
5-5) 

The current density is the current passing through a cross-sectional area divided by the area, so 
that the current is  
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Since the density is symmetric about the line r = 0, we can consider a thin ring of area of radius 
r and width dr where the current density is the same all round.  The area of such a ring is 2πr dr. 
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We’ll use this in the next two parts of the problem. 

A) To find the total current, let’s add up all the dIs with r varying from 0 to R: 
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B) To find the current within distance r of the axis, use the same integral but stop at r < R: 
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Then, use Ampère’s law: 
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C) Now, when r>R, the entirety of Io is enclosed: 
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Note that these two expressions agree when r = R. 

 

 

 


