4-5)

Before the advent of ohmmeters (even the analog ones), unknown resistances (R_{Unk}) were measured using a *Wheatstone bridge*. The unknown resistance is placed into the circuit at right as shown. The values of R_1 and R_2 are extremely well known. The resistance of R_{Var} is adjusted until the meter reads no current in the cross branch. The value of R_{Var} is then read from a dial.

Show that R_{Unk} can be found from

$$R_{Ukn} = \frac{R_1}{R_2} R_V \quad .$$

FYI: Often, since R_1 and R_2 were well known, the dial attached to R_{Var} was instead marked off in values for R_{Ukn} , much more convenient.