5-5)

The current density is the current passing through a cross-sectional area divided by the area, so
that the current is

lo

mR*

dl =] dA = r2 dA

Since the density is symmetric about the line r = 0, we can consider a thin ring of area of radius
r and width dr where the current density is the same all round. The area of such a ring is 2nr dr.

21, 41,
dl = (nR4 r2> (2nrdr) = g r3dr .

We'll use this in the next two parts of the problem.

A) To find the total current, let’s add up all the dls with r varying from 0 to R:
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B) To find the current within distance r of the axis, use the same integral but stop at r <R:
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Then, use Ampere’s law:
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C) Now, when r>R, the entirety of |, is enclosed:

f B|| dl = polgnclosed

B2nr = pol,



I
B= acks (same as for a thin wire) .
2Tr

Note that these two expressions agree when r = R.



