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SECTION 7 – THE THIRD PICTURE 

We've looked at the motions of objects using two outwardly different, but ultimately identical, 
points of view: forces and accelerations, and work and energy.  We know that they are the same, 
since we derived the work-energy theorem using Newton's Second Law and a couple of 
definitions.  Now, we'll introduce yet another picture which we may, or may not, find convenient 
to use on certain classes of problems.  
 

CHEESY EXPERIMENT 7-1 
 

Consider a small toy car sitting on a table at a spot marked ‘X’; we’ll assume the wheels make 
its contact with the table frictionless.  Observes the car closely.  Now, observe the car as it 
travels through point X.  Is it fair to say that the car possesses some quality or property when 
it’s moving through X that it lacks when stationary?  How did the car acquire that property?   
 

DISCUSSION 7-1 
 

Impulse.mp4  
You may notice that the car had the property only after a force acted on it.  Indeed, I can also 
remove the property by applying a force opposite to the motion of the car.  This is sounding 
awfully familiar.  In fact, we will approach this in a manner very much like the one we used 
for work and energy.  After the experiment, we agreed to the following: 

 
 There is some quality or property the object possesses when it’s moving through X that it 

lacks when it’s stationary at X.  Of course, we know that the object possesses kinetic energy 
when it’s moving, but we are measuring the transfer of this new property differently, so we 
must be transferring something else as well.  For want of a better name, let’s call this new 
property momentum (symbol p) 

 Momentum is transferred into the object by applying a force.  However, the force must act 
for some period of time.  That means that the property is not energy, although clearly 
energy was also being transferred.   

 Transferring momentum into (or out of) an object is a process; let us call the transfer of 
momentum the impulse (J) done on the object.  Impulse is not momentum; it is the transfer 
of momentum.   

 The bigger the force, the more momentum is transferred:  as F↑, J↑. We might even 
speculate that J is proportional to F.  That would certainly be the simplest relationship 
consistent with our observations.  We could be wrong, of course; perhaps J ~ F2 or F3.  
We’ll make the simplest assumption and see if there is a contradiction somewhere in our 
subsequent experiments. 

 The greater the time interval over which the force acted, the more impulse is provided: that 
is, as Δt ↑,J↑ .We might speculate that J is proportional to Δt.  

We may perhaps further speculate that, in the simplest possible scenario, J = F Δt. = Δp.   
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DISCUSSION 7-2 
 

Let’s look at the center term of the hypothesis formula above.  Which kind of a quantity is 
force?  Then, what about impulse and momentum?  Is the bank account analogy appropriate 
here?  Can you think of one that may be more appropriate? 
 

DISCUSSION 7-3 
 

What if the force applied to the object were not constant in time?  How might we define the 
corresponding impulse? 
 

When we considered a similar situation in work-energy, we decided to break the displacement up 
into small intervals, find the work done over each displacement, and then add those together.  Let; 
try the same thing here.  Break the tine interval up into small units dt and integrate: 
 

J⃑ =  න Fሬ⃑ (t) 𝑑t   . 

 
As in Section 6, we know that there may be more than one force acting on an object at once, each 
with its own effect on the momentum.   
 
DERIVATION 7-1 
 

J⃑୘୓୘୅୐ =  ෍ J⃑୬

୬

= ෍ න Fሬ⃑ ୬(t) 𝑑t  

୬

=  න ෍ Fሬ⃑ ୬(t) 𝑑t = න ቀ෍ Fሬ⃑ ୬(t)ቁ 𝑑t = න m aሬ⃑ 𝑑t

=  m න  
𝑑vሬ⃑

𝑑t
𝑑t =  m න 𝑑vሬ⃑  = m ∆vሬ⃑ = ∆(mvሬ⃑ )  .  

 
Keeping in mind that we required that J⃑୘୓୘୅୐ =  Δpሬ⃑  , we may perhaps jump to the conclusion 
that pሬ⃑ = mvሬ⃑ . 1  
 

Now, because we wrote this derivation in terms of vectors, and because we know that if two vectors 
are equal, then their x, y, and z components must independently be equal, we can treat these 
problems with momentum as three separate problems, one with the x-components, one with the y-
components, and one with the z-components. 

DISCUSSION 7-4 

It is useful to remember that these quantities, such as momentum or energy, are ones that we 
have defined.  Is momentum a real thing?  What about energy? 

HOMEWORK 7-1 

                                                 
1 As always, we could be wrong and perhaps pሬ⃑  = mvሬ⃑  + Aሬሬ⃑ , where Aሬሬ⃑  is some constant that subtracts out when we find 
the change in pሬ⃑ .  For now, let’s assume the simplest case that Aሬሬ⃑  = 0. 
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What is the ratio of the magnitude of the momentum of a 3kg mass moving at 3 m/s to that of 
a 2 kg mass moving at 4 m/s?  What is the ratio of the respective kinetic energies?  NOTE: 
You should find that one of the objects has more momentum, while the other has more kinetic 
energy.  How is that possible? 

HOMEWORK 7-2 

Show that the kinetic energy of an object can be written in terms of the magnitude of the 
momentum as K = p2/2m. 

EXAMPLE 7-1 

A constant force of 14 N acts on an initially stationary object (mass 6 kg) for 8 seconds.  If this 
was the only force acting on the object, what is the impulse?  What is the final speed of the 
object? 

Call the direction of the force the +x direction. 

J⃑୘୓୘୅୐ =  Fሬ⃑  ∆t = 14(8) = 112 Ns in the + x direction   . 

Note that, unlike for work/energy, there is no special unit for impulse/momentum. Typically, 
impulse is newtons seconds, while momentum is kilogram meters/second. 

Then, 

J⃑୘୓୘୅୐ =  ∆pሬ⃑ = mvሬ⃑ ୤ − mvሬ⃑ ୧  , 

vሬ⃑ ୤ =  vሬ⃑ ୧ +  
J⃑୘୓୘୅୐

m
=   0 +  

112

6
 = 18.7 m s⁄ in the + x direction  . 

HOMEWORK 7-3 

Suppose F(t) shown in the figure is the net force acting 
in the +x direction on a particle of mass 2kg.  Find 

a) the impulse imparted to the object by the force.  
b) the final velocity of the object if it had been 
originally at rest. 
c) the final velocity of the object if its initial x velocity 
had been -2 m/s.  
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As mentioned several times, each of our ‘pictures’ is especially well suited to solving a particular 
type of problem.  Newton’s second law and the kinematic equations were useful when the forces 
were constant.  The work energy theorem was useful when there were no non-conservative forces 
doing work (mechanical energy was conserved), and had the advantage of not requiring us 
necessarily to know the path taken by the object of interest or the time that the trip required.  In 
some special cases, the momentum picture is very useful for examining collisions.  A collision is 
when two or more objects interact with one another.  They do not need actually to touch one 
another, as we may think about, say, automobile collisions. They may exert other forces on each 
other, whether gravitational, electric, nuclear, et c.  

Before we start, let’s define a system.  You may be familiar with this term from chemistry.  A 
system is just the collection of objects in which we are interested.  A closed system is one for which 
the only forces acting on the objects are due to other objects in the system; these are called internal 
forces.  An open system is one for which some force or forces are due to agencies not included in 
the system; these are of course external forces.  
We can mentally draw an imaginary box around 
the system; any force that crosses the box’s 
boundary will be an external force.  In the figure, 
the system comprises mass 1 and mass 2.  The 
force exerted on 1 by 2 and the force exerted on 
2 by 1 are internal forces.  Their weights, 
however, are exerted by the earth, which is not 
in the box; the weights are therefor external 
forces. 

As usual, let’s start with a simple case, then generalize. 

DERIVATION 7-2 

Consider two objects, m1 and m2, each with its proper initial velocity, vሬ⃑ ଵ୧and vሬ⃑ ଶ୧.  When the 
objects interact, they exert forces on each other that obey Newton’s third law: 

Fሬ⃑ ଵ,ଶ =  − Fሬ⃑ ଶ,ଵ  . 

By the second law, 

mଵaሬ⃑ ଵ =  − mଶaሬ⃑ ଶ  . 

Careful here.  Because the statement above is true instant by instant, it must also be true when 
averaged over the duration of the interaction between the masses, so we can write 

mଵaሬ⃑ ୅୚୉ ଵ =  − mଶa୅୚୉ ଶ  . 

Note that at this stage, we lose a lot of information about the forces involved.  Remember the 
definition of the average acceleration and substitute: 
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mଵ

∆vሬ⃑ ଵ

∆tଵ
=  − mଶ

∆vሬ⃑ ଶ

∆tଶ
  . 

We can make an argument using the third law that the two time intervals must be the same; if 
they were not, then there would be a time when one object would be exerting a force on the 
other while the other would not be exerting a force on the one. 

mଵ∆vሬ⃑ ଵ =  − mଶ∆vሬ⃑ ଶ   

mଵvሬ⃑ ଵ୤ − mଵvሬ⃑ ଵ୧ =  −mଶvሬ⃑ ଶ୤ +  mଶvሬ⃑ ଶ୧ 

mଵvሬ⃑ ଵ୧ +  mଶvሬ⃑ ଶ୧ =  mଵvሬ⃑ ଵ୤ +  mଶvሬ⃑ ଶ୤  . 

At this point, we might recognize a relationship similar to one we saw in Section 6.  The total 
momentum of the system before the interaction is equal to the total momentum of the system 
after the interaction.  Momentum may well have been transferred from one object to the other, 
but the total momentum was conserved.  Unlike energy, though, momentum does not change 
from one form to another, e.g., from kinetic to potential.  

For future reference, let’s write this last expression as  

 mଵvሬ⃑ ଵ୤ +  mଶvሬ⃑ ଶ୤ − mଵvሬ⃑ ଵ୧ − mଶvሬ⃑ ଶ୧  =  Δpሬ⃑ ୘୓୘୅୐ = 0 . 

Before we continue, a number of comments.   

What if, in our derivation, there were an external force?  Let’s redo the work with an external force 
acting on mass 1 as an example.  It would still be true that 

Fሬ⃑ ଵ,ଶ =  − Fሬ⃑ ଶ,ଵ  . 

But by the second law, 

Fሬ⃑ ଵ,୉ଡ଼୘ +  Fሬ⃑ ଵ,ଶ =  mଵaሬ⃑ ଵ  , 

so that 

− Fሬ⃑ ଵ,୉ଡ଼୘ + mଵaሬ⃑ ଵ =  − mଶaଶ  . 

Following through to the end, we see that 

− Fሬ⃑ ଵ,୉ଡ଼୘ +  mଵaሬ⃑ ୅୚୉ ଵ =  − mଶaሬ⃑ ୅୚୉ ଶ  

− Fሬ⃑ ଵ,୉ଡ଼୘ + mଵ

∆vሬ⃑ ଵ

∆tଵ
=  − mଶ

∆vሬ⃑ ଶ

∆tଶ
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− Fሬ⃑ ଵ,୉ଡ଼୘Δt +  mଵ∆vሬ⃑ ଵ =  − mଶ∆vሬ⃑ ଶ   

− Fሬ⃑ ଵ,୉ଡ଼୘Δt +  mଵvሬ⃑ ଵ୧ +  mଶvሬ⃑ ଶ୧ =  mଵvሬ⃑ ଵ୤ +  mଶvሬ⃑ ଶ୤  .  

 Fሬ⃑ ଵ,୉ଡ଼୘Δt =  Δpሬ⃑ ୘୓୘୅୐ ≠ 0  

and the total momentum is not conserved.  We do not expect the total momentum of a system to 
be conserved if there are external forces. 

However, there are two loopholes.  The first, in analogy with the work energy theorem, is that 
momentum will still be conserved if the net external force is zero, that is, if the external forces 
happen to cancel to zero.2  The other loophole is more common.  Because we used vector notation, 
the derivation is valid for three dimensions.  But remember that when two vectors are equal, their 
x, y, and z components are also independently equal.  This means that the result can be written as 
three separate equations: 

mଵvଵ୶୧ +  mଶvଶ୶୧ =  mଵvଵ୶୤ +  mଶvଶ୶୤  

mଵvଵ୷୧ +  mଶvଶ୷୧ =  mଵvଵ୷୤ +  mଶvଶ୷୤  

mଵvଵ୸୧ +  mଶvଶ୸୧ =  mଵvଵ୸୤ +  mଶvଶ୸୤   . 

Suppose that there are some external forces in the x direction, but none in the y or z directions.  
Then, we can still use conservation of momentum in those two directions.  As an example, think 
of two skydivers falling toward the earth.  If the system is the two divers, there are external forces 
in the vertical direction (their weights), but none in the horizontal directions.  Momentum will still 
be conserved horizontally in any collision the divers may suffer.   

O.K., we are actually in a position to test the idea of conservation of momentum, and Newton’s 
third law as well (remember that we skipped on that in Section 5) since our notion was based on 
Newton’s second law (already tested) and the third law. 

EXPERIMENT 7-1 
 

                                                 
2 A simple analogous situation for work-energy might be to push a crate parallel to the surface on which it moves 
while balancing a kinetic frictional force. 
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Let’s look at the results of an 
experiment to give us some 
confidence this is true.  A 
system of two masses were 
placed on an airtrack to reduce 
friction (an external force) and 
collided together under 
different conditions.  The 
vertical forces of weight and 
air from the track should not 
affect the horizontal motions.  
The velocities before and after 
were measured, and the total 
momentums before and after 
calculated and plotted.  If 
conservation of momentum is true, a line of slope one through the origin should be seen.  In these 
results, the intercept is very small compared to the values measured, and the slope is very close to 
one.  This gives us some confidence that linear momentum is conserved, and indirectly, that the 
third law of motion is supported. 
 

DERIVATION 7-3* 

What if there are more than two masses in the system?  Well, suppose that there are q masses.  
For each mass n, add up the k impulses acting on it. 

෍ J⃑୬,୩

୩

=  ∆pሬ⃑ ୬ 

Add up these terms for all q masses: 

෍ ෍ J⃑୬,୩

୩

௤

௡ୀଵ

=  ෍ ∆pሬ⃑ ୬

௤

௡ୀଵ

=  ∆pሬ⃑ ୘୓୘୅୐  . 

We can divide the impulses on the left into two categories, internal and external, in the same 
way we divided forces into conservative and non-conservative forces.  Keep in mind that any 
object in the system won’t exert a force on itself. 

෍ ෍ J୍⃑୒୘ ୬,୩

௤

୩ୀଵ
୩ஷ୬

௤

௡ୀଵ

+  ෍ ෍ J⃑୉ଡ଼୘ ୬,୩

୩

௤

௡ୀଵ,

= ∆pሬ⃑ ୘୓୘୅୐  . 

The second term on the left side is just the sum of the external impulses, so let’s concentrate 
on the first term.  Since J⃑ =  ∫ Fሬ⃑ (t) 𝑑t , 
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෍ ෍ න Fሬ⃑ ୬,୩(t) 𝑑t୬,୩

୯

୩ୀଵ
୩ஷ୬

୯

୬ୀଵ

+  J⃑୉ଡ଼୘ ୘୓୘୅୐ = ∆pሬ⃑ ୘୓୘୅୐  . 

Now, dtn,k = dtk,n are time intervals during which objects n and k interact; by our third law 
argument above, these time intervals are equal and indeed occur simultaneously.  From the 
third law, Fሬ⃑ ୬,୩ =  − Fሬ⃑ ୩,୬, and so we see that all of the terms in the summation cancel in pairs, 
leaving  

J⃑୉ଡ଼୘ ୘୓୘୅୐ = ∆pሬ⃑ ୘୓୘୅୐  . 

If there are no external forces, then the total momentum of the system is conserved. 

Brief Review 

Let's review the three pictures:  

 The velocity of an object will remain constant unless the object is acted on by a force, in 
which case Fሬ⃑ TOTAL = maሬ⃑ . 

 The kinetic energy of an object will remain constant unless the object has work performed 
on it, in which case WTOTAL = K. 

 The momentum of an object will remain constant unless the object is acted on by an 
impulse, in which case J⃑TOTAL = pሬ⃑ . 

These last two we can re-write for systems of objects:  

 The total mechanical energy (E = K + U) of a system will remain constant unless the system 
has work performed on it by non-conservative forces, in which case WNC = ETOTAL. 

 The total momentum of a system will remain constant unless the system is acted on by an 
external impulse, in which case J⃑EXT = pሬ⃑ TOTAL. 

Collisions 

As was noted above, conservation of momentum is particularly useful in analyzing collisions.  You 
may have noticed that, in Derivation 7-X, the details of the forces acting between the objects 
disappeared, which is one of the strengths of this method. We don’t even need to know what kind 
of force acted on the objects!  It is somewhat along the lines of having an object slide down along 
a curved frictionless surface; the details of the path were not necessary to find the speed of the 
object at the bottom. 
 
We’re going to consider only the extremes of the spectrum of collisions.  The easier of the two is 
the completely inelastic collision, one in which the objects stick together after the collision.  Let's 
start by considering a simple situation in one dimension in which there are no external forces (that 
is, the only forces are those that each object exerts on the other): 
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EXAMPLE 7-2 
 

An object of mass 5 kg is moving at 7 m/s along the +x axis when it strikes a stationary object 
of mass 3 kg.  If they stick together, what is their common final velocity? 
 
First of all, for a problem like this one, it’s convenient to revert to the notation we used in 
Sections 2 through 5: a vector in the +x direction will carry a positive value, while one in the 
-x direction will carry a minus sign. 
 
Assuming the two masses form a closed system, conservation of momentum seems 
appropriate. 
 

mଵvሬ⃑ ଵ୶୧ +  mଶvሬ⃑ ଶ୶୧ =  mଵvሬ⃑ ଵ୶୤ +  mଶvሬ⃑ ଶ୶୤  . 
 
They have a common final velocity, or, if you prefer, it’s as if they are now one object of mass 
m1 + m2 moving at velocity vf. 
 

mଵvሬ⃑ ଵ୶୧ +  mଶvሬ⃑ ଶ୶୧ =  (mଵ +  mଶ)vሬ⃑ ୶୤  . 
 

vሬ⃑ ୶୤  =  
mଵvሬ⃑ ଵ୶୧ +  mଶvሬ⃑ ଶ୶୧

mଵ +  mଶ
=  

5(+7) + 3(0)

5 + 3
=  +4.38 m s⁄  . 

 
EXAMPLE 7-3 
 

An object of mass 12 kg is moving at 5 m/s along the +x axis has a rear-end collision with an 
object of mass 3 kg travelling at 4 m/s.  If they stick together, what is their common final 
velocity? 
 
First, what does rear-end collision mean?  It’s an expression from automobile collisions 
meaning that the two objects were moving in the same direction.  A head-on collision would 
be one in which they were heading in the opposite directions. 
 
Assuming the two masses form a closed system, conservation of momentum seems 
appropriate.  Also, because they have a common final velocity,  
 

mଵvሬ⃑ ଵ୶୧ +  mଶvሬ⃑ ଶ୶୧ =  (mଵ +  mଶ)vሬ⃑ ୶୤  . 
 

vሬ⃑ ୶୤  =  
mଵvሬ⃑ ଵ୶୧ +  mଶvሬ⃑ ଶ୶୧

mଵ +  mଶ
=  

12(+5) + 3(+4)

12 + 3
=  +4.8 m s⁄  . 

 
EXERCISE 7-1 
 

An object of mass 6 kg is moving at 4 m/s along the +x axis has a head-on collision with an 
object of mass 3 kg travelling at 8 m/s.  If they stick together, what is their common final 
velocity? 
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HOMEWORK 7-4 
 

Three masses of 6 kg, 7 kg, and 2 kg 
move on a frictionless horizontal 
surface with initial speeds of 4 m/s, 2 
m/s, and 5 m/s, respectively, as 
shown in the figure.  If the masses all 
stick together after the collisions, 
what will be the final velocity of the 
combined mass? 

 
HOMEWORK 7-5 
 

Two railcars have a head-on collision, couple together, and stop dead.  If Car A was moving 
four times as quickly as Car B was, and the total mass of both cars together is 90,000 kg, 
what are the masses of each car individually? 

 
DISCUSSION 7-5 
 

Consider the result of Exercise 7-1.  We ended up with no momentum because we happened 
to start with no momentum. Sure, each object had some momentum of its own to start, but the 
total was zero.  You may notice, however, that there is something else that we ended with zero 
of, but started with a positive amount of.  What is it?  Where did it go?  Consider an automobile 
accident.  What do the cars look like afterward and what was necessary to make them that way? 

 
In Exercise 7-1, the objects started with 144 joules of kinetic energy, and ended with none.  One 
of the characteristics of totally inelastic collisions is that kinetic energy is lost.  
 
EXERCISE 7-2 
 

Find the total initial and final kinetic energies in Example 7-x. 
 
DERIVATION 7-4 
 

Show that kinetic energy is always lost during the special case of a totally inelastic collision in 
one dimension when one of the objects is initially at rest.  We’ve already shown that 
 

vሬ⃑ ୶୤  =  
mଵvሬ⃑ ଵ୶୧ + mଶvሬ⃑ ଶ୶୧

mଵ + mଶ
    

୫మ ୱ୲ୟ୰୲ୱ ୟ୲ ୰ୣୱ୲
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ     v୶୤  =

mଵvଵ୶୧

mଵ + mଶ
  .  

 
Now we need to show that 

ଵ

ଶ 
mଵvଵ୶୧ 

ଶ
ା  

ଵ 

ଶ
mଶvଶ୶୧

ଶ >  
ଵ

ଶ
( mଵ + mଶ)v୶୤

ଶ  
୫మ ୱ୲ୟ୰୲ୱ ୟ୲ ୰ୣୱ୲
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 
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ଵ

ଶ 
mଵvଵ୶୧

ଶ >  
ଵ

ଶ
( mଵ +  mଶ) ൬

mଵvଵ୶୧

mଵ +  mଶ
൰

ଶ

. 

mଵvଵ୶୧
ଶ >  ൬

mଵ

mଵ +  mଶ
൰ mଵvଵ୶୧

ଶ  

 
This leads us to the true statement that 
 

1 >  
mଵ

mଵ +  mଶ
  , 

 
which is equivalent to saying that kinetic energy is always lost in this very special case. 
 

DISCUSSION 7-6 
 
The previous derivation was done for a very special case of one of the masses being initially 
at rest.  After completing Section 7, you should be able to return here and make an argument 
that kinetic energy is lost in any totally inelastic collision regardless of the initial motions of 
the two masses.   
 

Let’s examine a particular situation.  Suppose that a bullet is fired into a block of wood.  The bullet 
penetrates a given distance into the block, and the block of course moves a bit in the direction the 
bullet was moving.  The bullet applied a force to the block and the block applied an equal though 
opposite force to the bullet.  The bullet did positive work on the block, and the block did negative 
work on the bullet.  However, the displacements of each object were not the same during this 
process, and so more negative work was done on the bullet than positive work done on the block.  
As a result, kinetic energy was lost. 
 
EXAMPLE 7-4 

 
Let’s try a two-dimensional example.   Suppose you are an insurance 
accident investigator.  Two cars collided at an icy intersection as shown, 
and the wreckage moved off at an angle 59o north of east.  You know 
that Car One (1500 kg) was moving eastward at 30 m/s just before the 
collision, because it was caught on a speed camera.  The question is, 
how quickly was Car Two (2000 kg) moving? 
 
We’ll let the system comprise the cars.  The road is icy, or frictionless, 

so there are no external horizontal forces.  The vertical normal forces and weights will not 
prohibit conservation of momentum in the horizontal directions.  Let east be the +x direction 
and north be the +y direction.  Use conservation of momentum separately in each direction. 
 

x:  mଵvଵ୶୧ +  mଶvଶ୶୧ =  (mଵ + mଶ) v୶୤ 
 

y:  mଵvଵ୷୧ +  mଶvଶ୷୧ =  (mଵ + mଶ) v୷୤ 
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In this solution, v1yi and v2xi are both zero, and vxf = vf cos(θ) and vyf = vf sin(θ).   
 

mଵvଵ୶୧ =  (mଵ + mଶ) v୤ cos (θ) 
 

mଶvଶ୷୧ =  (mଵ + mଶ) v୤ sin (θ) 
 
Divide the second equation by the first to obtain 
 

mଶvଶ୷୧

mଵvଵ୶୧
= tan(θ)  . 

 
Then, 

vଶ୷୧ =  
mଵ

mଶ
 vଵ୶୧  tan(θ) =  

1500

2000
(30) tan(59୭) = 37.4 m s⁄  .  

Now, let's consider a totally elastic collision, by which we mean no kinetic energy is lost during 
the collision (although, it can be transferred from one object to the other).  Think of the objects as 
having springs on them; instead of kinetic energy being used to deform the objects, some kinetic 
energy is stored as potential energy, then re-released as kinetic.  For reasons that will be discussed 
later, this derivation will be applicable to problems in one dimension only.   

DERIVATION 7-5 

We will write one equation representing conservation of momentum (in one dimension only) 
and another representing the fact that the total kinetic energy is the same before and after the 
interaction. 

mଵvሬ⃑ ଵ୶୧ +  mଶvሬ⃑ ଶ୶୧ =  mଵvሬ⃑ ଵ୶୤ +  mଶvሬ⃑ ଶ୶୤   

ଵ

ଶ 
mଵvଵ୶୧

ଶ +  
ଵ 

ଶ
mଶvଶ୶୧

ଶ =  
ଵ

ଶ
 mଵvଵ୶୤

ଶ +  
ଵ

ଶ
 mଶvଶ୶୤

ଶ  

Typically, we are given the masses and initial velocities and are asked to find the final 
velocities.  Since we have two independent equations and two unknowns, we should be good.  
One solution should be obvious:  v1xi = vx1f and v2xi = vx2f; the equations require merely that K 
and p be conserved, which is certainly the case if no collision actually occurs. However, finding 
the other, more interesting, solution requires about two pages of effort.  So, what we’re going 
to do is what physicists often do when a problem is too difficult; we’ll look at a special case.  
Here, we’ll simplify the problem to require that mass two is initially at rest.  Of course, the 
results we obtain will be valid for only that situation. Our two equations become 

mଵvሬ⃑ ଵ୶୧ =  mଵvሬ⃑ ଵ୶୤ +  mଶvሬ⃑ ଶ୶୤   

ଵ

ଶ
 mଵvଵ୶୧

ଶ =  భ

మ
 mଵvଵ୶୤

ଶ + భ

మ
 mଶvଶ୶୤

ଶ  

Reverting to our Section 2 notation, this first equation can be rewritten as 
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mଶvଶ୶୤ =  mଵvଵ୶୧ −  mଵvଵ୶୤ =  mଵ(vଵ୶୧ −  vଵ୶୤)  

and the second as 

భ

మ
 mଶvଶ୶୤

ଶ =  
ଵ

ଶ
 mଵvଵ୶୧

ଶ −  భ

మ
 mଵvଵ୶୤

ଶ = భ

మ
 mଵ (vଵ୶୧ −  vଵ୶୤)(vଵ୶୧ +  vଵ୶୤)  .  

Dividing the second equation by the first and multiplying through by two results in 

vଶ୶୤ =  vଵ୶୧ +  vଵ୶୤  ,  

which we substitute into the original momentum equation. 

mଵvଵ୶୧ =  mଵvଵ୶୤ + mଶ(vଵ୶୧ + vଵ୶୤) 

Solving for the final velocity of mass one gives us 

vଵ୶୤ =  
𝑚ଵ −  𝑚ଶ

𝑚ଵ +  𝑚ଶ
vଵ୶୧  . 

If instead, we substitute to solve for the final velocity of mass two, we get 

vଶ୶୤ =  
2𝑚ଵ

𝑚ଵ +  𝑚ଶ
vଵ୶୧  . 

Once again, remember that these solutions are only valid if one mass had been initially at rest, the 
collision was totally elastic, and motion was restricted to one dimension.  To be clear, you should 
label whichever mass was not initially moving as mass two.  If you encounter this type of problem 
in a homework or exam question, you may move directly to these two relationships as your starting 
point. 

EXAMPLE 7-4 

An object of mass 12 kg moving at 5 m/s along the +x axis has a totally elastic collision with 
a stationary object of mass 3 kg.  What are their final velocities? 
 
As allowed above, we will start with the two relationships we derived.  The solution becomes 
‘plug-and-chug.’ 

vଵ୶୤ =  
mଵ −  mଶ

mଵ +  mଶ
vଵ୶୧  =   

12 −  3

12 +  3
5 = 3 m s⁄  . 

vଶ୶୤ =  
2mଵ

mଵ +  mଶ
vଵ୶୧ =  

2(12)

12 3
5 =  8 m/s . 

EXERCISE 7-3 



 

- 143 - 
 

An object of mass 7 kg is moving at 10 m/s along the +x axis has a totally elastic rear-end 
collision with an object of mass 4 kg travelling at 3 m/s.  What are their final velocities? 
 

What if neither mass had been at rest?  Well, we could go back and re-do the derivation with the 
two extra terms, but here is a neat trick: we can make use of the material of Section 4 (relative 
motion) and pick a new frame of reference (indicated below by a prime) in which mass 2 is initially 
at rest, calculate the final velocities in that frame, then convert back to the original frame.   
 
Let’s use the previous Exercise as an example.  For the observer who described the problem, Mass 
1 is moving in the +x direction at 10 m/s before it hits Mass 2 moving the same way at +3 m/s.  If 
we were passengers riding alongside Mass 2, we would of course think that Mass 2 is stationary 
and see Mass 1 approaching us from behind at 7 m/s.  From our point of view, the relationships 
derived above would be perfectly O.K. to use.  Then, we need only calculate what the original 
observer sees.   
 
EXAMPLE 7-5 
 

I like to keep track of this process with a chart.  It also makes the process somewhat mechanical, 
and thereby less susceptible to mistakes.  The information for each mass runs horizontally in 
the rows.  The first column contains the original values for each mass’s initial velocity.  The 
third column contains the initial velocities in the new frame of reference; the initial velocity of 
Mass 2 here must be zero.  The second column is the process that changes the values.  We ask, 
what must be done to M2’s initial velocity to make it zero?  In this case, we must subtract 3 
m/s.   
 
 
 

vinitial convert to new frame in which v2xi' = 0 vo' 

M1 +10 m/s   

M2 + 3 m/s Subtract 3 m/s      0 m/s 

Of course, if we subtract 3m/s from M2’s velocity, we must do the same for M1: 

vinitial convert to new frame in which v2xi' = 0 vo' 

M1 +10 m/s Subtract 3 m/s + 7 m/s 

M2   +3 m/s Subtract 3 m/s    0 m/s 

Now we have a problem we can solve.  Use the relationships derived, we can find the final 
velocities in the new frame of reference. 

vi convert vi' Find vf' 
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M1 
+10 
m/s 

-3 
+7 
m/s 

vଵ௫௙
ᇱ =  

mଵ − mଶ

mଵ + mଶ
vଵ௫௜

ᇱ  =   
7 −  4

7 + 4
7 = 1.91 m s⁄  . 

 

M2 
+3 
m/s 

-3 
0 
m/s 

vଶ௫௙
ᇱ =  

2mଵ

mଵ +  mଶ
vଵ௫௜

ᇱ =  
2(7)

7 + 4
7 =  8.91 m/s . 

 

We’re not done, because we need to convert back to the original frame.  We do that by 
reversing the transformation that we did previously, in this example, by adding 3 m/s to the 
results. 

vi convert vi' Find vf' 
convert back to original 
frame by reversing the 
previous transformation 

vf 

M1 
+10 
m/s 

-3 
+7 
m/s 

vଵ௫௙
ᇱ =  

mଵ − mଶ

mଵ + mଶ
vଵ௫௜

ᇱ  =   
7 −  4

7 + 4
7

= 1.91 m s⁄  . 

 

+3 4.91 m/s 

M2 
+3 
m/s 

-3 
0 
m/s 

vଶ௫௙
ᇱ =  

2mଵ

mଵ +  mଶ
vଵ௫௜

ᇱ =  
2(7)

7 + 4
7

=  8.91 m/s . 
+3 11.91 m/s 

Before I give you an exercise to try, let’s do another short derivation.  To be honest, I have never 
found the result of this to be useful, except as a quick check of my results for the chart solution.  
I’ll show you what I mean in a moment. 

DERIVATION 7-6* 

Here is an additional interesting derivation for a totally elastic collision.  Here, we do not need 
to assume that m2 is initially at rest.  That is, the result is valid for any one-dimensional totally 
elastic collision. 

We start with the conditions for conservation of momentum and kinetic energy: 

mଵvሬ⃑ ଵ୶୧ +  mଶvሬ⃑ ଶ୶୧ =  mଵvሬ⃑ ଵ୶୤ +  mଶvሬ⃑ ଶ୶୤   

ଵ

ଶ 
mଵvଵ୶୧

ଶ +  
ଵ 

ଶ
mଶvଶ୶୧

ଶ =  
ଵ

ଶ
 mଵvଵ୶୤

ଶ +  
ଵ

ଶ
 mଶvଶ୶୤

ଶ   . 

Let’s re-arrange each: 
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mଵ(vଵ୶୧ − vଵ୶୤) =  mଶ(vଶ୶୤ − vଶ୶୧) 

mଵ(vଵ୶୧ − vଵ୶୤)(vଵ୶୧ + vଵ୶୤) =  mଶ(vଶ୶୤ − vଶ୶୧)(vଶ୶୤ + vଶ୶୧) 

Dividing the second equation by the first leaves 

vଵ୶୧ + vଵ୶୤ =  vଶ୶୤ + vଶ୶୧   . 

So if the chart solution was done correctly, we find that the sums of the masses’ initial and final 
velocities should be the same.  For example, 10 + 4.91 = 3 + 11.91.  You can use this as a quick 
check on your answers.  An agreement won’t guarantee you’re correct, but a failure will tell you 
if you’re wrong. 

HOMEWORK 7-6 

A 10 kg object initially moving to the right at 20 m/s makes a totally elastic head on collision 
with a 15 kg object which was initially moving to the left at 5 m/s. Find the final velocities of 
each object. 

HOMEWORK 7-7 

A 10 kg object initially moving to the right at 20 m/s has a totally elastic rear-end collision 
with a 15 kg object which was initially moving to the right at 5 m/s. Find the final velocities 
of each object. 

JUSTIFICATION OF ASSUMPTIONS* 
 

In the method discussed above, that is changing to a new frame of reference to solve our 
problem, we assumed that if momentum and kinetic energy are conserved in one frame, that 
they are conserved in the other frame.  We need to justify those assumptions.  It’s not too 
difficult for momentum.  Let’s bite the bullet and do it for three dimensional collisions.  For 
the original frame, we can rewrite the momentum equation as 
 

mଵvሬ⃑ ଵ୧ + mଶvሬ⃑ ଶ୧ −  mଵvሬ⃑ ଵ୤ − mଶvሬ⃑ ଶ୤ = 0  .  
 
Let uሬ⃑  be the velocity of the first frame relative to the second frame.  Then in that new frame 
we ask if, 
 

mଵ(vሬ⃑ ଵ୧ + uሬ⃑ ) + mଶ(vሬ⃑ ଶ୧ + uሬ⃑ ) −  mଵ(vሬ⃑ ଵ୤ + uሬ⃑ ) − mଶ(vሬ⃑ ଶ୤ + uሬ⃑ ) = 0  .  
 
Re-arranging a bit results in 
 

(mଵvሬ⃑ ଵ୧ + mଶvሬ⃑ ଶ୧ − mଵvሬ⃑ ଵ୤ − mଶvሬ⃑ ଶ୤) +  (mଵ + mଶ −  mଵ − mଶ) uሬ⃑ = 0  .  
 
The first term is zero from our knowledge of the initial frame, and the second term is clearly 
zero, and so momentum is conserved in the new frame.  Since there was no restriction put on 
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uሬ⃑ , momentum is conserved in every possible frame if it is conserved in any one frame, 
regardless of the type of collision. 
 
Kinetic energy is a bit more difficult because we deal with the 
objects’ speeds, not their velocities.  Let’s review a bit.  
Suppose we add two vectors, Aሬሬ⃑  and Bሬሬ⃑ , that are not in the same 
(or opposite) directions and want to know the magnitude of 
the sum,  หAሬሬ⃑ + Bሬሬ⃑ ห.  Draw Aሬሬ⃑ , Bሬሬ⃑ , and their sum Cሬ⃑  so as to form a 
triangle.  The law of cosines tells us that3  
 

Cଶ =  Aଶ + Bଶ + 2AB cosθ୅,୆ =  Aଶ + Bଶ + 2 Aሬሬ⃑ ∙ Bሬሬ⃑  . 
 
Note that this is a general statement that reduces to the Pythagorean theorem when theta is 90o.   
Now, in our original frame of reference, let’s assume that kinetic energy is conserved during 
the collision.  We can write 
 

ଵ

ଶ
 mଵvଵ୧

ଶ +
ଵ

ଶ
 mଶvଶ୧

ଶ −  
ଵ

ଶ
 mଵvଵ୤

ଶ −  
ଵ

ଶ
 mଶvଶ୤

ଶ = 0  .  

 
In the new frame, we’d like to know if 
 

ଵ

ଶ
 mଵ|vሬ⃑ ଵ୧ + uሬ⃑ |ଶ +

ଵ

ଶ
 mଶ|vሬ⃑ ଶ୧ + uሬ⃑ |ଶ −  

ଵ

ଶ
 mଵ|vሬ⃑ ଵ୤ + uሬ⃑ |ଶ −  

ଵ

ଶ
 mଶ|vሬ⃑ ଶ୤ + uሬ⃑ |ଶ = 0  .  

 
After multiplying it all out and re-arranging a bit, 
 

ቀ
ଵ

ଶ
 mଵvଵ୧

ଶ +
ଵ

ଶ
 mଶvଶ୧

ଶ −  
ଵ

ଶ
 mଵvଵ୤

ଶ −  
ଵ

ଶ
 mଶvଶ୤

ଶ ቁ + (mଵvሬ⃑ ଵ୧ + mଶvሬ⃑ ଶ୧ −  mଵvሬ⃑ ଵ୤ + mଶvሬ⃑ ଶ୤) ∙ uሬ⃑

+  
ଵ

ଶ
 (mଵ + mଶ − mଵ − mଶ) uଶ = 0  . 

 
The contents of the first and second sets of parentheses are zero from our knowledge of the 
original frame of reference (KTOTAL and pሬ⃑ TOTAL were conserved), and that of the third is clearly 
zero, and so if the kinetic energy is conserved in any frame, then it is conserved in every frame.  
We can return to Derivation 7-4 and generalize the result: if kinetic energy is lost during a 
collision in one frame, some is lost in any frame, including any in which both objects were 
initially moving. 
 
This is going to be an important point in Physics Three. 
 
While we’re here, let’s think about a couple of other considerations that students have asked 
about over the years.  What about impulse and work in different frames?  Suppose a mass has 
a force acting on it for a given duration of time.  What is the force in a new frame of reference?  
 

Fሬ⃑ Δt = m(vሬ⃑ ୤ − vሬ⃑ ୧) =  m(vሬ⃑ ୤ − vሬ⃑ ୧) + m(uሬ⃑ − uሬ⃑ ) = m൫(vሬ⃑ ୤ + uሬ⃑ ) − (vሬ⃑ ୧ + uሬ⃑ )൯ 

                                                 
3 The angle is defined differently here than is usual. It is the exterior angle rather than the interior angle, which leads 
to the difference in sign. 
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= m(vሬ⃑ ୤
ᇱ − vሬ⃑ ୧

ᇱ) =  Fሬ⃑ ᇱ∆t  . 
 
So, a force of a certain magnitude in one frame of reference has the same magnitude in any 
other frame of reference, as does the impulse.4  Knowing that, what can we say about the work 
done by a force in two different frames?  We certainly expect that the work could be different 
because the displacements could be different.  The work-energy theorem in the original frame 
will be 
 

W = Fሬ⃑ ∙ ∆r⃑ =  
ଵ

ଶ
m൫v୤

ଶ − v୧
ଶ൯  . 

 
In a new frame moving at velocity uሬ⃑  with respect to the original frame, we have that 
 

Wᇱ = Fሬ⃑ ′ ∙ ∆r⃑ᇱ =  Fሬ⃑ ∙ (∆r⃑ + uሬ⃑  ∆t) = Fሬ⃑ ∙ ∆r⃑ + Fሬ⃑ ∙ uሬ⃑  ∆t = W + Fሬ⃑ ∙ uሬ⃑  ∆t   . 
 
So, fun fact, if the new frame is moving perpendicularly to the force, the work in each frame 
is the same.  Continuing, 
 

Wᇱ =
ଵ

ଶ
m൫v୤

ଶ −  v୧
ଶ൯ + ൫Fሬ⃑  ∆t൯ ∙ uሬ⃑  =

ଵ

ଶ
m൫v୤

ଶ −  v୧
ଶ൯ + m(vሬ⃑ ୤ − vሬ⃑ ୧) ∙ uሬ⃑  

=  
ଵ

ଶ
m൫v୤

ଶ −  v୧
ଶ + 2(vሬ⃑ ୤ − vሬ⃑ ୧) ∙ uሬ⃑ + uଶ −  uଶ൯ = 

 
ଵ

ଶ
m(|v୤ + u|ଶ −  |v୧ + u|ଶ) =  

ଵ

ଶ
m൫v୤

ᇱଶ
−  v୧

ᇱଶ
൯ =  ΔKᇱ  . 

 
So, in any frame, the work done in that frame is the change in kinetic energy in that frame, but 
certainly not necessarily the same change as in another frame, as we expected. 
 

ADMONITION* 
 

When we discussed totally inelastic collisions, we made the point that we could treat a three-
dimensional problem as three separate one-dimensional problems.  You were warned, 
however, not to treat totally elastic problems that way.  Let’s discuss briefly why we can not 
simply use the chart method above three times, one for each direction.  
 
The derivation that resulted in 
those relationships for the final 
velocities required the total 
kinetic energy to be conserved.  
To split the solution up into 
three separate parts would 
require that the contributions to 
the kinetic energy due to motion 
in any one of the directions 
would also need to be 

                                                 
4 That is, if the time intervals in each frame are the same, which is a characteristic of Galilean transformations.  The 
problem comes about in relativistic transformations, which we’ll discuss in Semester Three. 
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conserved, which is a much stricter requirement.  Here is an illustration of a two-dimensional 
situation in which this strict requirement would not be met.  Consider two masses heading 
toward each other that undergo a glancing collision, as shown.  Before the interaction, there is 
kinetic energy due to the motions in the x-direction and none due to the y-motion. After, 
however, the situation is reversed.  So the kinetic energy overall is conserved, but it is not 
conserved independently in each direction.  Consequently, the relationships we have been 
using are not valid for anything other than a one-dimensional collision. 

 
DISCUSSION 7-6 
 

Does this mean that it is impossible to solve two-dimensional totally elastic collision problems?  
What is the general rule for solving algebraic systems of equations?   

 
We can solve any of these problems so long as we have enough information and patience, although 
the solution may be difficult algebraically.  Let’s look at two situations. 
 
Consider two masses that collide totally inelastically in three dimensions.  Given the masses and 
the initial velocities, can we find the final velocities? 
 

mଵvଵ୶୧ +  mଶvଶ୶୧ =  (mଵ + mଶ) v୶୤ 
 

mଵvଵ୷୧ +  mଶvଶ୷୧ =  (mଵ + mଶ) v୷୤ 
 

mଵvଵ୸୧ +  mଶvଶ୸୧ =  (mଵ + mଶ) v୸୤ 
 
Three equations and three unknowns; we’re good.  In fact, we did a two-dimensional example 
earlier. 
 
Consider two masses that collide totally elastically in three dimensions.  Given the masses and the 
initial velocities, can we find the final velocities? 
 

mଵvଵ୶୧ +  mଶvଶ୶୧ =  mଵvଵ୶୤ +  mଶvଶ୶୤   
 

mଵvଵ୷୧ +  mଶvଶ୷୧ =  mଵvଵ୷୤ +  mଶvଶ୷୤   
 

mଵvଵ୸୧ +  mଶvଶ୸୧ =  mଵvଵ୸୤ +  mଶvଶ୸୤   

ଵ

ଶ 
mଵ൫vଵ୶୧

ଶ + vଵ୷୧
ଶ +  vଵ୸୧

ଶ ൯ + 
ଵ 

ଶ
mଶ൫vଶ୶୧

ଶ +  vଶ୷୧
ଶ +  vଶ୸୧

ଶ ൯

=  
ଵ

ଶ 
mଵ൫vଵ୶୤

ଶ +  vଵ୷୤
ଶ +  vଵ୸୤

ଶ ൯ +  
ଵ 

ଶ
mଶ൫vଶ୶୤

ଶ +  vଶ୷୤
ଶ +  vଶ୸୤

ଶ ൯   

Here, unfortunately, we have six unknowns, but only four independent equations.  We need more 
information. 

EXAMPLE 7-6 



 

- 149 - 
 

Let's look at a very special case, that of the masses being equal and mass two initially at rest.  
This can be made into a two-dimensional problem, since all of the momentum vectors line in 
a plane (you had a question on Sample Exam One along these lines).  We’ll write the equations 
for conservation of momentum (in vector form) and kinetic energy. 

mଵvሬ⃑ ଵ୧ =  mଵvሬ⃑ ଵ୤ + mଶvሬ⃑ ଶ୤      →     vሬ⃑ ଵ୧ =  vሬ⃑ ଵ୤ + vሬ⃑ ଶ୤       

ଵ

ଶ
 mଵvଵ୧

ଶ =  భ

మ
 mଵvଵ୤

ଶ +  భ

మ
 mଶvଶ୤

ଶ      →      vଵ୧
ଶ =  vଵ୤

ଶ + vଶ୤
ଶ       

The first equation says we can make a triangle with the 
velocity vectors like the one at right, and the second, 
which looks a lot like the Pythagorean theorem, is only 
going to be true if the triangle is a right triangle, so that 
vሬ⃑ ଵ୤ and vሬ⃑ ଶ୤ are at right angles to one another, a nice result.  
Notice however, that this does not give us the actual 
directions or magnitudes of the velocities; to know those, 
we need more information. 

EXERCISE 7-4 
 
Here is a nice synthesis problem.  It requires you to choose 
which of the three 'pictures' we have developed to use in 
each section.  Keep in mind that the three pictures are 
essentially identical, but that one may be much more 
convenient to use than the other two in a given situation.  
 
A 0.2 kg block (m1) is released from rest at the top of a 
frictionless, curved track 1.5 meters above the top of a 1.1 
meter high table.  At the bottom of the track, where it is 
horizontal, this mass collides elastically with a 0.8 kg mass 
(m2) that is initially at rest.  How far from the base of the table does the 0.8 kg mass land?  
 

HOMEWORK 7-8 
 

The ballistic pendulum is a device used to 
measure the muzzle velocity of a bullet.  A 
block of wood of mass M is suspended by a 
string from the ceiling, and the bullet of mass 
m is fired horizontally into it.  As the block 
moves backward with the embedded bullet, it 
swings upward to some maximum height.5  If 
the bullet has mass 2 g, the block has mass 2.5 

                                                 
5 When I was much younger, I taught at a school out west where this was actually done with a .22 in lab class. 
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kg, and the block/bullet combination rises through a vertical distance of 6 cm, find the initial 
speed vo of the bullet.   

 
Outside the Safety Zone* 
 

Calculus-based textbooks often wrap this section up with the rocket equation.  But we won’t 
need calculus because we’ve already solved the pertinent equation in Section 5.  So, let’s 
concentrate on the physics instead. 
 
DERIVATION 7-6* 
 
Consider a rocket of mass 
M travelling past a planet at 
velocity vሬ⃑ R,P.  At that time, 
it has just ejected some 
exhaust at a velocity vሬ⃑ E,R 

relative to itself and at 
velocity vሬ⃑ E,P = vሬ⃑ E,R + vሬ⃑ R,P 
relative to the planet.  Next 
comes what I think is the 
really tricky part: the mass of the rocket changes by amount dM, which is a negative quantity, 
but the mass of the ejected exhaust is must be positive, so -dM.  Let’s make use of conservation 
of momentum, while ignoring gravity, from just before fuel ejection to just after.  During that 
process, the rocket’s velocity increases by amount dvሬ⃑ R,P.  Let’s make ‘to the right’ in the figure 
be positive. 
 

(M + (−𝑑M))vୖ,୔୧ = Mvୖ,୔୤ + (−𝑑M)v୉,୔୤  
 

(M + (−𝑑M))vୖ,୔ ୧ = M൫vୖ,୔ ୧ + 𝑑vୖ,୔൯ + (−𝑑M)൫vୖ,୔ ୧ −  v୉,ୖ൯   . 
 
We can cancel out quite a few terms, and let’s drop the ‘initial’ subscript: 
 

0 = M 𝑑vୖ,୔ + 𝑑M v୉,ୖ  , 
 

dM

M
=  −

1

v୉,ୖ
 dvୖ,୔  , 

 

න
𝑑M

M
=  −

1

v୉,ୖ
න 𝑑vୖ,୔

୴౎,ౌ

୴౎,ౌ ౟

୑

୑౥

 

 

ln
M

M୭
= −

1

v୉,ୖ
൫vୖ,୔ − vୖ,୔ ୧ ൯   . 

 
Let’s clean it up a bit by dropping the R,P and setting vR,P i to just vo. 
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ln
M

M୭
= −

1

v୉,ୖ

(v − v ୭ )   . 

 
From here, we can go several ways: 
 

v =  v୭ +  v୉,ୖ  ln ൬
M௢

M
൰   or    M =  M୭e

ି(୴ି୴౥)
୴ు,౎    . 

 
Here, Mo is the mass of the rocket and all of its fuel at the start of the problem when its speed 
is vo, and M is the mass of the rocket and its unexpended fuel when the speed is v.  It looks a 
bit strange perhaps because there is no explicit time dependence.   

 
EXAMPLE 7-6* 
 

The spaceship HMCSS Clark is ‘at rest’ and fully fueled at Space Station TALC.  Her mass is 
2x107 kg, with all but 2 per cent of it fuel.  Her engine expels exhaust at 3 km/s.  What 
maximum speed can she attain relative to Station TALC? 
 
Starting with our previous result, re-arranging, and setting M = 0.02 Mo, 
 

 v =  v୭ +  v୉,ୖ ln ൬
M୭

M
൰ = 0 + 3000 ln ൬

1

0.02
൰ = 11,736 m/s   . 

 
HOMEWORK 7-9* 
 

In a severe pinch, Space Force decides to utilize Lenkflugkörper NG missiles to defend earth 
from the Jovian attackers during a deep space battle.  The missiles themselves have a mass of 
3 kg and contain an additional 22 kg of fuel with an exhaust velocity of 465 m/s.  They must 
reach a speed of 700 m/s relative to the launching space vessel.  What is the largest payload 
that could be attached to one? 

 

 
 
EXERCISE 7-1 Solution 
 
Assuming the two masses form a closed system, conservation of momentum seems appropriate.  
Also, because they have a common final velocity,  
 

mଵvሬ⃑ ଵ୶୧ +  mଶvሬ⃑ ଶ୶୧ =  (mଵ +  mଶ)vሬ⃑ ୶୤  . 
 

vሬ⃑ ୶୤  =  
mଵvሬ⃑ ଵ୶୧ +  mଶvሬ⃑ ଶ୶୧

mଵ +  mଶ
=  

6(+4) + 3(−8)

6 + 3
=  0 m s⁄  . 

 
EXERCISE 7-2 Solution 
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K୧ =  
ଵ

ଶ
mଵvଵ୧

ଶ + 0 =  
ଵ

ଶ
 5 (7ଶ) = 122.5 J 

 
K୤ =  

ଵ

ଶ
(mଵ + mଶ)v୤

ଶ =  
ଵ

ଶ
 8 (4.38ଶ) = 76.7 J 

 
EXERCISE 7-3 Solution 
 
Are your answers 3 m/s and 8 m/s?  Did you confirm that the problem meets the criteria for using 
the two relationships derived in class?  Does it? 
 
EXERCISE 7-4 Solution 
 
This problem has three parts.  There is m1 sliding down the incline. There is the collision. There is 
the trajectory of m2 as it travels toward the floor.  Each of these is best treated with one of the three 
pictures we have discussed. 
 
As m1 slides down the ramp, it is acted on by a normal force and by its weight.  There is no friction.  
We have no details about the actual shape of the ramp, and apparently we do not care how much 
time it takes for the mass to reach the bottom of the ramp.  This looks like a job for work-energy! 
 
WN = 0 (the normal force is always perpendicular to the path) 
Wg – conservative 
 

0 =  
ଵ

ଶ
 mଵ v୤

ଶ −  
ଵ

ଶ
 mଵ v୧

ଶ + gmଵy୤ −  gmଵy୧ 

starts from rest 
 
Let’s put y = 0 at the foot of the table.  We want to find vf, the speed of m1 just before the collision. 
 

0 =  
ଵ

ଶ
 v୤

ଶ + gy୤ −  gy୧ 

 

v୤ = ඥ2g(y୧ − y୤) =  ඥ2(10)(2.6 − 1.1) = 4.47 m s⁄  . 
 
The second part of the problem is a collision, and that screams for conservation of momentum.  
During the interaction between the masses, they are moving horizontally with no external 
horizontal forces acting on them. There are vertical external forces (the weights and the normal 
forces from the ramp), but that doesn’t preclude conservation of momentum in the horizontal 
direction.  Because it’s a totally elastic collision in one dimension with mass 2 initially at rest, we 
can jump right to the relationships we derived for just such a situation: 

vଶ୶୤ =  
2𝑚ଵ

𝑚ଵ +  𝑚ଶ
vଵ୶୧ =   

2(0.2)

0.2 + 0.8
4.47 = 1.79 m s⁄  . 

The last part of the problem is projectile motion.  Let’s put the origin at the foot of the table, with 
+x to the right and +y upward.  Our inventory is 
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xi = 0 m 

xf = ? ← 
vxi = +1.79 m/s 
vxf = +1.79 m/s 
ax = 0 m/s2  
t = ? 

Since there is not enough information on the x-side, we need to look to the y-side and try our 
80% Rule.   

yi = 1.1 m 
yf = 0 m  
vyi = 0 m/s (the ball was travelling horizontally as it left the table) 
vyf = ? 
ay = -10 m/s2 (we chose upward to be positive) 
t = ? 

KEq. 3: 

y୤ =  y୧ +  v୷୧t +  
ଵ

ଶ
a୷tଶ 

This will become a quadratic equation in t.  Inserting the numbers and re-arranging to the 
standard format leaves us with 

(5)tଶ + (0)t + (−1.1) = 0 , 

which, it turns out, we can solve directly: 

t = ± ඨ
1.1

5
=  + 0.47 seconds  . 

Take this back to the x-side to find xf. 

x୤ =  x୧ +  v୶୧t + 
ଵ

ଶ
a୶tଶ = 0 + 1.79(0.47) + 0(0.47ଶ) = 0.84 m  .  


