earth.  At that 
time, our line of sight to the planet is necessarily tangent to the planet’s 
orbit and perpendicular to the planet’s position vector from the sun.  
Trigonometry tells us quickly that 

sin(θ୫ୟ୶) =  
R୔

1 AU
     →      R୔ = sin(θ୫ୟ୶)  in A. U. 

EXAMPLE 13-1 

Mercury’s maximum orbital elongation varies between 18o and 28o.  This is because its orbit 
is decidedly not circular.  The distance from the sun to Mercury then varies from about sin(18o) 
= 0.31 AU to sin(28o) = 0.47 AU 

HOMEWORK 13-1 

The elongation of the orbit of Venus as seen from the earth is more constant at about 46o.  What 
is the distance from the sun to Venus in AU? 

Finding the radius of the orbit of a superior 
planet (Mars, Jupiter, Saturn, Neptune, and 
Uranus) requires knowing the period of the 
earth’s orbit as well as that of the planet’s.  We 
can start in Position 1 when the planets are lined 
up with the sun (the planet is at its highest in the 
sky at midnight).  As time passes, both planets 
travel around the sun, but at different rates.  We 
wait until the planet sets at midnight as at 
Position 2, at which time we know that the line 
from the earth to the sun and the line from the earth to the planet are perpendicular.  Angle theta 
is the difference between beta and phi, each of which are determined by calculating the fraction of 
each planet’s period.  The radius of the planet’s orbit is then 
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cos(θ) =  
1 AU

R୔
     →      R୔ =  

1

cos(θ)
 in AU. 

EXAMPLE 13-2 

The time between Position 1 and Position 2 for Jupiter is 89 days (we’re rounding off a bit 
here).  The orbital period of Jupiter is 4331 earth days, and for the earth of course 365 days.  
Then, 

𝜑 =  
89

4331
360௢ =  7.5௢   𝛽 =  

89

365
360௢ =  87.8௢     𝜃 =  𝛽 − 𝜑 =  87.8௢ −  7.5௢

=  80.3௢  

𝑅௉ =  
1

cos (80.3௢)
= 5.94 𝐴𝑈  . 

Not too far off.  The currently accepted value is about 5.2 AU.   

DISCUSSION 13-5 

Can you think of some reasons for the discrepancy? 

HOMEWORK 13-2 

If you were on one of the moons of Jupiter looking inward at the earth, what would be the 
earth’s greatest elongation angle?  Use 5.2 AU as the distance between Jupiter and the sun. 

These methods, pursued more carefully, can give us some acceptable values for the relative 
spacings of the planets in our solar system.  How can we know the actual values?  The question of 
the distances to the sun and moon has been a hot topic for millennia.  Many methods have been 
tried, such as observing the earth’s shadow on the moon during lunar eclipses, parallax 
measurements, and transits of inferior planets across the sun’s disc.  The most straightforward 
seeming method to us today was performed in the early sixties by Gordon Pettengill,3 who bounced 
a radar signal off the surface of Venus and measured its time of flight.  Knowing the speed of radio 
waves in space allows for calculation of the distance and provides an accurate value for the AU of 
1.496×108 meters. 

Law of Universal Gravitation 

As is common in these notes, we’re going to go out of historical order.  We will also assume that 
orbits are essentially circular, except where noted. 

We have discussed in previous sections that there is a force of attraction between the earth and any 
object near its surface, which we call the object’s weight.  We also observe that the moon orbits 
the earth and realize that such motion requires a centripetally directed force.  We may then jump 
to the conclusion that it is gravity that maintains the moon in its orbit.  Of course, today there are 

                                                           
3 Pettengill, G.H., et al. 1962. “A Radar Investigation of Venus.” The Astronomical Journal 67, no. 4 (May): 181–
190. 
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tens of thousands of objects orbiting the earth.  Galileo’s discovery of the four large moons orbiting 
Jupiter and the acceptance of a Copernican heliocentric model for the solar system suggest that 
the earth is not special, and that perhaps all objects exert this attractive gravitational force on all 
other objects.  Newton’s analysis of planetary motions led him to hypothesize that the magnitude 
of this force is proportional to the product of the two masses and inversely proportional to the 
separation between them.  This result is expected to be true for two point masses, and 
approximately true for objects small compared to their separation.  This results in what we now 
call the law of universal gravitation: 

F୥ = G
MଵMଶ

rଶ
  (always attractive) . 

First, let’s see if we can verify at least part of this law in the wild.  Let’s simplify by assuming that 
orbits are essentially circular (which is fairly true for all the planets except Mercury) and that the 
sun is so much more massive than the planets that it doesn’t move.  Objects moving in circles 
require a centripetal force.  At this point in our discussion, we don’t know the masses of the planets 
or the sun. but we do know the relative distance of each from the sun in AUs.  So, let’s consider 
the specific force4 experienced by each planet; this quantity is easy to calculate in that it is just 
equal to the centripetal acceleration: 

F୥

M୔୐୅୒୉୘
=   aେ . 

If we plot the logs of the specific forces v. the logs of the planets’ distances according to Newton’s 
relationship, we should obtain a line with slope -2. 

log ൬
F୥

M୔୐୅୒୉୘
൰ = log(GMୗ୙୒) + (−2) log r . 

                                                           
4 Specific, in this context, means per unit mass.  As another example, mechanical engineers often refer to the 
specific volume of a material instead of the density, its reciprocal. 
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The Galilean moons of Jupiter give us a second system to study, although clearly the value of the 
central mass is different.  If we push it a bit, we can add in the earth’s moon, Newton’s falling 

apple, and maybe a typical satellite 
as well.  Note that in the graph, 
different, and sometimes very odd, 
undisclosed units are used for each 
curve.  Regardless of the units used, 
we see that the specific force goes 
as the inverse second power of the 
objects’ separations in each of the 
three cases.  We’ve also shown that 
the force is proportional to the 
orbiting object’s mass.  What we 
have not determined is the value of 
G.  We could however determine 
the products GMSUN, GMEARTH, and 
GMJUPITER from the curves’ 

intercepts. 

EXAMPLE 13-3 

Let’s see if we can get an estimate for G.  Consider the moon orbiting the earth.  The moon is 
on average 3.825×108 m from the center of the earth and completes one orbit every 27.3 days 
(angular speed is then 2.66×10-6 rad/sec).  We’ll need an estimate for the mass of the earth.  
We have known since antiquity that the earth is a sphere of radius 6.4×106 m, and we can 
estimate from rocks we find on the surface that the density D is 2900 kg/m3.  We estimate the 
mass of the earth to be 

M୉ = D ×  Vol =  D 
4π

3
R୉

ଷ = 2900
4π

3
 (6.4 × 10଺)ଷ = 3.18 × 10ଶସ kg  . 

Then, by NII, 

F୭୬ ୑୭୭୬ =  M୑୭୭୬ aେ ୑୭୭୬ 

G
M୉୅ୖ୘ୌM୑୓୓୒

rଶ
=  M୑୓୓୒ ωଶr 

G =
ωଶrଷ

M୉୅ୖ୘ୌ
=

(2.66 × 10ି଺)ଶ(3.825 × 10଼)ଷ

3.18 × 10ଶସ
= 1.245 × 10ିଵ଴ Nmଶ kgଶ⁄  . 

 

In 1798, Cavendish5 presented the results of his experiments to determine the density of the earth.  
This is equivalent to determining the value of G.  The results from Cavendish’s experiments 

                                                           
5 Cavendish, Henry. 1798. “Experiments to Determine the Density of the Earth.” Philosophical Transactions of the 
Royal Society of London 88 (June): 469-526. 
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averaged over twenty-nine trials is 6.578×10-11 Nm2/kg2.  A more recent value is 6.67×10-11 
Nm2/kg2. 
 
EXPERIMENT 13-1* 

We can make use of Cavendish’s measurements to determine a value for the proportionality 
constant G.  However, unlike the types of experiments we have been looking at throughout 
these notes, Cavendish made many extremely careful measurements of what is essentially one 
data point.   

First, a measurement of the local value of g was made by adjusting the length of a pendulum 
so that its period6 was two seconds; lPEND = 0.9942 meters. Then, 

P = 2πඨ
𝑙௉ாே஽

g
   →    g =

4πଶ𝑙௉ாே஽

Pଶ
=

4πଶ(0.9942)

2ଶ
= 9.81195 N kg⁄  . 

You may remember that this result comes from N II, where the restoring tangential force on 
the pendulum bob is the tangential component of the weight, given by 

𝐹 = (−)𝑔𝑚 𝜃 

in the small angle approximation.   

The apparatus itself was, in essence, a light rod of length L = 1.862 (R = 0.931 m) meters 
suspended from a wire and having a 0.73 kg mass (m) at each end (labelled ‘b’).  The figure 
shows the apparatus as seen looking down from above.  This forms a torsional pendulum, 
where the object rotates due to the restoring torque from the twisted suspension wire (coming 
up out of the page).  We assume that the torque is proportional to the angular displacement of 
the rod: 

                                                           
6 Cavendish’s ‘vibration’ is half of what we call a period. 



- 233 - 
 

τሬ⃑ =  −κ Δθሬ⃑    . 

The period of oscillation of such a structure should be given by 

P୘୓ୖୗ୍୓୒୅୐ = 2πඨ
I

κ
=  2πඨ

2mRଶ

κ
   . 

Cavendish’s calculations are couched in proportions; let’s try to place them in a more equation-
oriented format.  Let’s suppose that there is some particular value of the torsional constant, κo, 
such that the period Po of oscillation of a massless rod of length Lo (= 2Ro) with a mass m on 
each end is exactly 2 seconds, and the restoring forces (one exerted at each end), as for a simple 
pendulum, are given by F = - gm Δθ.  As such, the frequency of oscillation must be the same 
as for a simple pendulum of the same length Ro (= 0.9942 m).  Comparing,  

−κ୭ Δθ = τ = 2FR୭ =  −2gmR୭ Δθ     →      κ୭ =  2gmR୭   . 

Now, let’s change the torsional constant to some actual value, κ, and find the force required at 
each end to displace the rod by an angle Δθ when the length of the rod is changed to 2R.   

F =  
ଵ

ଶ

τ

R
= −

 κ

2R
 Δθ =  −

 ൬
4πଶ2mRଶ

Pଶ ൰

2R
 Δθ = −

 (4πଶ2m)R

2Pଶ
 Δθ = −

 ൬
P୭

ଶκ୭

R୭
ଶ ൰ R

2Pଶ
 Δθ

=  −
 ൬

P୭
ଶ(2gmR୭)

R୭
ଶ ൰ R

2Pଶ
 Δθ =  −

 P୭
ଶ

Pଶ

R

R୭
gm Δθ 

= −
 2ଶ

Pଶ

0.931

0.9941
(9.81195)(. 72977)Δθ =  −

26.82384

Pଶ
 Δθ . 

 

This is a very round-about way of characterizing the torsional constant.  For a particular support 
wire, we set the rod into oscillation and measure the period, P to determine κ.  What we’ve 
done is calibrate an imaginary torsional pendulum against a real simple pendulum, then 
calibrated a real torsional pendulum against the imaginary one.   

Much of the Cavendish paper reports on testing for the effects of temperature, magnetism, air 
currents, and the like.  There are also some corrections due to the geometry of the apparatus 
and the fact that the rod here is not really massless.  I’m just going to throw those in without 
further justification.  The result is then 

F =  −
27.157 

Pଶ
Δθ . 

Next, the actual experiment.  Masses M of 158.045 kg are placed at the locations labelled W, 
approximately 0.2248 meters from the small masses, m, and the amount of deflection is then 
measured in radians.  The large masses are then switched to the locations labelled w and the 
measurements repeated in the other direction in an attempt to eliminate bias.   The masses were 
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never varied, and the separation was always about the same, which is why I said earlier that 
really only one point was measured, albeit many times. 

So, if we accept that  

F =  
GMm

rଶ
  ,  

 
then, 

G =
Frଶ

Mm
   . 

 
The histogram shows the distribution of 
values obtained from Cavendish’s data.  
All values are less than 8.5% from the 
currently accepted value.  Cavendish 
himself estimated his uncertainty to be 
about 7%. 
 
HOMEWORK 13-3* 
 

The first measurement Cavendish made with his second wire had the following results.  The 
period of oscillation of the torsional pendulum was 13 mins 48 seconds.  The angular 
displacement angle was measured at the end of a 38.3 inch arm that moved laterally 2.95 20ths 
of an inch.  Find G from these data. 

 
DISCUSSION 13-6 
 

Why do you suppose that the estimate of the value of G in Example 11-X is so far off from the 
accepted value of today? 
 

Kepler’s Third Law of Planetary Motion 

Johannes Kepler developed three valid laws based on the motions of the planets.  The third of these 
(K III) is that the ratio of the square of the period of the orbit to the cube of the semi-major axis7 
of the orbit is the same for any object orbiting a particular central mass.  If we restrict ourselves to 
circular orbits, this is quite easy to show.  Starting from NII, and assuming that MOBJECT << 
MCENTRAL so that the central mass remains at the center of the circular orbit, 

F୥ =
GMେ୉୒୘ୖ୅୐M୓୆୎୉େ୘

rଶ
=  M୓୆୎୉େ୘aେ =  M୓୆୎୉େ୘ωଶr =  M୓୆୎୉େ୘ ൬

2π

P
൰

ଶ

 r  , 

rଷ

Pଶ
=  

GMେ୉୒୘ୖ୅୐

4πଶ
  . 

                                                           
7 For circular orbits, the semi-major axis is also the radius. 
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So, any small objects orbiting a common central mass will have the same constant.  For the special 
case of planets orbiting the sun, we usually use AUs and Earth years, so that the constant equals 
1.  Plus, in general, since we now know the value of G, we can determine the mass of a central 
body by analyzing the motions of its satellites.   

EXAMPLE 13-4 

Mars is 1.524 AU from the sun.  How many earth years does it take for Mars to complete one 
orbit about the sun? 

Since Mars and the earth both orbit the sun, we can write  

r୉
ଷ

P୉
ଶ =

r୑
ଷ

P୑
ଶ      →      P୑ =  P୉ ඨ

r୑
ଷ

r୉
ଷ = 1 ඨ

1.524ଷ

1ଷ
= 1.88 earth years  . 

EXAMPLE 13-5 

Calculate the mass of the earth based on the movement of the moon. 

The moon’s motion about the earth is not very circular, but we’ll give it a try.  Distance to the 
moon averages out to 3.844×108 m with an orbital period of 27.3 earth days.  We worked out 
earlier that  

rଷ

Pଶ
=  

GMେ୉୒୘ୖ୅୐

4πଶ
   →    Mେ୉୒୘ୖ୅୐ = 4πଶ

rଷ

G Pଶ
=  4πଶ

(3.844 × 10଼)ଷ

6.67 × 10ିଵ (2.358 × 10଺)ଶ

= 6.06 × 10ଶସ kg  .  

HOMEWORK 13-4 

The moon Miranda orbits Uranus at a distance of 129,400 km with a period of 1.41 earth days.  
Find the mass of Uranus. 

Geo-stationary satellites 

DISCUSSION 13-6 

Do you have satellite tv?  You may have noticed that your receiving dish always points to the 
same spot in the sky where, one presumes, your provider’s satellite is lurking.  But, doesn’t the 
earth rotate?  How is it that you don’t need to continuously repoint your dish? 

Satellites orbit the earth, in a sense, constantly falling toward the earth, but also moving 
horizontally so that they keep missing it.  A truly stationary satellite would simply fall straight 
down to the earth.  The idea here is to place the satellite into a special orbit so that, as seen from 
the earth, it appears stationary.  This places three basic constraints on the orbit.  First, it must be a 
circle centered on the center of the earth.  Second, it must run above the earth’s equator. Third, the 
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distance from earth to the satellite should be such that it completes an orbit in 23 hours, 56 
minutes.8   

HOMEWORK 13-5 

Using the result presented in the last section, find the radius of the orbit of a truly geo-stationary 
satellite. 

Lagrange Points* 

One might wonder if there is an 
analog to synchronous satellites in a 
two body system such as the earth and 
sun.  For example, is there a spot 
between the sun and earth where one 
could place a satellite such that it 
remains on the line connecting the 
two bodies, even as it orbits the larger?  Such a spot is called the Lagrange 1 Point (L1).  It is not 
just a question of finding a location where the gravitational forces from earth and sun cancel; there 
must be some net force toward the sun to keep the satellite in a circular orbit.  Nor can we use the 
third law of planetary motion, since there is more than just the one body acting on the satellite.  
Let’s make toward the sun be a positive force and away negative (i.e., centripetal force is positive, 
centrifugal is negative, as always).  We want to find R, the distance from the center of the sun to 
the L1 point.  From NII, 

෍ Fሬ⃑ େ ୬

୬

= maሬ⃑ େ 

+ G
Mୗ୙୒Mୗ୅୘

Rଶ
−  G

M୉୅ୖ୘ୌMୗ୅୘

(Rୗ୉ − R)ଶ
=  Mୗ୅୘aେ =  Mୗ୅୘ωଶR  . 

The angular speed ω for the satellite should be the same as for the earth, 2π radians/year.  Let’s 
eliminate MSAT and re-arrange: 

(ωଶ)Rହ − (2ωଶRୗ୉)Rସ + (ωଶRୗ୉
ଶ )Rଷ − ൫G(Mୗ − M୉)൯Rଶ + (2GMୗRୗ୉)R − (GMୗRୗ୉

ଶ ) = 0 

                                                           
8 If one can tolerate some small apparent motion in the sky, some of these restrictions can be relaxed. 
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Because this is a quintic equation, this calls for a numerical solution.  We’ll program this into 
Excel and see what value of R makes it equal zero.  In fact, while we’re at it, let’s find L2 and L3 

as well.  For L2, both the 
earth and the sun are pulling 
the satellite toward the 
center of its orbit, and in fact 
also for L3, although the 
earth-satellite distance is 
quite different.  The 
corresponding equations are 
then 

 

 

 

+ G
Mୗ୙୒Mୗ୅୘

Rଶ
+  G

M୉୅ୖ୘ୌMୗ୅୘

(𝑅ௌா − 𝑅)ଶ
=  𝑀ௌ஺்𝜔ଶ𝑅 

(ωଶ)Rହ − (2ωଶRୗ୉)Rସ + (ωଶRୗ୉
ଶ )Rଷ − ൫G(M୉ + Mୗ)൯Rଶ + (2GMୗRୗ୉)R − (GMୗRୗ୉

ଶ ) = 0 

and 

+ G
Mୗ୙୒Mୗ୅୘

Rଶ
+  G

M୉୅ୖ୘ୌMୗ୅୘

(𝑅ௌா + 𝑅)ଶ
=  𝑀ௌ஺்𝜔ଶ𝑅 

(ωଶ)Rହ + (2ωଶRୗ୉)Rସ + (ωଶRୗ୉
ଶ )Rଷ − ൫G(M୉ + Mୗ)൯Rଶ − (2GMୗRୗ୉)R − (GMୗRୗ୉

ଶ ) = 0  . 

 

The graph plots the three functions above and is rescaled to find the zeros.  The results are: 

L1 148.1 Mkm9 from the sun 1.5 Mkm from the earth towards the sun 
L2 151.1 Mkm from the sun 1.5 Mkm from the earth opposite the sun 
L3 149.6 Mkm from the sun About the same distance from the sun as earth is, but on the 

other side of the sun from the earth 
 

                                                           
9 We say a million kilometers, but not a gigameter! 
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There are two more Lagrange points, but 
we’ll leave them for your junior level 
Physics class.   

DISCUSSION 

Can you think of an application of 
L1?  What about L2?  What kind of 
satellite would you place at either 
point?  What about L3? 

 

 

Gravitational Potential Energy 

Back in Section 6, we discussed gravitational potential energy, but restricted ourselves to situations 
near the surface of the earth, where the gravitational field g was considered to be constant.  In that 
case, we decided that the potential energy of an object was given by 

U୥ = gmy  , 

with y and therefor U often defined, arbitrarily to be sure, to be zero at the surface of the earth.  In 
that picture, the weight of an object does the same amount of (negative) work for each meter its 
altitude is increased.   But, if Newton’s law of universal gravitation is correct, the weight is actually 
getting weaker every meter the object moves away from the earth, and so the work done by the 
weight through each meter will become less and less.  Let’s do this:  take an object of mass m and 
place it a distance r = R from the earth.  Then, we will very slowly push the object out towards r = 
infinity.  If we move it very slowly, the kinetic energy K will remain about zero, and all the work 
we do will go into the potential energy of the mass, m. 

W୛୉ ୈ୓ =  −W୥ =  −൫−∆U୥൯ =  U୥ ୤ −  U୥ ୧ =  U(∞) − U(R) 

We remember that, in general,  

W = F ∆x cosθ୊,∆୶  . 

In this case, both the force and the 
displacement are outward, so the 
cosine term gives us a +1.  However, 
the force is not constant.  So, 

W୛୉ ୈ୓ =  න
GM୉m

rଶ

ஶ

ୖ

 𝑑𝑟 = −GM୉mrିଵ|ୖ
ஶ  =  0 −

−GM୉m

R
= U୥(∞) − U୥(R). 

If we set the potential energy to zero at infinity, as suggested by this formula, then 
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U୥(r) =  −
GM୉m

r
  . 

How is this consistent with our Section 6 notion that U(y) = gmy?  Suppose we start with an object 
of mass m right at the surface of the earth, so r = RE = 6.4x106 m.  Let’s raise it a small distance 
dr << RE.  Then, 

𝑑U୥

𝑑r
=  +

GM୉m

rଶ
  . 

Evaluate this at the earth’s surface: 

𝑑U୥ =  
GM୉m

Rா
ଶ 𝑑r ≈

(6.67 × 10ିଵଵ)(5.972 × 10ଶସ)

(6.37 × 10଺)ଶ
m∆y = ൬9.82

N

kg
൰  m∆y = gm Δy  . 

And so, we see that the two relationships are consistent at distances not too far above the surface 
of the earth. 

HOMEWORK 13-6 

Suppose a giant asteroid started from rest a very, very large distance from the earth on a 
trajectory that caused it to hit the earth’s surface.  How quickly would it be moving as it entered 
the earth’s atmosphere?  If the mass had been 2×1019 kg (a typical mass for large asteroids in 
the solar system save for the very largest), how much energy would be released?  FYI, the 
largest of the Soviet cold war warheads was thought to be able to release 2×1017 joules. 

Kepler’s Second Law of Planetary Motion 

Now, we’re going to start considering 
the possibility that the orbits are not 
circular.  The first law says that the 
orbits of objects are actually ellipses, of 
which a circle is a special case.  That 
will actually be our final topic in this 
section.  For now, accept it and we’ll 
work on the second law of planetary 
motion (KII), which states that a line 
connecting any orbiting object to its 
central mass will ‘sweep out’ a given 
area within the orbit in a given amount 
of time regardless of where in the orbit 

the object is. For a circular orbit, that should be fairly obvious.  Let’s start with something we 
know from Section 9, the torque.  You may remember that the toque of a force is given by  

τሬ⃑ = r⃑ × Fሬ⃑ ,    or |τሬ⃑ | = |r⃑|หFሬ⃑ ห sinθ୰,୊  . 
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The vector r⃑ points from the Sun out to the planet, and the gravitational force on the planet is 
directed back along that line towards the Sun.  The torque exerted on the planet is therefor zero 
because θr,F = 180o.   

DISCUSSION 13-7 

You might remember that we have a special situation when the torque on an object is zero.  
What quantity is conserved in that case?  How did we write that quantity back in Section 9?  
What can you do with that expression if we assume that the planet is small enough to be 
considered a point mass? 

In the same way that force causes a change in momentum, torque causes a change in angular 
momentum.  If there’s no torque, then angular momentum is conserved.  You may remember that 
one way of writing the angular momentum of a point mass about a given pivot is 

Lሬ⃑ = r⃑  ×  pሬ⃑  = m r⃑  × vሬ⃑      →      L = m r vୄ  , 

where v┴ is the component of the velocity that is perpendicular to the location vector, r⃑.  The 
angular momentum of course points out of the orbit’s plane from the right-hand rule.  We’re setting 
no restriction on the shape of the orbit other than the direction of motion varies smoothly. 

Now, let’s consider the planet as it moves through a small distance along its orbit in a short time 
Δt.  If the angle theta is small, we can approximate the area of the slice of the orbit as if it were a 
triangle with base r and height v┴ Δt r: 

δA ≈
ଵ

ଶ
 r (vୄΔt) =  

L

2m
 Δt . 

The shorter we make the time interval 
Δt, the smaller that extra bit of area 
and the more accurate this relationship 
becomes.   

δA

∆t
→

𝑑A

𝑑t
=  

L

2m
  .  

 

We see that, since L is constant, the rate at which area is ‘swept out’ is the same everywhere in the 
orbit. 

Kepler’s First Law of Planetary Motion 

The first law states that planets move in elliptical orbits, with the sun at one focus.  We can of 
course generalize this to any small object orbiting a large central body.   

DERIVATION* 
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We’re going to make use of a somewhat obscure quantity called the Laplace vector:10 

Aሬሬ⃑ ≡ pሬ⃑  × Lሬ⃑ −
GMmଶ

r
 r⃑   , 

which is conserved for a small object m 
orbiting a large central body M.  First, 

let’s examine Aሬሬ⃑ ∙ Lሬ⃑ : 

Aሬሬ⃑ ∙ Lሬ⃑ = ൫pሬ⃑  × Lሬ⃑ ൯ ∙ Lሬ⃑ −
GMmଶ

r
 r⃑ ∙ Lሬ⃑  

= 0 . 

The first term is zero because pሬ⃑  × Lሬ⃑  must 

be perpendicular to both pሬ⃑  and Lሬ⃑ , and so the dot product with Lሬ⃑  must be zero  The second term 

is zero because r⃑ lies in the plane of the orbit and Lሬ⃑  points out of the plane.11  So, this means 

that Aሬሬ⃑  lies in the plane of the orbit.  Next, consider Aሬሬ⃑ ∙ r⃑: 

Aሬሬ⃑ ∙ r⃑ = r⃑  ∙  ቆpሬ⃑  × Lሬ⃑ −
GMmଶ

r
 r⃑ ቇ = r⃑ ∙ ൫pሬ⃑  × Lሬ⃑ ൯ − ቆ

GMmଶ

r
ቇ r⃑ ∙  r⃑  . 

Remember the scalar vector product from Section 1 (r⃑ ∙ ൫pሬ⃑  × Lሬ⃑ ൯ = Lሬ⃑ ∙ (r⃑  × pሬ⃑ ) ), that Lሬ⃑  = r⃑  ×

 pሬ⃑ , and that any vector dotted with itself is the square of its magnitude.  Then this becomes 

Aሬሬ⃑ ∙ r⃑ = Lሬ⃑ ∙ (r⃑  × pሬ⃑ ) − ቆ
GMmଶ

r
ቇ rଶ  = Lሬ⃑ ∙ Lሬ⃑ − ቆ

GMmଶ

r
ቇ rଶ =  Lଶ − GMmଶr . 

Remember that the dot product was defined in Section 1 as 

Aሬሬ⃑ ∙ r⃑ = A r cosθ୅,୰  , 

so,  

A r cosθ୅,୰ = Lଶ − GMmଶr     →      
1

r
=  

GMmଶ

Lଶ
൬1 +  

A

GMmଶ
 cosθ୅,୰൰  . 

One version of the formula for a conic section is 

1

r
=  C(1 + e cos (θ)) 

with e the curve’s eccentricity and C a constant.  Matching these up, we see that the eccentricity 
is 

                                                           
10 Herbert Goldstein, Classical Mechanics (Reading: Addison-Wesley Publishing Company, 1980), 103-104. 
11 This assumes that the angular momentum is not itself zero, i.e. the object is not simply falling toward its central 
body. 



- 242 - 
 

e =  
A

GMmଶ
  . 

Then, if  

 e = 0, the orbit is circular. 

 0 < e <1, the orbit is elliptical. 

 e = 1, the orbit is parabolic. 

 e > 1, the orbit is hyperbolic. 

MATHEMATICAL JUSTIFICATION* 

Now the really hard part.  We asserted that the Laplace vector Aሬሬ⃑  is conserved.  We need to 
show that the instantaneous time rate of change of the Laplace vector is always zero: 

𝑑Aሬሬ⃑

𝑑t
= 0  . 

Let’s start by rewriting the expression for Aሬሬ⃑  slightly.  Remembering that the momentum pሬ⃑  = 
mvሬ⃑  and that r⃑/r can be written as rො, we have that 

Aሬሬ⃑ = pሬ⃑  × Lሬ⃑ −
GMmଶ

r
 r⃑    

𝑑Aሬሬ⃑

𝑑t
=

𝑑

𝑑t
൫pሬ⃑  × Lሬ⃑ ൯ − GMmଶ

𝑑rො

𝑑t
= 0   

𝑑pሬ⃑

𝑑t
× Lሬ⃑ + pሬ⃑ ×

𝑑Lሬ⃑

𝑑t
= GMmଶ

𝑑rො

𝑑t
 .  

We remember from impulse-momentum, that  

𝑑pሬ⃑

𝑑t
= Fሬ⃑      and here,     Fሬ⃑ =  −

GMm

rଶ
rො 

and also that the angular momentum is a constant and equal to m r⃑ × vሬ⃑ , so 

ቆ−
GMmଶ

rଶ
rොቇ × (r⃑ × vሬ⃑ ) = GMmଶ

𝑑rො

𝑑t
 ,  

−
1

rଷ
 r⃑ × ቆr⃑ ×

𝑑r⃑

𝑑t
ቇ =

𝑑rො

𝑑t
 . 

Making use of the triple cross product, 

−
1

rଷ
 ൭ቆr⃑ ∙

𝑑r⃑

𝑑t
ቇ r⃑ −  (r⃑ ∙ r⃑)

𝑑r⃑

𝑑t
൱ =

𝑑rො

𝑑t
 . 
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−
1

rଷ
 ൭ቆr⃑ ∙

𝑑r⃑

𝑑t
ቇ r⃑ −  rଶ

𝑑r⃑

𝑑t
൱ =

𝑑rො

𝑑t
 . 

Now, some sneaky stuff: 

𝑑

𝑑t
(r⃑ ∙ r⃑) = 2 r⃑ ∙

𝑑r⃑

𝑑t
 but it is also  

𝑑

𝑑t
(r⃑ ∙ r⃑) =  

𝑑

𝑑t
(rଶ) = 2r

𝑑r

𝑑t
      →       r⃑ ∙

𝑑r⃑

𝑑t
= r

𝑑r

𝑑t
  , 

 

and 

𝑑rො

𝑑t
=  

𝑑

𝑑t
ቆ

r⃑

r
ቇ =

1

r
 
𝑑r⃑

𝑑t
−  

1

rଶ

𝑑r

𝑑t
 r⃑ . 

So, 

−
1

rଷ
 ൭൬r

𝑑r

𝑑t
൰ r⃑ −  rଶ

𝑑r⃑

𝑑t
൱ =

1

r
 
𝑑r⃑

𝑑t
−  

1

rଶ

𝑑r

𝑑t
 r⃑  , 

 

1

r

𝑑r⃑

𝑑t
−  

1

rଶ

𝑑r

𝑑t
r⃑ =

1

r
 
𝑑r⃑

𝑑t
− 

1

rଶ

𝑑r

𝑑t
 r⃑  , 

which is clearly a true statement. 

 


