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SECTION THREE – KINEMATICS IN TWO DIMENSIONS 

In the last section, we discussed the kinematics of a point mass in one dimension.  Again, 
kinematics describes the motion of an object without regard to the cause of that motion. In this 
section, we shall examine two special cases of two dimensional motion: projectile motion and 
uniform circular motion. 
 
We need a way of keeping track of the motion of a particle.  Luckily, we discussed this back in 
Section One, where we defined the position vector 𝐫⃑ as 
 

r⃑ = x ı̂ + y ȷ̂  . 
 
The displacement is then  
 

∆r⃑ =  r⃑୤ −  r⃑୧ =  (x୤ ı̂ + y୤ ȷ̂) − (x୧ ı̂ + y୧ ȷ̂) =  (x୤ − x୧ ) ı̂ + (y୤ − y୧ ) ȷ̂ =  ∆x ı̂ + ∆y ȷ̂  . 
 

so that the displacement is the vector sum of the individual displacements in the x and y directions 
(no surprise there).  The average velocity is 
 

vሬ⃑ ୅୚୉ =  
𝑑r⃑

𝑑t
=

𝑑(x ı̂ + y ȷ̂)

𝑑t
=  

𝑑x ı̂ + ∆y ȷ̂

𝑑t
=  

𝑑x

𝑑t
 ı̂ +  

𝑑y

𝑑t
 ȷ̂ =  v୶ ୅୚୉ ı̂ +  v୷ ୅୚୉ ȷ̂  .   

 
The instantaneous velocity v is defined as before as  
 

vሬ⃑ ୍୒ୗ୘ =  lim
∆୲→଴

vሬ⃑ ୅୚୉ = lim
∆୲→଴

v୶ ୅୚୉ ı̂ +  lim
∆୲→଴

v୷ ୅୚୉ ȷ̂ =  v୶ ୍୒ୗ୘ ı̂ +  v୷ ୍୒ୗ୘ ȷ ̂ .   

 
And, of course, because the acceleration is to the velocity as the velocity is to the position, we can 
immediately write that 
 

aሬ⃑ ୅୚୉ =  a୶ ୅୚୉ ı̂ +  a୷ ୅୚୉ ȷ̂     and    aሬ⃑ ୍୒ୗ୘ =  a୶ ୍୒ୗ୘ ı̂ +  a୷ ୍୒ୗ୘ ȷ̂  .   

DISCUSSION 

Consider a ball whirled around on the end of a string at constant speed.  Is the velocity of the 
ball constant?  Is its acceleration?  

 

PROJECTILE MOTION IN TWO DIMENSIONS 

Projectile motion describes objects that are thrown, dropped, launched, tossed, pitched, hurled, 
catapulted, or chucked near the surface of a planet.  Such objects are said to be in free fall.  We 
shall assume the following for now:   
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The planet’s gravitational field is uniform, i.e., constant in direction and magnitude.  Once an 
object is launched, the only agency acting on it is gravity; therefore its acceleration is a constant 
ag downward. 

This assumption leads us to suspect that the horizontal and vertical motions of an object are 
independent.  We confirmed to some degree of satisfaction by observing a demonstration.   

DEMONSTRATION 3-1 

VIDEO 

First, two balls were released from rest at the same time and allowed to fall toward the table; they 
arrived at the same time.  Then, one ball was dropped while the other was launched horizontally 
from the same height at the same time; once again, they arrived at the same instant.  This led us to 
an interesting conclusion, namely that the motions of the object in the horizontal and vertical 
direction will be independent of one another, thereby making a two-dimensional problem in fact 
two one-dimensional problems.  Of course, there are many situations where this is not true.  For 
example, if we were to account for drag, or as you probably know it, air resistance, this assumption 
could be false. 

So, following our assumptions, we have two sets of kinematic equations, which I am simply 
copying from Section Two, 

v୶୤ =  v୶୧ +  a୶t 

v୶ ୅୚୉ =  
v୶୤ +  v୶୧

2
 

x୤ =  x୧ +  v୶୧t +  
ଵ

ଶ
a୶tଶ 

v୶୤
ଶ =  v୶୧

ଶ + 2a୶(x୤ −  x୧) 

v୷୤ =  v୷୧ +  a୷t 

v୷ ୅୚୉ =  
v୷୤ +  v୷୧

2
 

y୤ =  y୧ +  v୷୧t +  
ଵ

ଶ
a୷tଶ 

v୷୤
ଶ =  v୷୧

ଶ + 2a୷(y୤ −  y୧) 

with the time as the obvious connection between the two motions.   

Before we start on examples, let me talk briefly about what I call Rule Number One,1 which says 
that in problems in which there is acceleration, you should make one of the coördinate axes in the 
direction of the acceleration and the other, if necessary, perpendicular to that. The reason for this 
is to avoid breaking the acceleration into components, an action that generally makes the 
mathematics of solving a problem much more difficult.  For projectile problems, this probably 
seems very natural; make horizontal the x-axis and vertical the y-axis.  Remember, though, as the 
semester moves along, that the situation may change. 

                                                 
1 Strictly speaking, it’s a Really Strong Suggestion. 
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Here follows an example that you should use as the model for solving most projectile problems. 

ADMONITION 

When we do projectile problems, we remember that the problem runs from the moment just 
after the ball leaves the table to just before it hits the floor or ground.  If the problem asks for 
the final velocity, do not assume it is zero because the ball hit the floor and presumably 
stopped!  During the collision with the floor, there was another agency besides gravity acting 
on the ball, and so the acceleration was not constant and the kinematic equations are not valid. 

EXAMPLE 3-1 

A ball is rolled horizontally off a table 1.2 m in height at 5 m/s.  How far from the base of the 
table will the ball strike the floor? 

First, draw a figure to help visualize the situation, 
including a system of axes with an origin.  Your choice 
of origin can be arbitrary, but in this problem, there are 
two obvious locations: the top edge of the table and the 
foot of the table. The top is a slightly better choice for 
reasons you are invited to work out on your own.  But 
don’t get hung up on it, the bottom will work out O.K., 
too.  The axes are chosen to be x horizontal and y vertical, 
according to Rule Number One above.  All these things 
are labeled in the diagram so that whoever is grading your 
paper can easily tell what you are doing.  Here, I’ve added 
in a few other pieces of information as well. 

Next, make your inventory of what you know, what you think you know, and what you want 
to know.  This is pretty standard for every problem.  We’re interested in what’s happening in 
the x-direction, so let’s start there.  I use question marks for quantities I don’t know and arrows 
for the ones I don’t know but want to know. 

xi = 0 m 

xf = ? ← 
vxi = +5 m/s 
vxf = +5 m/s  (why?) 
ax = 0 m/s2 (the acceleration is downward, and not at all horizontal, once the ball is in free fall) 
t = ? 

As we did in the last section, we’ll try to find a kinematic equation, or a combination, that will 
give us what we want to know.  Is there one? 
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Since there is not enough information on the x-side, we need to look to the y-side.  Here I will 
give you what I call an 80% Rule.2  Generally, it’s the time that is common to both sides of the 
problem, so I will find the time for the y-side, if possible, then bring it back over to the x-side, 
at which point I may have enough information there to solve.  Since the time features 
prominently in KEq. 3, I’ll probably use that on both sides. 

yi = 0 m 
yf = -1.2 m (upward is positive and the ball moved downward from the origin) 
vyi = 0 m/s (the ball was travelling horizontally and not at all vertically  as it left the table) 
vyf = ? 
ay = -10 m/s2 (we chose upward to be positive) 
t = ? 

Next, we state which principle of Physics we are using, in this case, KEq. 3: 

y୤ =  y୧ +  v୷୧t +  
ଵ

ଶ
a୷tଶ 

As discussed in Section Two, it’s best to try to manipulate the symbols to secure a general 
abstract solution, but since we want to learn the time, KEq. 3 will become a quadratic equation 
in t, which is the exception to our rule.  Inserting the numbers and re-arranging to the standard 
format leaves us with 

(5)tଶ + (0)t + (−1.2) = 0 , 

which, it turns out, we can solve directly: 

t = ± ඨ
1.2

5
=  ± 0.49 seconds  . 

Since the ball hits the floor after it leaves the table, the time must be positive, so t = 0.49 
seconds.  We’ll take this backin KEq 3 on the x-side to find xf. 

x୤ =  x୧ +  v୶୧t +  
ଵ

ଶ
a୶tଶ = 0 + 5(0.49) + 0(0.49ଶ) = 2.45 m  .  

EXAMPLE 3-2 

                                                 
2 The 80% number is obviously made up, I merely mean that this will work a large per centage of the time and it’s 
how I myself would start such a problem.  If it doesn’t work, then try something else. 
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Take the same ball as above and launch it from the 
edge of the table at 5 m/s at a 30o angle above the 
horizontal.  How far from the foot of the table will it 
land?  

What is the only way in which this problem is 
different from the previous example?  How will you 
deal with that difference? 

Use the same origin and coördinate system as above, 
because, well, why not? 

 
xi = 0 m 

xf = ? ← 

vxi = vi cos θ= 5 cos (30o) = +4.33 m/s (find the x-component of the initial velocity) 
vxf = +4.33 m/s  
ax = 0 m/s2  
t = ? 
 
Well, we don’t have any more information about the x-motion this time around than we did 
the last, so our plan should be the same as for the previous example.  Let’s move on to inventory 
the y-side: 
 
yi = 0 m 
yf = -1.2 m (upward is positive and the ball moved downward from the origin) 

vyi = vi sin θ = 5 sin (30o) = +2.5 m/s 
vyf = ? 
ay = -10 m/s2 (we chose upward to be positive) 
t = ? 

KEq. 3: 

y୤ =  y୧ +  v୷୧t +  
ଵ

ଶ
a୷tଶ 

This will be quadratic, so insert the numbers and re-arrange: 

(5)tଶ + (−2.5)t + (−1.2) = 0 , 

t =  
−(−2.5) ± ඥ(−2.5)ଶ − 4(5)(−1.2)

2(5)
=  −0.3 OR + 0.8 seconds  . 

Taking the positive time back to KEq.3 in the x-side: 
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x୤ =  x୧ + v୶୧t +  
ଵ

ଶ
a୶tଶ = 0 + 4.33(0.8) + 0(0.8ଶ) = 3.46 m  .  

HOMEWORK 3-1 

A ball is thrown horizontally from the top of a 26 m tall building and hits the ground 12 meters 
from the base of the building.  With what initial speed was the ball thrown? 

EXERCISE 3-1 

A classic problem involves a hunter on the ground trying to shoot a monkey at the top of a tree.  
The hunter is 30 m away for the base of the tree, the tree is 40 m high, and the speed of the 
arrow, once off the bow, is 35 m/s.  Not having taken Physics, the hunter aims directly at the 
monkey and shoots.  The monkey, however, sees the hunter shoot, and figures the quickest 
escape is simply to fall immediately from the tree towards the ground.   Show that, in spite of 
this, the hunter hits the monkey after all.  You should ignore the hunter’s height, that is, the 
arrow starts at ground level. 

EXAMPLE 3-3 
 

Let’s try an example where we don’t use the 80% Rule.  An object is thrown horizontally from 
the top of a building of height H and hits the ground below four seconds later at a 45o angle.  
How tall is the building and with what speed was it launched?  How far from the base of the 
building did the object land? 
 
You should draw the figure for this.  Let’s put the origin at the base of the building and make 
positive x be horizontal to the right and positive y be upward.  What do we know? 
 
xi = 0 m  yi = ? ←  (this is the height H)  
xf = ? ←  yf = 0 
vxi = ? ←  vyi = 0 m/s (launched horizontally) 
vxf = vxi  vyf = ? 
ax = 0 m/s2  ay = -10 m/s2 

t = 4 seconds 
 
Finding the height of the building is straightforward with KEq. 3: 

y୤ =  y୧ +  v୷୧t +  
ଵ

ଶ
a୷tଶ 

H =  y୧ =  y୤ −  v୷୧t −  
ଵ

ଶ
a୷tଶ = 0 − 0(4) − (−5)(4ଶ) = 80 m  . 

Now for the x values.  Looking at the x-side, we see that even knowing the time does us no 
good.  So, what else links the two sides?  We know something about the final velocity 
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components.  The angle in the diagram is -45o (below the x-axis) 
and the ratio of the final velocity components is 

v୷୤

v୶୤
= tanθ = tan(−45୭) =  −1     →      v୶୤ =  −v୷୤  . 

 
Since the final x velocity is the same as the initial, KEq. 1 tells 
us that 
 

v୶୧ =  v୶୤ =  −v୷୤ =  −൫v୷୧ +  a୷t൯ =  −൫0 + (−10)(4)൯ 
 

= 40 m/s .   
 
Lastly, xf is given by KEq. 3 as 

x୤ =  x୧ +  v୶୧t +  
ଵ

ଶ
a୶tଶ = 0 + 40(4) +  0 = 160 m  . 

DISCUSSION 

Students, if asked, often guess that the object lands 80 meters from the base of the building; 
after all, it hit the ground at a 45o angle, and the building is 80 m tall.  This would seem to 
imply that the object followed a straight line from the top of the building after having made an 
abrupt change of direction immediately after launch.  In a moment, we’ll discuss the path 
actually taken by the object. 

EXERCISE 3-2 

Repeat Example 3-3 if the object had hit instead at an angle 53 degrees below the horizontal. 

Shape of a Projectile's Path 

There are some interesting ideas circulating about the shape of the path (the trajectory) taken by a 
thrown object.  As mentioned, some students assume that the object of the previous example 
follows a straight line path from the top of the building to the ground.  On the other hand, cartoon 
physics says that a coyote running horizontally off a cliff continues horizontally, until he realizes 
his predicament, then falls straight downward.  Let's try to determine the actual type of path a 
projectile will take through space near the surface of the earth, that is, we want y as a function of 
x.   
 
DERIVATION 3-1 
 

Start once again with the kinematic equations; we’ll use our 80% Rule.  Call the starting point 
the origin, and let upward be +y and horizontal direction of motion be +x.  Then,3 

                                                 
3 Notice that the initial speed is labelled vo here.  A ‘nought’ subscript denotes a specific value that isn’t actually 
known. 
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xi = 0  yi = 0  
xf = ?   yf = ? 
vxi = vo cosθo  vyi = vo sinθo 
vxf = ?  vyf = ? 
ax = 0  ay = ag 
t = ? 
 
This time, we’ll start with the x-side and find the time: 

x =  x୧ +  v୶୧t + 
ଵ

ଶ
a୶tଶ 

x =  0 +  v୭cosθ୭t + 0     →      t =  
x

v୭cosθ୭
   . 

Now to the y-side: 

y =  y୧ +  v୷୧t + 
ଵ

ଶ
a୷tଶ 

y =  0 +  v୭sinθ୭

x

v୭cosθ୭
+  

ଵ

ଶ
 a୥ ൬

x

v୭cosθ୭
൰

ଶ

= (tanθ୭) x +  ൬
a୥

2v୭
ଶcosଶθ୭

൰ xଶ . 

This looks messy, but that’s O.K., because we don’t care at the moment about most of it.  For 
any given launch of an object, vo and θo are fixed.  That is, we can’t go back and change their 
values midway through the trip.  Let’s replace the tangent term with a generic positive constant, 
A.  Then, lump all the constants in the x2 term together and call them negative constant B 
(remember that ag is negative here): 

y(x) =  Ax +  Bxଶ  . 

You should I hope recognize this form of curve; it is an example of a parabola, specifically 
one ‘open down’ and symmetric around a vertical axis. 

So, so long as we meet the conditions outlined at the beginning of this section, any object thrown 
near a planet’s surface should follow a parabolic path.  Later in the semester, we’ll see what 
happens when the object gets away from the earth’s surface. 

 

The Range Equation 

Let's discuss a special case of projectile motion which is of historical interest.  In the 17th and 18th 
century, being a physicist usually meant being an artillery officer.  As is usual, we will consider a 
special case. 
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DERIVATION 3-2 
 

Consider a flat horizontal plain (which is also a plane) on which are located a battery and a 
target.  Given an initial projection angle o (elevation) and launch speed vo (muzzle velocity, 
for guns or cannon), how far will the projectile land from the gun (range, R)?  
 
Because the plane is horizontal and 
flat, yo = yf = 0.  We’ll launch our 
projectile from the origin, for 
convenience. 
 
xi = 0  yi = 0  
xf = R ←  yf = 0 
vxi = vo cosθo  vyi = vo sinθo 
vxf = ?  vyf = ? 
ax = 0  ay = ag 
t = ? 
 
 Once again, we’ll try our 80% Rule, starting on the y-side to find the time with KEq 3: 

y୤ =  y୧ + v୷୧t +  
ଵ

ଶ
 a୷tଶ  . 

Insert some values and substitutions: 

0 =  0 +  v୭sinθ୭ t +  
ଵ

ଶ 
a୥ t

ଶ , 

0 =  ቀv୭sinθ୭  +  
ଵ

ଶ
 a୥ tቁ  t . 

For the right side here to equal zero, either t = 0 (which is uninteresting; we already know the 
object was on the ground at the start of the problem), or 

v୭sinθ୭  +  
ଵ

ଶ
 a୥ t = 0, 

in which case 

t =  
−2 v୭sinθ୭

 a୥ 
    . 

This may look a bit strange.  Is the time actually negative?  Did we hit the target before we 
launched the projectile?  No, we’re O.K. because ag is negative.  Having said that, I hate 
negative signs, so I’ll take the absolute value of the negative acceleration and that will cancel 
the negative sign in the numerator: 



- 45 - 
 

t =  
2 v୭sinθ୭

ห a୥ ห
    . 

So, this is the time for the entire trip.  How far does the projectile travel horizontally in that 
time.  Back to KEq. 3. 

x =  x୧ +  v୶୧t + 
ଵ

ଶ
a୶tଶ 

R =  0 +   v୭cosθ୭t +  0 =  v୭cosθ୭

2 v୭sinθ୭

ห a୥ ห
=  

v୭
ଶ(2sinθ୭cosθ୭)

ห a୥ ห
  . 

Finally, we’ll use a trig identity to make this prettier: 2 sinα cosα = sin(2α).  This brings us to 
the final result of 

R =  
v୭

ଶsin (2θ୭)

ห a୥ ห
  . 

Remember that this result is valid only when the assumed conditions are met, particularly that 
the launching and landing spots must be at the same altitude.  Otherwise, you will need to treat 
this as a projectile motion problem to be solved from scratch. 

DISCUSSION 

In ‘real life,’ we would also worry about a number of effects that would make the result above 
invalid, particularly for large ranges.  Can you think of at least three? 

EXAMPLE 3-4 

A ball is thrown at 20 m/s at an angle of 25o above the horizontal over a flat surface.  How far 
from the launch point will the ball land? 

This is straight plug-and-chug: 

R =  
v୭

ଶsin (2θ୭)

ห a୥ ห
=

20ଶ sin (2 × 25୭)

10
=

20ଶ sin (50୭)

10
= 30.6 m  .  

EXAMPLE 3-5 

Let’s go the other way.  The launch speed is 50 m/s and we wish to hit a target 160 m away on 
a flat surface.  At what angle should the object be launched? 

Re-arranging the Range Equation for theta, 
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θ୭ =  
ଵ

ଶ
 arcsin ቆ

Rห a୥ ห

v୭
ଶ

ቇ =  
ଵ

ଶ
 arcsin ൬

160 × 10

50ଶ
൰ =

ଵ

ଶ
 arcsin(0.64) =

ଵ

ଶ
 (40୭) =  20୭ . 

DISCUSSION 

Examine the Range Equation again.  For a given launch speed vo, what launch angle will result 
in the largest range?   

If we start at 0o, the range will be zero; the projectile will just hit the ground right away.  As 
we increase the elevation angle, the range will increase until the sine function maxes out at 1. 
What launch angle θo does that correspond to? If that angle results in the maximum range, what 
happens when we go above that angle? 

Let’s plot the sine of twice 
the launch angle against the 
launch angle, θo.  Solving 
the example above meant 
finding an angle such that  

sin(2𝜃௢) =  
𝑅ห a୥ ห

v୭
ଶ

  , 

as can be seen on the graph; 
the solution is at the 
intersection of the two curves.  But, if you follow the dotted line over to the right, you will see that 
there is a second angle that fulfills this requirement.  Since this curve is symmetric, the second 
larger angle should be the complement of the smaller one.  So, there are actually two answers to 
the example above, the 20o we found, OR 70o, the complement of 20o.  Except of course for 45o, 
which is its own complement, there should be two answers to these problems. 
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So, how is this possible?  At a low angle, the projectile is not in the air long, but it has a high x-
component of velocity, while at a high angle, the projectile spends a lot of time in the air, but has 
a correspondingly lower x-component of velocity.  These two effects combine to give the same 
final x displacement as for the low angle case.  In the same way, the lower angle launch has a 
smaller initial y velocity component than the higher angle launch, and so will not reach as high an 
altitude.  The lower angle is useful in tank warfare, where it is important to hit the other guy before 
he gets off a shot at you, while the second is good if there are obstacles around your target. In the 
example above, the travel times of the two paths are 

t =  
2 v୭sinθ୭

ห a୥ ห
 

tଶ଴౥ =  
2(50)sin (20୭)

10
= 3.42 seconds  

 t଻଴౥ =  
2(50)sin(70୭)

10
= 9.40 seconds  .  

The figure at left shows the trajectories of this object 
for each of the angles, 20o and 70o.  The dots 
represent intervals of one second.  One can see that 
if two such objects were launched simultaneously, 
the one launched at 70o would still be rising when 
the other arrived at its target. 

HOMEWORK 3-2 

Derive an expression (that is, start with the kinematic equations) in terms of vo, θo, and ag for 
the maximum altitude H reached by a projectile.  Use this result to calculate the maximum 
altitudes for the object launched in Example 3-5 for each angle (20o and 70o).  Check your 
results against the graph above. 

EXERCISE 3-3 

Our target is 350 meters away along a flat surface.  Our launcher will throw the projectile with 
an initial speed of 55 m/s.  At what angle (or angles) could we launch in order to hit the target? 

HOMEWORK 3-4 

You’re playing golf on a flat fairway.  The green is 150 m away, and you can send the ball 
away at 60 m/s.  At what angle or angles could you hit the ball for a hole-in-one? 

HOMEWORK 3-5 

Show that, for a projectile thrown at an initial angle θo above a flat horizontal plane, the 
maximum altitude H is related to the range by 
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H =
R tan θ୭

4
  . 

HOMEWORK 3-6 

To score in Sportsball, you must successfully 
throw the sportsball at a target on the wall from 
a distance of 12 m.  The target is 6 meters above 
the floor, and you release the ball with a speed 
of 16 m/s at an altitude of 2.5 m above the floor.  
At what angle or angles θo from the horizontal 
should you throw the ball.  You may find this 
relationship useful: 

𝑡𝑎𝑛ଶ 𝜃 + 1 =  
1

𝑐𝑜𝑠ଶ 𝜃
 . 

 
 
CIRCULAR MOTION 
 
Consider an object moving at constant speed v in a circle of radius r; forget about gravity for 
now.   
 
DISCUSSION 
 

Does this object have a constant velocity?  Which kind of a quantity is velocity? What are the 
two parts of velocity?  Do they both need to be constant for the velocity to be constant?  This 
means that the object is doing what? 

 
Let’s find that quantity.  We’ll do it two ways, one we could almost call’ traditional,’ and the other 
a bit less straightforward, but which will leave us with some additional useful relationships. 
 
Before we start, let’s define a quantity we will find useful through the rest of this course.  Consider 
our object moving in a circle.  Suppose that it has moved a distance s along the circumference of 
a circle of radius r, where arc s subtends an angle θ.  The arclength 
relationship tells us that  
 

s = r θୖ୅ୈ୍୅୒ୗ  . 
 
A radian is the angle such that the arclength s is equal to the radius 
r, or about 57.3o.  Clearly, if we halve the angle, we also halve the 
distance along the arc, so that  and s are proportional by the factor 
r.  As an extreme example, there are 2 radians in a circle, since the 
circumference (the arclength all the way around) is 2r. 
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We should next find a way of describing changes in the object’s position, or the angular distance 
so that  

∆s =   r ∆θ  . 

If we consider the instantaneous time rate of change of each side of 
the equation above, we obtain 

lim
∆୲→଴

∆s

∆t
= r lim

∆୲→଴

∆θ

∆t
  , 

since the radius is a constant.  The left side we recognize as the speed vT, We add the ‘T’ subscript 
because the velocity is tangent to the circle.  On the right side we will define the angular speed ω 
(omega), the angular distance per unit time:  

ω =  lim
∆୲→଴

∆θ

∆t
  . 

This gives us a choice in describing the motion of the object, in terms of either its speed around 
the circle or its angular position as seen from the center of the circle: 

v୘ = r ω  . 

EXAMPLE 3-6 

Consider a race car moving around a circular track at 70 m/s.  If the radius of the track is 300 
meters, what is the car’s angular speed as seen from the center of the curve?  

v୘ = r ω  →    ω =  
v୘

r
=

70

300
= 0.23 radians second⁄ .  

DERIVATION 3-XX 

Let an object move at some speed around a circular path; the speed does not have to be 
constant.  Consider a particular point in the object's path; let r⃑ be the position vector for the 
object, which points from the center of the circle to the object's location, and vሬ⃑  be the velocity 
vector, which is tangent to the circle and therefor perpendicular to r⃑.  We can then write that 

r⃑  ∙ vሬ⃑ = 0   . 
Then, 

𝑑(r⃑  ∙ vሬ⃑ )

𝑑t
=  

𝑑r⃑

𝑑t
∙ vሬ⃑ +  r⃑ ∙

𝑑vሬ⃑

𝑑t
= 0   , 

and so 
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vሬ⃑ ∙ vሬ⃑ +  r⃑ ∙ aሬ⃑ = 0   , 

vଶ + r⃑ ∙ aሬ⃑ = 0   , 

Now, aሬ⃑  can have a radial component (parallel or anti-parallel to r⃑, positive outward) and a 
tangential component (perpendicular to r⃑); it’s the first of these we’re interested in today.  
We’ll deal with the other later in the course. 

aሬ⃑ =  aሬ⃑ ୖ +  aሬ⃑ ୘   , 

and so 

vଶ +  r⃑ ∙ (aሬ⃑ ୖ + aሬ⃑ ୘) = vଶ +  r⃑ ∙ aሬ⃑ ୖ +  r⃑ ∙ aሬ⃑ ୘  = 0   . 

Since r⃑ and aሬ⃑ ୘ are perpendicular, that dot product is zero, and 

vଶ =  − r⃑ ∙ aሬ⃑ ୖ   . 

Since v2 can’t be negative, the vectors r⃑ and aሬ⃑ ୖ must point in opposite directions, i.e. the radial 
acceleration component points towards the center of the circle.  Let’s rename this the 
centripetal acceleration and make it positive inward so that 

vଶ =   r aେ   ,   

 aେ =  
vଶ

r
   .  

For our purposes, centripetal means ‘toward the center.’ 

To summarize, an object moving in a circle experiences an acceleration component toward the 
center of the circle with a magnitude equal to the square of its speed divided by the radius of the 
circle.  Note that we have not made any claims regarding the tangential acceleration component.   

EXAMPLE 3-7 

What is the acceleration of a car that starts from rest and attains a speed of 35 m/s while 
traveling in a straight line for 100 m?  What is the acceleration of a car travelling at a constant 
35 m/s while driving in a circle of radius of 100 m?  In which case do you think the tires would 
be more likely to slip? 

Let’s let the direction of motion be along the x-axis.  From Section 2, 

xi = 0 m 
xf = 100 m 
vxi = 0 m/s (starts from rest) 
vxf = 35 m/s 
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ax = ? ← 
t = ? 

Looks like KEq 4 may work. 

v୤
ଶ =  v୧

ଶ + 2a(x୤ −  x୧) 

a =  
v୤

ଶ − v୧
ଶ 

2(x୤ −  x୧)
=  

35ଶ − 0ଶ 

2(100 −  0)
= 6.1 m/sଶ .  

For the circular motion, 

aେ =  
vଶ

r
=  

35ଶ

100
= 12.3 m/sଶ .     

We might well assume that the situation with the higher acceleration would be the one more 
likely to have the tires slip. 

EXAMPLE 3-8 

Suppose you’re on a roller coaster with a loop-de-loop of radius 45 m.  As you go over the top 
while upside-down, you notice that your bottom has just barely lost contact with your seat.  
How quickly is the roller coaster car moving at the top of the loop? 

If there is no other agency than gravity acting on you at that point, your acceleration will be 10 
m/s2 downward, which at this point is toward the center of the circle.  Then, 

aେ =  
vଶ

r
     →      v =  ඥaେr =  ඥ10(45) = 21.2

m

s
 . 

EXERCISE 3-5 

Suppose that the moon were a perfect sphere of radius 1740 km.  The gravitational field 
strength gMOON on the surface of the moon is about 1/6 that at the surface of the earth (We 
know this because we’ve been there.).  How quickly would you need to launch a satellite so 
that it just skims along the surface of the moon? 

HOMEWORK 3-7 

This was a demonstration when I took PHYS I.  The professor took a pail 
of water and swung it in a vertical circle with the intent that the water would 
stay in the bucket, even when the bucket was inverted.  That actually didn’t 
work out well for him.  What is the minimum number of revolutions per 
second necessary for Professor Buechner to stay dry? 
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We shall return for further discussion of centripetal acceleration in a later section. 

______________________________________________________________________________ 

EXERCISE 3-1 Solution 

The idea here is that we need to show that, at some point, 
the bullet and the monkey are in the same place at the 
same time.  The angle theta will be arctan(40/30) = 53o.  
We have two objects, and so we need a corresponding 
number of kinematic equations.  The monkey is a bit 
easier, so let’s do that first. 

Monkey 

xMi = +30 m  yMi = +40 m  
xMf = +30 m  yMf = yAf = ? 
vMxi = 0 m/s  vMyi = 0 m/s 
vMxf = 0 m/s  vMyf = ? 
aMx = 0 m/s2  aMy = -10 m/s2 
t = ? 

Arrow 

xAi = 0 m     yAi = 0 m  
xAf = +30 m     yAf = yMf = ? 
vAxi = vo cos(θ) = 35 cos(53o) = +21 m/s vAyi = vo sin(θ) = 35 sin(53o) = +28 m/s 
vAxf = +21 m/s     vAyf = ? 
aAx = 0 m/s2     aAy = -10 m/s2 

We can easily find the time required for the arrow to travel 30 m horizontally by using KEq. 3: 

x୤ =  x୧ +  v୶୧t +  
ଵ

ଶ
a୶tଶ 

30 =  0 +  21t +  0 tଶ      →     t =
30

21
= 1.43 seconds  . 

At this time, both the monkey and the bullet are at x = +30 m.  Now at that same time, are they at 
the same altitude?  For the monkey, 

y୤ =  y୧ +  v୷୧t + 
ଵ

ଶ
a୷tଶ =  40 +  0 (1.43) + 

ଵ

ଶ
(−10)(1.43)ଶ = 29.8 m  . 

For the bullet, 

y୤ =  y୧ +  v୷୧t + 
ଵ

ଶ
a୷tଶ =  0 +  28 (1.43) + 

ଵ

ଶ
(−10)(1.43)ଶ = 29.8 m  . 
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And so, yes, the arrow hits the monkey anyway. 

EXERCISE 3-2 Solution 

If the time is still four seconds, then the building is still 80 m tall.   

v୷୤

v୶୤
= tanθ = tan(−53୭) =  −1.33     →      v୶୤ =  −0.75 v୷୤  . 

 
And, since the final x velocity is the same as the initial, KEq. 1 tells us that 
 
v୶୧ =  v୶୤ =  −0.75 v୷୤ =  −0.75 ൫v୷୧ +  a୷t൯ =  −0.75 ൫0 + (−10)(4)൯ = 30 m/s .   
 
Lastly, xf is given by KEq. 3 as 

x୤ =  x୧ +  v୶୧t +  
ଵ

ଶ
a୶tଶ = 0 + 30(4) +  0 = 120 m  . 

EXERCISE 3-3 Solution 

The problem meets the conditions for using the Range Equation, so let’s go for it. 

R =  
v୭

ଶsin (2θ୭)

ห a୥ ห
 

θ୭ =  
ଵ

ଶ
 𝑎𝑟𝑐𝑠𝑖𝑛 ቆ

𝑅ห a୥ ห

v୭
ଶ

ቇ =  
ଵ

ଶ
 𝑎𝑟𝑐𝑠𝑖𝑛 ൬

350 × 10

55ଶ
൰ =

ଵ

ଶ
 𝑎𝑟𝑐𝑠𝑖𝑛(1.16) = (𝐸𝑅𝑅𝑂𝑅) 

How many times did you retry 
taking the arcsine?  You didn’t 
make a mistake.  What angle has a 
sine of 1.16?  Graphically, you’re 
trying to find the intersection of 
these two curves, and it isn’t 
happening.  The physical 
interpretation of this is that it is 
impossible to hit the target under 
these conditions. 

EXERCISE 3-4 Solution 

For this, α = ωt and β = 90o.  Then, 

cos(ωt + 90௢) =  cosωt cos90௢ −  sinωt sin90௢ =  cosωt (0) −  sinωt (1) = − sinωt  .    

sin(ωt + 90௢) =  sinωt cos90௢ + cosωt sin90௢ =  sinωt (0) + cosωt (1) =  cosωt  .  
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EXERCISE 3-5 Solution 

The acceleration of an object at the earth’s surface is 10 m/s2 towards the earth’s center.  If the 
moon’s gravity is the only agency acting on the satellite, then we might assume that this satellite’s 
acceleration will be ag = 10/6 = 1.7 m/s2 downward, towards the center of its circular orbit.  Don’t 
forget to convert the moon’s radius into meters:  

1740 km ×
1000 m

1 km
= 1.74 × 10଺m  . 

Then,  

aେ =  
vଶ

r
     →      v =  ඥaେr =  ඥ1.7(1.74 × 10଺) = 1720

m

s
 . 

 


