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Potential 

In much the same way as we used several ‘pictures’ to study motion (force and acceleration, 

work and energy), we will do the same this semester.  We shall define the electric potential (V) 

at a given point in space to be the electrical potential energy (EPE) per unit of charge of a test 

charge located at that point; in a manner similar to that for the definition of the electric field, we 

are able to let the test charge diminish in size until it vanishes, leaving the quotient of our 

definition intact:  
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Note that there need not actually be a test charge at the point in order for there to exist a potential 

at that point, in the same way that there need not be a test charge at some point in order for an 

electric field to exist.  

Let's do a simple example 

which will give us a useful 

result and perhaps provide a 

more concrete picture of the 

electric potential, V:  

 

Consider a point charge +Q 

fixed in space.  Place a small 

test charge +qTEST a distance rA 

from Q.  There will be a 

repulsive force FE acting on it 

of magnitude keQqTEST/r
2
.  

Now, suppose that for 

whatever reason the charge 

qTEST moves closer to Q, to a 

distance rB.  As the electric 

force acts though a distance s, 

work is done.  How much?  

Can we simply multiply FE s 

cosθF, s?  

Answ er
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Note that we have found the work done by the electric force only, and have ignored any work 

done by other forces.  

Later, we will show that the electric force is a conservative force; in that case, we can re-write 

the work done by the electric force as a change in the electrical potential energy (EPE) of charge 

q:  
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Now, we previously defined V as EPE/qTEST, so it's safe to say that  
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Think back to when you were working with gravitational potential energy (GPE).  The derivation 

we did then was that the change in GPE for an object moving vertically was:  

GPEf - GPEi = mghf - mghi.  

What we did next was to assign a value of zero to the GPE at some particular level, usually 

ground level where h = 0 as well.  In that way, we simplified this relationship to obtain GPEf  = 

mghf, or more generally, GPE = mgh.  We're about to do the same thing here.  Assign a value of 

zero potential to locations infinitely far from Q (that is, let VA = 0 at rA = infinity), so that the 

relation becomes:  
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or more generally, 
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Note that this result is valid for a point charge only.  This actually gives us an alternate notion of 

the definition of the potential: the potential at a point P is the work done by some agent necessary 

per unit charge to bring that charge very slowly from infinity to P.  The ‘very slowly’ is so that 

we need not consider any kinetic energy, and of course only the agent and the electric force can 

act on the charge. 



Note two things: the potential does not depend on the existence of the test charge qTEST, and that 

this particular relationship is only valid for a point charge (or for regions outside of spherically 

symmetric charges which produce the same configuration of electric field), although similar 

relations can be valid for other shapes of charge.  

The unit for electric potential is the volt.  A potential of one volt at some location means that 

each coulomb of charge placed there will possess one joule of EPE.  

Let’s return to the starred equations above: 
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Dividing each end by qTEST results in 
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So, if we know the electric field, we should be able to find the potential field.   

Since potential is related to work and energy, it is a scalar quantity.  The total potential at any 

given point P is the algebraic sum of the potentials at that spot due to the various charges: 
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So, if we want to find the potential caused by a collection of charges, or by a continuous 

distribution of charge, in principle, we need only find the potential due to each tiny bit of charge 

and add.   

Also, note that the potential at some point P caused by a charge Q depends on the sign of the 

charge. For example, if we were to allow a positive test charge to approach a negative charge, we 

would expect its potential energy, and therefor the potential, to decrease. 

Examples:  

Consider a ring of radius R with a charge Qo distributed evenly along its circumference.  Find the 

potential at the centre of the ring.  

V = kQo/R
 



 

 

Consider one small charge dqi, so small it looks like a point 

charge.  We already worked out that the potential due to a 

point charge is keq/r, so the contribution to the total potential 

from one of these little charges is ke dqi/ri.   The total value of 

the potential at the centre will be the sum of all the 

contributions from each of the individual charges:  
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In this case, all of the r’s are equal R, so  
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What is the potential a distance x out along the axis of the ring, through the centre and 

perpendicular to the plane of the ring?  

 
V = kQo/[sqrt(R^2 + x^2)]

 
 

The calculation is similar to the one above, except that each charge is now a distance  

 

ri = [R
2
 + x

2
]

1/2
 

 

from the point:  
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Note that, as x >> R, this reduces to the result for a point charge, keQo/x. 

 

Now consider a disc of charge Qo with radius R.  Find the potential a distance x from the center 

of the disc along the axis through the center perpendicular to the plane of the disc. 

 



 
Again, we consider a small point charge dq with area dA, whose distance from point P is  

 

r = (x
2
 + r

2
)
1/2

.   

 

If the disc is uniformly charged, then we can expect that  
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So, 
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Through the use of a u-substitution, u = x
2
 + r

2
; du = 2 r dr, this becomes 
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We should see that as R → 0, V should approach the function of a point charge.  This time, we’ll 

use l’Hôpital’s Rule
1
 to find the limit. 
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as expected. 

 

 

Equipotential Surfaces 

An equipotential surface is one along which the electric potential is constant, or if you like, along 

which the electric force does no work on a test charge.  Consider again a positive test charge in 

an electric field.  The field will exert a force on q in the direction of E.  If the test charge moves 

in the direction of E, work is done, and the potential energy of q changes, and since V = EPE/q, 

the potential changes as well.  A similar argument holds if q moves against the field.  The only 

way that the potential will not change is if no work is done on q, which means it must move 

perpendicularly to the field, i.e., make the displacement perpendicular to the electric force 

(remember that W = Fd cosθF,d).  

So, we conclude that equipotential surfaces are always perpendicular to the electric field.  

Now, since we know that the electric field must always be perpendicular to the surface of a 

metal, what can we say about the potential on the surface of a piece of metal?  

 
 

What can you say about the potential inside of a metal?  

 
 

 

Relationship between V and E. 

There is a relationship between the potential field and the electric field which goes beyond just 

the direction of E; we can get a sense of the magnitude of E as well from V.  Let's once again 

consider a very special case 

which will give some insight:  

 

Suppose that we put a positive 

test charge q in a uniform electric 

field, E, that points in the x-

direction.  

 

There will be a force from the 

field on q with magnitude FE = 

qE acting to the right.  Let q 

move toward the right a distance 



∆s.  The work done by the electric field will then be  
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We know that the work done can be written as a change in EPE:  
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When we compare these results, we see that  

 

3+�)*e� � �� ! �3*)0��� � ��+ � �!*0
*e�' 

 

This tells us that the magnitude of E can be obtained by looking at how quickly the potential 

changes with distance along a field line.  The negative sign indicates that the E-field points in the 

direction in which V is decreasing.  Also, this gives us a different set of units for E: V/m as well 

as N/C.  Now, this result is only exactly true for the situation from which it was developed, but 

conceptually, it is O.K. in almost any circumstance.  Over very short distances ∆x→ dx, this 

becomes 
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What if the electric field had all three components, Ex, Ey, and Ez?  Lets place a test charge qTEST 

at some point P where such an electric field exists.  Let’s move the test charge a very small 

distance dx in the i direction.  Since the Ey and Ez components of the field are at right angles to 

the displacement, they do no work on the charge and contribute nothing to the change in the EPE 

of the test charge, and therefor also nothing to the change in potential along that short path.  The 

change in potential as we move in the x direction is due to the x-component of the electric field, 

only. Similar arguments can be made for the y and z components, so that 
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which is written most efficiently as  
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Let’s test this relationship with some of the examples we’ve already done. 

 

Find the electric field of a ring of radius R with a uniformly distributed charge Qo a distance x 

along the axis perpendicular to the plane and passing through its center. 

 

We already know that  

 

                                                 
2
 This function is called the gradient of V. 
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Then,  
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which agrees with the result in Section One.   

 

Find the electric field of a disc of radius R with a uniformly distributed charge Qo a distance x 

along the axis perpendicular to the plane and passing through its center. 

 

We already know that  
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Then, once again with Ey = Ez = 0,  
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which agrees with the result in Section One.   

 

Find the electric field a distance r from a point charge Qo.  This needs to be done in spherical 

coördinates, but since there is no dependence on either of the coördinate angles, the gradient 

reduces to r
 d

/dr: 

 

lm � �!����� �o �� �!� ��� "
���H� & �o � � ���H� ��o �' 

 

 

The Conservativeness of the Electric Field 

Here, we'll finally make the argument for E being a conservative field.  Consider a point charge 

Q.  The electric field, and therefor the electric force on a test charge q, goes as 1/r
2
 and is radial 

(inward or outward, depending on the relative signs of the charges).   Take the test charge q from 

Point A to Point B along Path One: 



Along Path 1, no work is done along the curved part, 

since the electric force is perpendicular to the 

displacement at all points, and there is some work 

done along the radial part of the path (which we won't 

actually calculate).  Path 2 (in red) is any other path 

from Point A to Point B; this path can be 

approximated to an arbitrary degree of accuracy with 

a number of radial and circular sections, as shown.  

Along each circular section, no work is done.  Along 

each radial section, the work must be calculated, but it 

should be clear that work done during any outward 

motion from r1 to r2 will be cancelled by the work 

done moving radially from r2 to r1.   Only the net 

motion from rA to rB will result in a net amount of 

work done.  Since the electric force has the same 

magnitude and relative orientation to the displacement 

at all points a distance r from Q, the amount of work done will be independent of the path taken.  

This last is one way of saying that the force is conservative.  

Now, what if the charge distribution had been more complicated than a point charge?  We can 

approximate any shape charge distribution by a collection of point charges; the work done by the 

E-field while the test charge moves is the sum of the works done by the individual contributions 

to the field of the individual charges and so it is also conservative.  

For more advanced students, I mention without proof that a test for the conservativeness of a 

field is to take its curl; if the curl is zero, the field is conservative. 

 
 

Continue to Next Section 
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