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SECTION 6 – THE SECOND PICTURE 

We've looked at the motions of objects using forces and accelerations, and if we were lucky enough 
to have constant accelerations, the kinematic equations.  Now, we'll introduce a second picture 
which we may, or may not, find more convenient to use on certain classes of problems.  Please 
note that this new picture is really nothing more than Newton’s second law with a few definitions 
thrown in; there is a tendency for students to thjnk of this material as disconnected from previous 
discussions, but it really just a re-arrangement of stuff you already know. 
 
DISCUSSION 6-1 
 

Consider a small toy car sitting on a table at a spot marked ‘X’; we’ll assume the wheels make 
its contact with the table frictionless.  Observe the car closely.  Now, observe the car as it 
travels through point X.  Is it fair to say that the car possesses some quality or property in the 
latter case which it lacks in the former?  How did the car acquire that property?   
 

CHEESY EXPERIMENT 6-1  VIDEO 
 

After the experiment, we concluded/agreed on the following: 
 

 We agreed that there is some quality the object possesses when it’s moving through X that 
it lacks when it’s stationary.  For want of a better word, let's call that quality energy (E).  

 Energy is transferred into the object by applying a force.  However, the force must act 
through a displacement.  Applying a force to a non-moving object transfers no energy. 

 Transferring energy into (or out of) an object is a process; let us call the transfer of energy 
the work (W) done on the object.  Work is not a form of energy, it is the transfer of energy.  
Let’s define the work on an object to be positive when energy enters the object and negative 
when it is removed (why not?) 

 The bigger the force, the more energy is transferred:  as F↑, W↑. We might even speculate 
that W is proportional to F.  That would certainly be the simplest relationship consistent 
with our observations.  We could be wrong, of course; perhaps W ~ F2 or F3.  We’ll make 
the simplest assumption and see if there is a contradiction somewhere in our subsequent 
experiments. 

 The greater the displacement over which the force acted, the more work is done: that is, as 
Δx ↑,W↑ .We might speculate that W is proportional to Δx.  

What's more, there is an effect due to the relative orientation of the force with the displacement.  
We saw that: 

 If Fሬ⃑  and xሬ⃑  are in the same direction, energy is transferred into the object and we say that 
positive work was done.  

 If Fሬ⃑  and xሬ⃑  are in the opposite directions, energy is transferred out of the object and we say 
that negative work was done.  

 If Fሬ⃑  and xሬ⃑  are perpendicular, no energy is transferred into the object and we say that no 
work was done.  
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DISCUSSION 6-2 

How can we express these last notions in a more mathematical way?  Can you think of a 
function that will give us a positive value when two vectors are parallel, a negative value when 
they are anti-parallel, and zero when they are perpendicular? 

Let’s consider an object moving along, say, the x-axis while a force is applied at some angle away 
from the x-axis, as shown in the figure.  When we talked about vectors and components, we said 

that the components of a vector can replace the 
original vector.  Let’s do so for this force.  The 
component parallel to the displacement is F cos θ 
and the component perpendicular is F sin θ.  The 
former should contribute to the work, while the 
latter does not.  Sounds like just what we need.  
Indeed, if the angel were greater than 90o, the 
cosine would provide the negative sign required 
when the force and displacement are in generally 
opposite directions.   

Let’s synthesize these notions into a single mathematical expression, with the assumption that the 
universe works as simply as possible: 

W = F ∆x cosθ,∆୶ =  ∆E . 

The unit for work is newtons times meters; we will define one joule (J) as the work done by one 
newton of force acting on an object while it displaces one meter in the same direction.  This 
procedure will increase the energy of the object by one joule.1 

Now, since the result for the work doesn’t depend on the actual directions of the force or the 
displacement, but only on their relative directions, we might guess that the work is a scalar 
quantity.  We’ll confirm this in a page or so.  As such, the work can be written as2 

W =  Fሬ⃑ ∙  ∆xሬ⃑   . 

EXAMPLE 6-1 

Consider a box pulled 4 meters along the flat ground by a rope with tension 58 newtons which 
is at an angle of 54o above the horizontal.  How much work does this force do? 

The diagram for this is close to the one above.  The work would be 

                                                 
1 I like to use a bank account as an analogy.  Work is like the deposits and withdrawals, while the amount of energy 
is like the balance.  If there is a deposit of $19, the balance increases by $19. 
2 Revisit Section One to review the dot product of two vectors. 
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W = F ∆x cosθ,∆୶ = 58 (4) cos(54୭) = + 136.4 J  . 

HOMEWORK 6-1 

A cowboy grabs a rope trailed by a runaway horse and applies a force of 1100 N as he is 
dragged 37 meters.  How much work does the cowboy do on the horse?  How much work does 
the horse do on the cowboy?  How do the answers to this question depend on whether the horse 
stops, slows, or keeps running? 

DISCUSSION 6-3 

What if several forces act on the object simultaneously?  Can you extend the analogy with the 
back account? 

So, presumably, each force applied to the object transfers its own amount of energy.  Think of your 
bank account with a number of deposits and withdrawals.  Your balance will change by the total 
deposits (positive) plus the total withdrawals (negative): 
 

W =   W୨

୨

   . 

 
Now let’s make thigs a little harder.  First, what 
if the force applied were not constant (or, a 
variable force)?  Clearly, more work would be 
done in some displacement intervals than in 
others.  
 
We need to break the overall displacement 
down into very many, very small displacements 
xn, over which we can consider the force to be 
relatively constant at value Fx n; we then find 
the work done over each interval to be 
(approximately) 

W୬ =  F୬ ∆x୬  

so that the total work is  

W =   F∆୶

୬

∆x୬   . 

To make the approximation more accurate, we’ll make the displacements shorter and more 
numerous, i.e., we’ll make the Δx’s go to zero: 
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W =  න F(x) 𝑑x  . 

What if the curve were to go below the axis?  Then the work would be negative, since a ‘negative’ 
force would suggest one in the negative x-direction, opposite to the displacement.  What if the 
displacement were negative?   Remember that an integral from a larger limit value to a smaller 
limit value introduces a negative sign that would also switch the sign of the work. 

Next, what if the object moved in three dimensions?  The force could be written in components, 
Fx, Fy, and Fz.  Fx would make no work contribution due to movement in the y or z directions (the 
force would be perpendicular to each of those displacements), Fy would make no contribution due 
to movement in the x or z directions, and Fz would make no contribution due to movements in the 
x or y directions,  Therefore,  

W =   F୶ ∆x +  F୷ ∆y +  F ∆z → 

୬

න F௫(x, y, z) 𝑑x + F௬(x, y, z) 𝑑y + F௭(x, y, z) 𝑑z

=  න Fሬ⃑ (r⃑) ∙ 𝑑r⃑  . 

At this point, we’re in a strange position.  We've defined the work, but we can define anything we 
please to be whatever we please; what's the point?  The definition is meaningful only if it is 
useful.  Let's think back to the beginning of this discussion.  We talked about the work as a transfer 
of energy, so that we should be able to say that the work corresponds to the change in the amount 
of this energy stuff that the object possesses, i.e., W = E.  Keep this in mind as we do an important 
derivation: 

DERIVATION 6-1 

Consider the two definitions below from kinematics, where the acceleration is not constant: 

aሬ⃑ =  
dvሬ⃑

dt
    vሬ⃑ =  

dr⃑

dt
   . 

Let's once again perform a dot product multiplication on each side to obtain 

aሬ⃑ ∙
dr⃑

dt
=  vሬ⃑ ∙

dvሬ⃑

dt
   . 

aሬ⃑ ∙ dr⃑ =  vሬ⃑ ∙ dvሬ⃑  = v dv . 3 

                                                 
3 We explained this dot product result back in Section Two. 
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We have usually assumed that the acceleration is a function of time, but it might just as well 
be a function of position instead. 

aሬ⃑ (r⃑) ∙ dr⃑ =  v dv .  

Let's make use of Newton's second law, ∑ Fሬ⃑ ୬ = maሬ⃑ , to obtain 

aሬ⃑ (r⃑) ∙ 𝑑r⃑ =  
∑ ሬሬ⃑ (୰ሬ⃑ )

୫
∙ 𝑑r⃑ =  

∑ ሬሬ⃑ (୰ሬ⃑ )∙ௗ୰ሬ⃑

୫
=  v 𝑑v .  

∑ W୬୬ = ∫ ∑ Fሬሬ⃑ n൫rሬ⃑ ൯ ∙ drሬ⃑n
rሬ⃑ f

rሬ⃑ i
= m ∫  v 𝑑v

vf
vi

 .  

∑ W୬୬ = ∑ ∫ Fሬሬ⃑ n൫rሬ⃑ ൯ ∙ 𝑑rሬ⃑
rሬ⃑ f

rሬ⃑ i
n = m  

v2

2
 ฬ

vi

vf

.  

 W୬

୬

=  
ଵ

ଶ
mv

ଶ −  
ଵ

ଶ
mv୧

ଶ =  ∆ ቀ
ଵ

ଶ
mvଶቁ   . 

W =  ∆ ቀ
ଵ

ଶ
mvଶቁ   . 

Since we have previously asserted that work corresponds to a change in energy, we might jump 
to the conclusion that 

E =  
ଵ

ଶ 
 mvଶ  . 

This is a little dangerous; just because two quantities have the same change in value doesn’t 
mean that they have the same value.  For example, there could be some constant term included 
in the energy that cancels out when calculating the change.4  However, we have previously 
decided to go with the simplest explanations, until a contradiction is found.  Historically, this 
was the definition of energy, but as we proceed through this section, we will introduce notions 
of other types of energy.  Seeing as our object possesses this energy due to its motion, let’s 
define this specifically to be the kinetic energy, K: 

K =  
ଵ 

ଶ
mvଶ  . 

DISSCUSSION 

Is kinetic energy a scalar or vector quantity? 

So, we finally end at the basic concept of the Second Picture, the work-energy theorem: 

                                                 
4 Perhaps E = ½ mv2 + mc2.  The second term will always disappear when ΔE is calculated. 
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W =  ∆K. 

Well, this is all well and good, but remember that it was based on some speculation about the 
specific manner in which energy is transferred via work.  What we’re going to do, as we did for 
the second law, is make some predictions about the real world and see if there are any 
inconsistencies with our notions.  

Note that the work energy theorem is nothing more than Newton’s second law mixed up with 
several of the definitions from kinematics, and as such, it is fundamentally the same as that law, 
in spite of its very different appearance.  What we will find is that this formulation will be very 
useful for certain classes of problems that would have been very difficult to solve using NII and 
kinematics directly, particularly when the acceleration is not constant. 

Net force causes change in velocity 

Net work causes change in kinetic energy 

? causes change in ? 

HOMEWORK 6-2 

At what speed would a 50 kg person have to run to have the same kinetic energy as a 2000kg 
auto traveling at 100 km/h? 

DISCUSSION 6-4 

Suppose a jogger of mass M is trotting along at speed vo, and therefor has kinetic energy Ko.  
What kinetic energy (in terms of Ko) would he have if he doubled his pace?  If his daughter 
with half his mass then runs beside him, how much kinetic energy would she have?   

EXAMPLE 6-2 
 
Throw a ball upward with an initial speed of 12 m/s.  How high does it rise (H)? 

Let’s use the WE thm: 

 
W =  

ଵ

ଶ
 m v

ଶ −  
ଵ

ଶ
 m v୧

ଶ  . 

When we used Newton’s second law, we put in all of our effort on the left side finding the 
forces, but the right side was always maሬ⃑ .  Here, we again put all the effort in on the left side 
finding the works, and the right side is always ΔK. 

The only force acting on the ball is its weight, gm, downward.  The displacement is H upward, 
so our angle between the force and the displacement is 180o.  The work done is therefor 

W = (gm)(H) cos (180୭) =  −gmH 
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The ball stops at its highest altitude, so vf = 0.  Then, 

−gmH =  
ଵ

ଶ
 m v

ଶ −  
ଵ

ଶ
 m v୧

ଶ  . 

H =   
v୧

ଶ − v
ଶ

2g
=  

12ଶ −  0ଶ

2(10)
= 7.2 m   . 

HOMEWORK 6-3 

A 3 kg object initially at rest is acted on by a 
non-constant force which causes it to move 3 
m.  The force varies with position as shown in 
the graph. 

a) How much work is done on the object by 
this force?  

b) What is the final speed of the object as it 
arrives at x = 3 m?  Assume that the given 
force is the only force acting on the mass.  

 

EXAMPLE 6-3 

Here’s a problem we’ve seen before to compare the 
solution methods of Picture One and Picture Two.  
Consider a block of mass m = 5 kg at the top of a 
frictionless ramp L = 2 meters long that is inclined at 
 = 37o to the horizontal.  If the mass starts from rest 
at the top, how quickly will it be moving when it 
reaches the bottom?  The answer better be 4.9 m/s. 

 

Draw a free-body diagram; the weight and a normal force 
are the only forces.  One thing we don’t need to do is 
choose a coördinate system.  Everything is relative to the 
direction of the displacement.  We’ll use the WE theorem, 

W =  
ଵ

ଶ
 m v

ଶ − 
ଵ

ଶ
 m v୧

ଶ  . 

Let’s look at the works: 

WN = 0, since the force is perpendicular to the 
displacement; 
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Wg = (mg) (L) (cosmg,x). 

What angle should we use for Wg?  It’s not 37o!  We want the angle between the force and the 
displacement, 53o. 

W +  W =  
ଵ

ଶ
 m v

ଶ −  
ଵ

ଶ
 m v୧

ଶ  

0 +  W =  
ଵ

ଶ
 m v

ଶ − 
ଵ

ଶ
 m v୧

ଶ  

 v =  ±ඨ v୧
ଶ +

2W

m
 = ට v୧

ଶ + 2gL cos(θ) =  ඥ 0ଶ + 2(10)2 cos(53୭) = 4.9 m/s .  

You may well point out that this problem is just as easily done with Newton’s second and a 
kinematic equation, and you’d be correct.  Eventually, we’ll encounter problems where that 
will not be true. 

DISCUSSION 6-5 

Suppose that I drop an object from a given height, such as a pen onto the table.  The force of 
gravity (the object's weight) does work and the kinetic energy of the object increases.  Now, 
suppose instead that I slowly lower the object to the table from the same initial 
altitude.  Compare the work done by gravity in the second case to the work done in the first 
case.   Do you understand the difference between the work done by a force and the total work 
done by all forces on an object? 

Conservative and non-Conservative Forces 

Let's divide the realm of forces in to two categories: conservative forces and 
non-conservative forces.  This may seem rather facile, in that I could divide 
forces in to red and non-red categories, and each force would have to fit into 
one of them.  However, this is a distinction which we will find useful.  What 
we find is that for some forces, the work they do on some object moving from 
any particular point A to any particular point B is independent of the path taken 
between A and B.  We call this type of force a conservative force.  There are a 
number of alternate ways to define what a conservative force is, but they are 
all equivalent to each other. Any force for which the work can depend on the 
path is a non-conservative force. 

Let's take the weight of an object as a concrete example.  Suppose that I lower 
a mass m from a height h above the table to the top of the table.  I'm only 
interested at this point in what the weight does, not what any other force, such 
as from my hand, does.  The force is gm downward, and the displacement is h 
downward, and those two vectors are parallel, so we have that 

W = gm h cos(0୭) = gmh. 
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Now, let's take the object on a little tour of the region.  Move it 
horizontally a displacement s, then down h, then horizontally again 
s, back to point B.  The work done will be 

W = gm s cos(90୭) + gm h cos(0୭) + gm s′ cos(90୭) = gmh  

once again.   

Let's pick a random 
path.  You might be 
able to see that we 

can always approximate any path to an arbitrary 
degree of accuracy with these stepped horizontal 
and vertical movements.  From previous 
discussion, we know that any horizontal 
movements will correspond to no work being done 
by gravity.  The vertical displacements are each of 
magnitude hn, some parallel to the weight and 
some anti-parallel, such that the work done by the 
weight during each vertical motion is  

W =   gm h୬ cos(θ୬) = gm  h୬ cos(θ୬)

୬

 ,

୬

 

where cos (n) = +1 if the displacement is downward (parallel to the force) and -1 if the 
displacement is upward (anti-parallel to the force).  We realize that the last summation is simply 
h, so that the work done by the weight is gmh, as before, and work done by the weight throughout 
the whole trip is indeed independent of the path taken.  

Next, let's consider an example of a non-
conservative force: friction. Consider an 
object being slid across a table top along two 
paths (for simplicity, let all x's be the same 
magnitude).  Remember that we are not 
concerned with the work done by any other 
force, such as that of the hand that pushes the 
block.  The frictional force will be (not proven 
here):  
 

F =  μ (gm) 
 

So that the work done by friction from Point 
A to Point B along the direct path is 

 W ୈ୧୰ୣୡ୲ ୟ୲୦ =  μ (gm) Δx  . 
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If instead, the object is pushed along the other three sides of the square, the same amount of work 
will be done by friction along each of the sides, so that 

W ୭୬ ୟ୲୦ =  3 μ (gm) Δx ≠ W ୈ୧୰ୣୡ୲ ୟ୲୦  . 

So, we see that friction is not a conservative force.  Just as clearly, neither is the force that pushed 
the object around on the table. 

 

Potential Energy 

A few pages ago, we defined energy as ½ mv2, which is how it was originally defined.  It was a 
few years later that the ‘kinetic’ was added.  We make this distinction because we will introduce 
a second type of energy, although to my mind, it is only a bookkeeping trick to keep track of some 
work terms.  I admit, though, that the concept of potential energy (U) can be extremely useful. 
 
Let's consider the dropped pen again.  We can say that during its fall, the pen is acted on only by 
the force of gravity, which does positive work, and thereby causes an increase in the pen's kinetic 
energy (work-energy theorem).  We can develop an alternate notion, by saying that energy is 
somehow stored in the pen by virtue of its altitude above the table, and that this potential energy 
is then converted to kinetic energy as the pen falls.  What we find is that any conservative force 
can have a potential energy function associated with it.  For example, if a conservative force does 
positive work on an object so that the kinetic energy increases, we could alternatively say that the 
potential energy of the object is decreasing while the kinetic energy is increasing.  So, for a given 
conservative force (FC), we require that  
 

Wେ =  −∆U  . 
 
We can do this only for conservative forces.  Here’s why.   
 

 
By definition for a conservative force, the work done by the force along any Path One from A to 
B is the same as along any other Path Two.  Since the two paths have only points A and B in 
common, there must be some numbers associated with the object being at each of these points that 
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provide sufficient information to determine the work.  We call these values the potential energy of 
the object at A (UA) and the potential energy of the object at B (UB).5  If we tried to do that with 
the non-conservative force, starting at point A, we would have to conclude that there are two 
different values associated with point B, or indeed, potentially an infinite number of such values, 
one for each possible path and amount of work done.   
 
DISCUSSION 6-6 
 

One might point out that this 
argument regarding conservative 
forces is valid only when Path One 
and Path Two do not cross (they 
would have more than just two 
points in common).  Of course, we 
can come up with any number of 
paths that do cross.  Can you 
provide an argument that takes care 
of that omission? 

 
Here we go.  Let’s start with the work-energy theorem, and divide the works on the left into two 
categories, depending on whether the associated forces are conservative (C) or non-conservative 
(NC): 

W =  ∆K   
 

Wେ +  Wେ =  ∆K  . 
 
We’ll define the change in potential energy with -ΔU = WCONS, so that 
 

−ΔU +  Wେ =  ∆K  . 
 
Since work and energy are not the same thing, and because I hate minus signs,  
 

Wେ =  ∆K + ΔU   . 
 
In the same way that I find ΣF = ma to be more convenient than the conceptually better a = ΣF/m, 
I find this form of the work-energy theorem to be more convenient than the conceptually satisfying 
version of a few pages back. 
 
Now, keep in mind that the potential energy term replaces the conservative work term; it’s one or 
the other, but not both. 

                                                 
5 If you read this paragraph carefully, you should have noted that these values are not directly associated with the 
points A and B themselves, but with our object being located at A and at B.  There is a quantity associated with the 
points themselves, regardless of whether there is an object there or not, but it is typically not covered in PHYS 1.  
Look for an analogous quantity though in PHYS 2! 
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Can we figure out what the potential energy function associated with a conservative force is?  Not 
really.  We can only figure out an expression for its change: 

ΔU =  − න Fሬ⃑ େ (r⃑) ∙ 𝑑r⃑   . 

If we instead know the potential energy expression, we can turn this around to find the force.  In 
one dimension, 

ΔU =  −Wେ 

න 𝑑U =  − න F(x) 𝑑x   , 

Since this must be true of any path, however short, we can write 

𝑑U =  −F(x) 𝑑x    →      F(x) =  − 
𝑑U

𝑑x
     . 

In three dimensions, this generalizes to6,7 

Fሬ⃑ (r⃑) =  − ൬
∂U

∂x
 ıො +

∂U

∂y
 ȷ̂ +

∂U

∂z
 k ൰ =  −∇ሬሬ⃑  U   . 

A way of determining if a force is conservative is to check if curl Fሬ⃑ (r⃑) = 0. 

DERIVATION 6-4 

Consider the specific example of the pen discussed earlier 
that was lowered from a height H to the table below.  We 
calculated that the work done on the pen by the weight 
was gmh.  Now, to make this work consistently, it’s 
necessary to give up a little freedom of choice; we will 

                                                 
6 See the notes at the end of this section. 
7 ∇U is the gradient of function U. 



- 141 - 
 

require upward to be positive y.8  Since h is a positive number (the magnitude of the 
displacement) and since yi > yf, we can instead write that  

  
W = gmh = gm(y୧ −  y ) = −(gmy −  gmy୧) =  − ∆(gmy)  . 

If we keep in mind that we defined U such that  

W =  −∆U  ,  

we might just jump to the conclusion that  

U(y) = gmy  . 

Now, of course, we still have the same problem we had with kinetic energy, that there may be 
some constant term we’re missing that will cancel out when we find ΔU: U(y) = gmy + Uo.  
This time, though, we’re going to take advantage of that.  Where we pick our origin (i.e., where 
y = 0) is entirely up to us, and so that is where we choose the potential energy to be zero.  So, 
we’ll make these choices to be as convenient for us as possible.  Generally (80% Rule!) you 
will want to place y = 0 at the lowest level of a problem.9 

But, let’s consider.  Suppose I raise a 2 kg object from a tabletop 1 m above the floor to 2 m 
above the floor.  If the zero of potential energy is zero at floor level, I increased U from 
(10)(2)(1) = 20  joules to (10)(2)(2) =  40  joules.  If the zero had been at table level, it went 
from 0 joules to (10(2)(1) = 20  joules.  And if the 3 meter high ceiling had been U = 0, it went 
from (10)(2)(-2) = -40 joules to (10)(2)(-1) = -20 joules.  In each case the change was the same 
(+20 joules) even if the assigned potential energy values were very different. 

Some admonitions before we start examples.  First, remember that you should not put the potential 
energy term on both sides of the relationship; it’s either a work term on the left, or it’s a potential 
energy change on the right. As I said, this is a bookkeeping trick.  Second, remember that there 
may well be more than one conservative force operating on the object, which would require us to 
have more than one U term.  For this course, there are only three conservative forces; all others 
should be considered to be non-conservative. 

 

Conservation of Mechanical Energy 

Let’s call the sum of an object’s kinetic and potential energies its mechanical energy.  Let’s 
consider a special case in the absence of non-conservative forces, or at least a situation where no 
non-conservative forces do work:  

                                                 
8 You may remember doing this when we required radial forces to be counted as positive when toward the center of 
the circle and negative when away. 
9 Of course, later, we’ll see some exceptions, i.e. the other 20%! 
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Wେ =  ∆K + ΔU  

becomes  
 

0 =  ∆K + ΔU  
 

0 =  𝐾 −  𝐾 +  𝑈 −  𝑈 
 

K୧ + U୧ =  K +  U  .  
 
This is interesting.  It says that, in the absence of non-conservative forces (or at least of such forces 
which do any work), the total mechanical energy is conserved, or remains constant.  There is, in 
physics, a great number of quantities that are conserved in the absence of outside agencies.  In the 
present example, the energy may change from from kinetic to potential or vice versa, but it is 
neither created nor destroyed. 
 

This concept of the conservation of mechanical energy is not the same as conservation of total 
energy, which you may have heard of in your other classes.  This is a much more restricted form 
of that concept.  For example, let's look once again at the dropped pen.  Just after release, the pen 
has zero kinetic energy and mgh of potential energy (we'll let U = 0 at the tabletop).  Just before 
hitting the table, U = 0 and K is not zero, and in fact equals numerically mgh.  Now in a more 
general way, we can talk about the conservation of total energy, but only if we broaden the 
definition of energy.  You may remember from your other classes that the molecules in solids can 
be modeled by balls connected by springs, and that the balls are constantly vibrating, possessing 
kinetic and potential energy.  This kinetic energy is different (in a fashion) from the translational 
kinetic energy discussed above, in that for translational kinetic energy, every particle shared the 
same velocity vector, but for vibrational kinetic energy, the motions are more random.  When the 
pen hit the table, shock waves went out from the impact through both the table and the pen, 
increasing the vibration of the molecules in each object.  This increased thermal energy is observed 
macroscopically as an increase in the temperatures10 of both the table and the pen. Other energy 
is carried away as sound, which eventually warms other objects it hits, such as your eardrum. 

EXPERIMENT 6-2 
 

                                                 

10 While you may have a general idea of what temperature is, we’ll define it carefully later in the 
course. 
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Everything we’ve done in this 
section up to this point was 
based on the conjecture that the 
work is found by multiplying the 
displacement of an object by the 
parallel component of the force 
acting on it.  While the rest of the 
section has a fairly firm basis, if 
the original conjecture is 
incorrect, all that followed may 
be just as incorrect.  So we need 
some evidence to support the 
conjecture, and that is usually 
accomplished by performing an 
experiment.  Here are the results 

of an experiment measuring the potential and kinetic energies of an object as it slides down a 
frictionless incline.  Note that, as the potential energy U decreases, the kinetic energy K 
correspondingly increases, but that the total energy (U + K) remains constant as predicted (to 
within experimental error).  In this experiment, the maximum deviation from the average is 
0.8%. 

 
EXAMPLE 6-3 

 
You.ve seen this one before.  Consider a block of 
mass m = 5 kg at the top of a frictionless ramp L 
= 2 meters long, which is inclined at  = 37o to 
the horizontal.  If the mass starts from rest at the 
top, how quickly will it be moving when it 
reaches the bottom?  
  
As usual, draw a sketch and a free-body diagram. 
There are two forces acting on the mass: the 
weight and the normal force.  Let’s start with the more recent and more useful version of the 
work-energy theorem: 
 

Wେ =  ∆K + ΔU  
 

Wେ =  
ଵ

ଶ
 m v

ଶ −  
ଵ

ଶ
 m v୧

ଶ + gmy −  gmy୧  
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Next, let’s consider the works done: 
 
WN = 0 – the force is perpendicular to the path and so the 
cosine term is always zero. 
Wg – this is a conservative force and will be dealt with on 
the right side of the equation. 
 
There is one piece of information we will need: the initial 
altitude of the object.  Since the sinθ = yi/L, yi is L 
sin(37o) = 1.2 m. 
 
So then 
 
0 =  భ

మ
 m v

ଶ −  భ

మ
 m v୧

ଶ + gmy −  gmy୧  , 
 
which is always nice. 
 
Following a brilliant suggestion I read somewhere, I’ll put y = 0 at the bottom of the ramp.  I 
also realize that the object starts from rest at the top, and so I’ll simplify here with 
justification.11 
 

0 =  
ଵ

ଶ
 m v

ଶ −  
ଵ

ଶ
 m v୧

ଶ + gmy −  gmy୧ 

starts from rest      y = 0 
  

 
ଵ

ଶ
 m v

ଶ =  gmy୧ 

 

 v = ඥ2 gy୧ =  ඥ2(10)(1.2) = 4.9m/s . 
 

At this time, it is legitimate to ask, “Gee, Dr Baum, 
we’ve learned how to do this problem three ways, 
none of which seems any easier than the others.  
What’s the point?”  And here it comes.  Suppose 
that instead of a straight frictionless surface, the 
incline had instead possessed a ‘wavy’ surface, as 
shown in the figure.  Here, the mass does not slide 
uniformly down a straight surface.  Let’s think 
about doing this with Newton’s second law.  Let x 
be the direction down the incline.  The weight will have a constant component along the dotted 
line shown in the figure, but the normal force will have a varying component in that direction, 
sometimes down the incline, sometimes up the incline, and sometimes zero, depending on the 
exact shape of the surface.  Since the x-acceleration is not constant, the kinematic equations are 
not valid.  We could proablyAnd that’s an oversimplification.  If we try to use the original form of 
the work-energy theorem (following the wavy line), it’s certainly true that the normal force does 

                                                 
11 In this section, I’ll indicate quantities that are zero in red, and justifying why in the line directly underneath. 



- 145 - 
 

no work, but the angle that the weight makes with each small interval of displacement as the object 
slides down will vary.  Either way, we would have to know a lot of very specific data about the 
shape of the curves ramp and do a horrendous calculation.  However, because the weight is a 
conservative force, the work done on the object does not depend on the exact path taken; all we 
need to know are the potential energies at the start and end of the trip.  Here is a perhaps clearer 
example to illustrate the usefulness of potential energy. 
 
EXAMPLE 6-4 
 

Consider a small ball (mass m) attached to the end of a (magic) string of length L = 1.5 m.  The 
ball is held up at 90o to the vertical and released.  How quickly is it moving when it reaches 
the bottom of its swing? 
 
As a demonstration of the usefulness of the concept of potential energy, we’re going to do this 
problem twice.  First, the long way.  We’ll use the original form of the work-energy theorem.  
There are two forces acting on the mass, the ball’s weight and the tension in the string.   
 
WT = 0 (the tension is always perpendicular to the path). 
Wg is tough.  In general, the work is F Δx cos θF,Δx.  
That works if the force is constant and the displacement 
is along a straight line.  But here, the angle between the 
weight and the direction of motion is continually 
changing.  We must break the path down into very many 
very small lengths ds, find the work for each 
displacement, then add them all up. 
 

W = න gm 𝑑s cos (θ)

/ଶ



 

 
Here, we have two variables; we need to change one 
into the other so that we can perform the integral.  Using 
the arclength relationship, we can write that  
 

𝑑s = L 𝑑θ 
and substitute to get 
 

W = න gm L 𝑑θ cos (θ)

/ଶ



=  gm L න cos (θ) 𝑑θ 

/ଶ



  . 

 
This is pretty straightforward: 
 

W =  − gm L sinθ |


ଶ =  − gm L (0 − 1) =  gm L  . 
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Then,  
 

W + W =  
ଵ

ଶ
mv

ଶ − 
ଵ

ଶ
mv୧

ଶ 

W  = 0            starts from rest 
 

gmL =  
ଵ

ଶ
mv

ଶ 

 

v =  ඥ2gL =  ඥ2(10)1.5 = 5.48 m/s  . 
 
Now, the shorter way: 
 
WT = 0 (the tension is always perpendicular to the path) 
Wg – conservative force, treat as potential energy terms 
 
Set U = 0 at the bottom of the problem, so yf = 0 and yi = L. 
 
 

0 =
ଵ

ଶ
 m v

ଶ −  
ଵ

ଶ
 m v୧

ଶ + gmy −  gmy୧   

starts from rest    y set to zero 
 

ଵ

ଶ
 m v

ଶ =   gmL   

 

v =  ඥ2gL =  ඥ2(10)1.5 = 5.48 m/s  . 
 

Generally, you will find that using potential energy is never harder than finding the work directly, 
and usually much easier. 
 
HOMEWORK 6-4 
 

A pitcher hurls a 0.35 kg sportsball around a vertical circular path of radius 0.6 m, applying a 
tangential force of 30 N, before releasing it at the bottom of the circle (underhand pitch).  If 
the speed of the ball at the top of the circle was 12 m/s, what will be the speed just after it's 
released? 
 

EXERCISE 6-1 
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Another classic.  Consider a child perched at the top of an 
igloo, which we will consider to be a hemisphere of radius 
R covered in slippery snow.  He starts with an almost zero 
speed from the top and travels down the side.  At what 
vertical distance H from the ground will he become 
airborne?  

 

HOMEWORK 6-5 

Tarzan swings on a 25 m long vine that was initially inclined at an angle of 25o from the 
(downward) vertical.  What is his speed at the bottom of his swing if  
he pushed off his branch with an initial speed of 3 m/s? 
 

HOMEWORK 6-6 
 

A point mass block slides without friction on the loop-de-loop track of radius R as 
shown.  From what height h must it be released from rest in order to make it around the loop 
without leaving the track? 

 
 
 
 
 
 
 
 
 
 

 
 
Springs 

Let’s next consider our second conservative force.  If 
I take a spring and simply toss it onto the table, you 
may notice that it always assumes the same length, 
regardless of whether I compress it or stretch it before 
I toss it.  Let’s refer to this as the spring’s relaxed 
condition and the corresponding length its relaxed 
length.  In order to stretch or compress the spring, I 
must apply some force.  In this course, at least for 
now, we shall assume that all springs obey Hooke's 
relationship: the force necessary to stretch (or 
compress) a spring from its relaxed state is 
proportional to the amount of stretching (or 
compression).  In more mathematical terms:  
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F୮୮୪୧ୣୢ = k ∆X  . 
 
The symbol k represents the spring constant of the spring, the number of newtons required to 
stretch (or compress) the spring one meter, and is given in N/m.  A high value of k means that the 
spring is stiff, while a low value implies the spring is flexible.  Notice that I am using a capital X 
to describe the position of the end of the spring; the reason for this should become apparent later 
in the discussion.   
 
DISCUSSION 6-7 
 

HookesLaw.mp4  
 

In the figure, I’ve applied 
known forces to three springs 
over an admittedly small range 
of stiffness.  Is the amount each 
spring is stretched indeed 
proportional to the applied 
force?  What property of the 
data in the graph would indicate 
that?  How is the spring constant 
k found for each curve?  Which 
is the independent variable and 
which the dependent variable in 
this experiment?  How should 
Hooke’s relationship be 
arranged to match the equation of a line? 

  
We need to be a bit careful about signs.  The relationship above is the force which needs to be 
applied to the spring to stretch (compress) it, and that force needs to be in the direction of the 
displacement of the end of the spring.  We do not expect this force to be conservative, as it may 
be provided by a hand or other such agency.  However, we are often interested in the force applied 
by the spring to some object to which it is attached.  By the third law, this spring force would be 
in the opposite direction:  

Fୗ୮୰୧୬ = − k ∆X  . 
 
However, this is further complicated by our habit of writing down the magnitudes of forces and 
adding in the appropriate directional signs as necessary.  As a result, I shall write this relationship 
this way, 
 
  

Fୗ୮୰୧୬ = (−) k ∆X  

y = 0.0156x + 0.0015

y = 0.062x - 0.0058

y = 0.1212x - 7E-05
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with the minus sign there in parentheses to remind you that the force exerted by the spring is in 
the direction opposite to that in which the spring is stretched, but not to be taken literally.  You 
must determine the correct sign for each specific problem encountered.  Occasionally, the 'delta' 
is dropped as well, if it is understood that the relaxed position is at X = 0:  
 

Fୗ୮୰୧୬ = (−)k X . 
 
One last assumption: unless told otherwise, springs, like strings, will be considered to be massless. 

DISCUSSION 6-8 

Is the spring force conservative?  Can you make a quick argument that it is?  Suppose that we 
were to stretch the spring from X = 0 to point A.  Repeat from X = 0 to A to a point B beyond 
point A, then back to B? 

Since the force exerted by the spring depends only on the position of the end of the spring X (we'll 
assume that the other end is fixed), reversing the displacement back over already covered ground 
simply undoes the work done the first time (by flipping the sign of the cosine term), so that the net 
work done depends only on the initial and final positions of the end of the spring.  

DERIVATION 6-5 

How much work is necessary to 
stretch (or compress) a spring distance 
X from its relaxed position?  We can 
use the graphical representation 
showing Fon spring as a linear function 
of X with slope k: 

We showed above that the work done 
by any variable force is represented by 
the area under the force vs position 
curve.12  Since this is a triangle, the 
area is one-half the base times the 

height: 

  
W୭୬ ୗ୮୰୧୬ =

ଵ

ଶ
 X F =  

ଵ

ଶ
 X (kX) =

ଵ

ଶ
 kXଶ  

Now we have to do a couple of flip-flops.  The work done on the spring is 1/2kX2, the work 
done by the spring is -1/2kX2 (the forces are in opposite directions), and the change in the 
potential energy of the spring is the negative of that, or  

                                                 
12 So, we’re avoiding doing an ‘official’ integral, but this is an integral all the same. 
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∆Uୗ୮୰୧୬ =  −Wୠ୷ ୗ୮୰୧୬ =  −൫−W୭୬ ୗ୮୰୧୬൯ =  +
ଵ

ଶ
 kXଶ , 

U(X) − U(0) =  +
ଵ

ଶ
 kXଶ . 

It would seem extremely convenient to make U(0) = 0, so that  

Uୗ୮୰୧୬(X) =  +
ଵ

ଶ
 kXଶ . 

Note that in this version, we have given up some freedom again.  We will be assuming the spring’s 
potential energy is zero when the spring is relaxed.  Do we have to do this? No, but things will be 
much easier if we do.  We will also see that maintaining this zero of potential energy supersedes 
our choice of where to make the gravitational energy zero, again for mathematical exigency. 

Also, note that the potential energy of a spring depends on the square of the extension or 
compression.  That is, for U(X), it really doesn’t matter if we make compression or extension 
positive or negative; the potential energy increases either way. 

EXAMPLE 6-5 

Consider the frictionless surface shown.  On the left is an ideal spring of constant k = 30 N/m.  
A mass of 5 kg is pushup against the spring, compressing it 0.2 m.  When the mass is released, 
it is pushed to the right, slides across the surface, and travels up the incline.  What is the mass’s 
altitude yf when it stops? 

 

There are three forces acting on the mass at one time or another.  Use the work-energy theorem. 

WN = 0 (the normal force is always perpendicular to the path). 
WSp – conservative 
Wg – conservative 

Let’s define y = 0 to be at the bottom of the problem.  Then, 

Wେ =  ∆K + ∆U +  ∆Uୗ୮   . 
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0 =  
ଵ

ଶ
 m v

ଶ −  
ଵ

ଶ
 m v୧

ଶ + gmy −  gmy୧ +
ଵ

ଶ
 kX

ଶ −
ଵ

ଶ
 kX୧

ଶ   

              stops        starts from rest    y୧ = 0  spring is relaxed 

gmy =  
ଵ

ଶ
 kX୧

ଶ      →        y =  
 kX୧

ଶ

2gm
=

30(0.2ଶ)

2(10)5
= 0.012 m  

This illustrates why I used X; it represents the location of the end of the spring, not the location 
of the mass. 

EXAMPLE 6-6 

Show that an object of mass m 
moving at speed vo across a 
rough horizontal floor will 
slide a distance s = (vo)2/2μKg. 

There are three forces acting 
on the object.  Consider the 
work each does. 

WN = 0 (the normal force is 
always perpendicular to the 
path). 

Wg – conservative 

Wf = Ff s cosθF,s.  We need to find the frictional force, which unfortunately requires a trip 
back to Newton’s second law land.  Although the result here may seem obvious to you, it is 
important to actually show the effort.  From NII in the y-direction, 

+ F −  gm = ma୷ = 0     →      F = gm 

F =  μF =  μgm  . 

Since the displacement and frictional forces are in opposite directions, we’ll be taking the 
cosine of 180o, so 

W =  (μgm) s (−1) = −μgms  .  

The work-energy theorem then results in  

−μgms =  
ଵ

ଶ
 m v

ଶ −  
ଵ

ଶ
 m v୧

ଶ + gmy −  gmy୧ 

       comes to a stop                   y = y୧ 

Finish up with 
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μgs =  
ଵ

ଶ
  v୭

ଶ 

s =  
v୭

ଶ

2μg
   . 

HOMEWORK 6-7 

Two identical massless springs of 
constant k = 400 N/m are fixed at 
opposite ends of a level track, as 
shown.  A 12 kg block is pressed 
against the left spring, 
compressing it by 0.3m.  The block is then released from rest.  The entire track is frictionless 
except for the region of length 0.2 m between points A and B, where K = 0.08.  What is the 
maximum compression of the spring on the right?  

HOMEWORK 6-8 

Consider a 13 kg block sitting at rest on a rough 
surface.  The coëfficient of friction between the 
block and surface is 0.7. The block is barely 
touching a relaxed spring of constant k = 300 
N/m.  How much work would a hand or other such agency need to do to push the block very 
slowly 0.2 m against the spring?  

HOMEWORK 6-9 

The 10 kg mass is released from rest at a 
height of 1m above the floor.  If the 
coëfficient of kinetic friction between the 5 
kg mass and the table is 0.8, what will be the 
speed of the 10 kg mass just before it hits the 
floor? 

 
EXAMPLE 6-7 

Let’s look at a problem where it is not a good 
idea to make the lowest point the zero of 
gravitational potential energy.  Let’s drop a 
box of mass M onto a vertical spring.  How far 
is the spring compressed when the box comes 
to a stop?  The figure shows three points in the 
process.  Because the spring’s potential energy 
is quadradic while the gravitational potential 
energy is linear, things will go much easier 
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mathematically if we set the springs relaxed position to be the zero for both.  Note then that 
the final values for y and for X will be the same.  Let’s pick some numbers: yi = 12 m; M = 8 
kg; k = 120 N/m. 

Use the work-energy theorem: 

There are two forces acting on the box, the weight and the spring force. 
Wg – conservative 
WSpring – conservative 

 So, we have that happy situation when WNC = 0. 

0 =  
ଵ

ଶ
 m v

ଶ −  
ଵ

ଶ
 m v୧

ଶ + gmy −  gmy୧ +
ଵ

ଶ
 kX

ଶ −
ଵ

ଶ
 kX୧

ଶ   

The box begins and ends at rest                          the spring is initally relaxed 
 
Remember that yf = Xf. 

0 =  gmy −  gmy୧ +
ଵ

ଶ
 k y

ଶ   

This is a quadratic equation, so let’s insert the values now and re-arrange for solution.  We’ll 
also divide both sides by 20 to make the numbers smaller. 

0 = 10(8)y − 10(8)y୧ +
ଵ

ଶ
 (120) y

ଶ   

3 y
ଶ + 4y  − 4y୧ = 0 

y =
−4 ± ඥ4ଶ − 4(3)(−4)

2(3)
=  +0.67m or − 2 m   . 

This time, we want the negative root because we know the final position will be below the y 
= 0 level. 

 
DISCUSSION 6-9 
 

Why does the equation give us two values?  What condition did we impose on the locations of 
the box and the end of the spring?  What situation does the other root correspond to? 
 

HOMEWORK 6-10 
 

A 0.85 kg bunch of bananas depresses the pan of a spring balance at Wegman’s 3.0 cm when 
resting on it.  If the bananas were dropped onto the pan from a height of 0.3 m above the empty 
pan, how far will the pan be depressed before starting to return upward? 
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Power 

Sometimes, we’re interested in the rate at which energy is put into, or removed from, an object, or 
the rate at which work is done, the power: 
 

P =  
W

t
  . 

 
The instantaneous power is of course 
 

P୍ ୗ =  lim
∆୲→

δW

∆t
  . 

 
If we consider forces acting on an object during a short interval of time (and displacement), we 
obtain an interesting result: 
 

P୍ ୗ =  lim
∆୲→

δW

∆t
= lim

∆୲→
൬

F ∆x cos(θ,୶)

t
൰  = F lim

∆୲→
൬

∆x

t
൰ cos(θ,୶) = F v cos൫θ,୴൯ = Fሬ⃑  · vሬ⃑   . 

 
If one joule of work is performed in one second, we say that the power is one watt (symbol W).  
There is an alternate unit for power that is still commonly used in the U.S., the horsepower (hp).  
The hp has been redefined as exactly 750 W. 
 
DISCUSSION 6-10 
 

What is the power rating of a typical incandescent light bulb?13  What is the power rating of a 
corresponding diode light bulb?  What is the power rating of the engine in your car?  How 
many light bulbs could your car engine presumably light up at once? 

 
EXAMPLE 6-8 
 

Suppose you’re late for your next class.  You need to run up a flight of stairs as quickly as 
possible.  What power output is required? 
 
The result depends on the values picked and will of course vary from person to person.  Let’s 
assume that the floors of your building are 6 m apart (fairly typical for an office building).  The 
average adult male American masses in at 90 kg.  The part no one ever agrees on is the amount 
of time required to run up a flight of stairs.  Let’s call it twelve seconds. If we can agree that 
all of the work goes into increasing the person’s potential energy (he’s running the same speed 
at the top and at the bottom), then we have 
 

P =  
W

t
=  

ΔU

t
=

gmH

t
=  

10(90)6

7
=  771 W = 1.03 hp. 

 
                                                 
13 This is not the same power that we discussed; it is the rate of conversion of electrical energy to thermal energy.  
But, let’s continue anyway. 
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DISCUSSION 6-11 
 

The horsepower was originally defined, loosely, as the power a draught house could supply 
while drawing a plough.  From the previous result, it appears you could do this job.  What’s 
the difference between your ability and the horse’s ability to draw a plough? 

 

EXERCISE 6-1 Solution 

Start as usual with a free body diagram.  There are two forces acting on the child, his weight and 
the normal force.   

WN = 0 (the normal force is always perpendicular to the path). 
Wg – conservative 

So, we have again that WNC = 0, and 

0 =  
ଵ

ଶ
 m v

ଶ −  
ଵ

ଶ
 m v୧

ଶ + gmy −  gmy୧  . 

 
The child starts from rest (or close to it) and 
we will set ground level as y = 0.  The 
problem ends not at the ground, but when the 
child leaves the igloo surface at y = H.  The 
original altitude is y = R, the radius of the 
igloo. 
 

0 =  
ଵ

ଶ
 m v

ଶ  + gmH −  gmR  . 

The trouble we have here is that there are two unknowns.  We need more information.  We might 
notice that the child is moving in a circle, and we know a lot about things moving in circles.  Let’s 
return to Newton’s second law: 

+ gm cos(θ) − F = maେ =  
mvଶ

r
  . 

The radius of the circle is of course R.  The normal force goes to zero when the child loses contact 
with the surface, and at that moment, v = vf. 

 gm cos(θ) =  
m𝑣

ଶ

R
  . 

We may notice that the cosine of theta is H/R, so that 
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gm
H

R
=  

mv
ଶ

R
     →      gmH = mv

ଶ   . 

Returning to the energy equation, 

0 =  
ଵ

ଶ
 gmH + gmH −  gmR  ; 

3

2
 H = R ; 

H =
2

3
R  . 

 
  _____________________________________________________________________________ 
 
O.K., so this isn’t a Calc III Course.  Here are a couple of quick explanations of these ideas.   
 
The first is solid enough.  Previously, we noted that  
 

ΔU =  −Wେ =  − න F௫ 𝑑x + F௬ 𝑑y + F௭ 𝑑z . 

If the force is conservative, the integral has the same value regardless of the path taken, so let’s 
move a very short distance dx along the x-axis first, resulting in a change of potential energy dU1,  

𝑑Uଵ =  −F௫ 𝑑x    →      𝐹௫ =  − 
𝑑U

𝑑x
     . 

We repeat in the y and z directions: 

𝑑Uଶ =  −F௬ 𝑑y    →      𝐹௬ =  − 
𝑑U

𝑑y
     

𝑑Uଷ =  −F௭ 𝑑z    →      𝐹௭ =  − 
𝑑U

𝑑z
     . 

Then, 

�⃑� =  𝐹௫ 𝚤̂ +  𝐹௬ 𝚥̂ +  𝐹௭ 𝑘 =  − 
𝑑U

𝑑x
𝚤̂ −  

𝑑U

𝑑y
𝚥̂ −  

𝑑U

𝑑z
𝑘  

 
 


