30.24. Write an equation corresponding to Eq. (30.13) for the current shown in Fig. 30.11 just after switch S_2 is closed and switch S_1 is opened, if the initial current is I_0 . Use integration methods to verify Eq. (30.18).

$$\frac{di}{dt} = \frac{\mathcal{E} - iR}{L} = \frac{\mathcal{E}}{L} - \frac{R}{L}i \qquad (30.13)$$

$$i = I_0 e^{-(R/L)t}$$
 (30.18)

30.11 An *R-L* circuit.

Closing switch S_1 connects the R-L combination in series with a source of emf \mathcal{E} .

Closing switch S_2 while opening switch S_1 disconnects the combination from the source.