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Current

So far, we have been discussing static electricity, charges in particular static arrangements which were placed that way by having 
been moved very slowly.  Now, we want to start discussing charges which do move.  It would be nice to be able to describe the rate 
of that motion, a quantity we shall call the current, and which we shall naively define as the amount of charge which passes a given 
point per second: 
I = Q/t. 
The unit of current is the ampere, or amp, and 1A = 1coulomb/1second. 

We discussed long ago that Franklin labeled his two charges positive and negative arbitrarily.  Unfortunately, we now know that the 
negatively charged electrons are the charges which move most often, but by the time this was realized, 150 years of convention was 
ground into the equations we use.  So we now speak of the real current and more often of the conventional current, which is assumed 
to be moving positive charge.  So, for example, if 5 coulombs of electrons pass me in 3 seconds moving to the right, then the current 
is 
I = Q/t = 5C/3s = 1.67 amps to the left. 

What is the current if, in 2 seconds, 5 coulombs of electrons pass me to the left while 8 coulombs of protons pass me to the right? 

Answer 

Currents in Metals and Other Materials

In a previous discussion, we saw how charges re-distribute themselves in a metal (and to a lesser degree in dielectrics) to eliminate 
the electric field in the metal.  In that situation, the charges built up on the surfaces of the metal, but could go no farther.  However, 
we shall now connect the two sides of the metal with wires so that the charge may continue on its way: 

If we were to connect the two wires together, the electrons would eventually find themselves attracted back to the right hand side of 
the metal.  In any event, since the charges are not allowed to build up on the surfaces of the metal, the system never comes to 
equilibrium, no internal E-field is generated, and the net E-field is not required to go to zero.  Certainly, it is not required so to do in a 
non-metal, anyway. 

The ease with which electrons (or other charges) can move through a material is called the electrical conductivity, .  More often, 
though, we'll refer to its reciprocal, the electrical resistivity, , which is a measure of the difficulty with which charge moves through 
a material.  In order of increasing resistivity, the categories of classification are: super-conductors, conductors (metals), semi-
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conductors, semi-insulators, and insulators. 
The model we will use is applicable to metals at very low temperatures, but it gives an idea of what happens in other materials as 
well.  Consider a region which is empty except for electrons.  Now turn on an external electric field.  Each electron feels a force and 
accelerates quickly to a very high speed.  Now, place a lattice pattern of large atoms in that region.  Since metallic atoms occupy a 
few percent of the volume (still lots of space between the atoms), there is a fairly high probability that the electron will collide with 
an atom without having had to move very far.  This collisions will scatter the electrons in different directions and will result in a loss 
(actually a conversion) of energy. 

First, this process slows the electrons down to an average velocity of a few millimetres per second.  Second, the energy lost by the 
electrons is gained by the atoms; this shows up as an increase in the vibration of the atoms, which we know from past discussions can 
be detected macroscopically as an increase in the metal's temperature.   We'll discuss how much energy is 'lost' as thermal energy 
later. 

This model also helps to explain an interesting effect.  As the temperature of a metal increases, the electrical resistivity increases.  We 
naively explain that, as the temperature increases, the amount of vibration of the atoms increases, so that they occupy a larger 
effective volume, thereby making collisions with passing electrons even more likely.  Often, we can approximate that behaviour with 
the empirical relationship: 

(T) = o (1+ To (T - To)), 
where alpha is the temperature co-efficient for resistivity for a particular material at a particular reference temperature. 

Now that we understand this model, let's correct some of the faulty assumptions it uses.  The collisions generally are not with the 
atoms, but with defects in the lattice structure, such as a spot where an atom is missing, or where there is an extra atom, or where a 
different type of atom (an impurity) has been substituted for a correct type.  Even then, the model is only good for metals at low 
temperatures; at higher temperatures, the electrons mostly scatter off each other. 

Resistance and Ohm's Relationship

Every piece of some material with the same composition, at the same temperature, et c., will have the same conductivity or resistivity 
(it is an intrinsic or characteristic property).  However, it is often convenient to use a quantity which is sample specific, the 
conductance (symbol S, unit the Siemens).  The conductance is the proportionality constant between the potential difference applied 
across an object and the resulting current:
I = S V.
Much more often, the quantity used instead is the resistance (symbol R, unit the ohm ), which we shall define as the ratio of the 
potential difference applied across a sample to the current that that potential difference causes: 
R = V/I. 
Clearly, the resistance and the conducatnce are reciprcal values.
How is resistance related to the resistivity?  Consider a block of material as shown with a potential difference V across the ends and 
a current I flowing through the end face as shown in the top figure. 
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Certainly, the resistance will depend on the characteristics of the material; if the resistivity is higher, the resistance of any given piece 
of material should also be higher by the same factor, so we can say that 
R ~ . 

In the second figure, we double the length L of the piece of material.  If the same potential difference V is applied across the ends, 
the electric field inside the material will be half as great, since 
E = V/d = V/2L, 
(compared to V/L in the original piece), in which case the force on each electron is half as great and the acceleration is on average 
half as great and the average velocity of the electrons is half as great as before (see note below).  As a result, it takes twice the time as 
before for a given amount of charge to pass through the sample, and correspondingly, the current is half as big, and so R is twice as 
big.  Our conclusion is that the resistance R is proportional to the length L of the sample: 
R ~ L. 

In the third figure, the length is returned to its former value and the cross-sectional area is doubled.  It seems clear that the total 
current will be the sum of the currents through each of the original-sized sections, that is, double the original current.  So, we see that 
the current is doubled, and correspondingly the resistance is halved.  More generally, the resistance is inversely proportional to the 
cross-sectional area: 
R ~ 1/A. 

Combining these relationships results in: 
R = L/A, 
for a rectangularly shaped sample.  For more complicated shapes, we'd have to consider each part and combine the results (see 
below). 

Note that, if the object above were rotated so that the potential difference were applied across a different pair of ends, the resistance 
may well have a different value: 
RX = LX/LYLZ vs RY = LY/LXLZ for example. 
So R depends not only on the dimensions of the sample, but on its orientation as well. 

For many objects, the resistance is a constant (or approximately so), and the current is proportional to the applied potential difference: 
V = R I. 

Such objects are called ohmic or are said to obey Ohm's 'Law.'  I have placed the word 'law' in quotation marks because this 
relationship, unlike real laws in physics, is not always true.  Better to refer to Ohm's Relationship.  In fact, most of the interesting 
applications of this principle are in materials and structures that do not obey Ohm's Relationship. 
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Power

We mentioned that the electrical potential energy of these charges is converted into thermal energy.  How much energy is so 
produced?  If charge Q crosses a potential difference V, it loses QV of potential energy ( EPE = - QV) and its overall dirft-related 
kinetic energy component remains constant (at about zero).  The power generated as thermal energy is then 
P = W/t = - EPE/t = +QV/t = [Q/t]V = IV. 
This relationship is always correct.  If the material is ohmic, though, we can also write that 
P = IV = V2/R = I2R. 

Combinations of Resistors

We consider two basic arrangements of combinations of resistors: series and parallel, somewhat similar to the combinations of 
capacitors we examined.  We would like to see what value resistance Req will do the same job as the combinations, i.e., for a given 
potential difference, allow the same current though. 

Consider the parallel arrangement shown below: 

We see a current Ieq flowing into the combination, with I1 passing through R1 and I2 passing through R2.  By conservation of charge, 
we know that 
Ieq = I1 + I2, 
since we can't create or destroy charge, and there's nowhere for it to be stored.  Also, we know that the potential difference across the 
pair Vtot is the same as the difference across each individually (V1 and V2), 
Veq = V1 = V2, 
since the electric field is a conservative field (and therefore the work done taking a charge slowly from A to B is the same regardless 
of path).  Lastly, for each we can write Ohm's Relationship: 
Veq = IeqReq;  V1 = I1R1; V2= I2R2
So, let's start: 
Ieq = I1 + I2, 
Veq/Req= V1/R1 + V2/R2
All Vs equal, so they cancel: 
1/Req=  1/R1 + 1/R2. 
This shows that the equivalent resistence of a parallel pair is less that either resistance by itself.  This should make sense, because the 
opening up of a new path for the current will allow more to pass through the circuit, which is the same as saying that the resistance is 
less.  If there are more resistors in parallel, we just keep adding reciprocals of the resistances. 

Consider the series arrangement shown below: 

We see a current Ieq flowing into the combination, with I1 passing through R1 and I2 passing through R2.  By conservation of charge, 
we know that 
Ieq= I1 = I2. 
In other words, not only are Ieq, I1 and I2 equal currents, they are the same current. 
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Also, we know that the potential difference across the pair Veq is the same as the sum of the individual differences across each (V1
and V2), 
Veq = V1 + V2, 
since the electric field is a conservative field. 
Lastly, for each we can write Ohm's Relationship: 
Veq = IeqReq;  V1 = I1R1; V2= I2R2
So, let's start: 
Veq = V1 + V2, 
IeqReq =  I1R1 +  I2R2. 
All Is are equal, so they cancel: 
Req= R1 + R2
This shows that the equivalent resistence of a series pair is greater that either resistance by itself.  This should make sense, because 
the combination has more obstacles for the charges to collide with. 

Here is an extremely lame analogy:  Consider a theatre letting out.  The charge is represented by the patrons and the current is the rate 
at which they leave the theatre.  The potential is their desire to get home.  In the way is a set of turnstiles, which limits the current.  
By opening up more turnstiles (adding parallel resistances) the rate of exiting increases, and by placing a second row of turnstiles 
behind the first, the rate is decreased.  Of course, increasing the desire of patrons (potential difference) to leave by yelling 'fire' will 
also increase the 'current.' 

How does the concept of resistance fit into our water analogy?  If a wire is like a pipe, then a resistance is like a partial blockage in 
the pipe; it acts to decrease the flow rate (current) and causes a pressure difference (potential difference) to develop across itself. 

Here is an additional note:  Notice that the relationships for parallel and series combinations of capacitors is the reverse from the 
relationship for combinations of resistors.  There is no deep reason for this; each of R and C is a ratio of a charge-related quantity 
(either Q or I) and potential difference, but they are defined inversely: 
R = (potential difference)/(charge-related quantity)         C = (charge-related quantity)/(potential difference). 
We could have arranged to define the conductance (S = 1/R, unit is the Siemens) instead and arrived at similar relationships for S and 
C, but since few people worry about conductance except transistor engineers, we don't either. 

Before moving on, let's do some calculations for the resistances of more complex shapes.
Consider a trapezoidal block of material with uniform resistivity, length L, width W (out of the page), but a height that varies linearly 
from y1 to y2>y1.  Let the prospective current flow from left to right.

Let's break the object up into thin slices of thickness dx.  The resistance of each such slice will be
dR = dx/A = dx/Wy = dx/W[y1+(y2-y1)x/L].
The total resisitance in that orientation is then the sum of all the slices (they are in series):
R = 0 L dx/W[y1+(y2-y1)x/L] 

thsi is amenable to u substitution with u = y1+(y2-y1)x/L and du = (y2-y1)x/L.
R = L/[W(y2-y1)] u-1 du = L/[W(y2-y1)] ln u = L/[W(y2-y1)] ln [y1+(y2-y1)x/L] 0|L = L/[W(y2-y1)] ln [y2/y1] 

Consider a pair of coaxial surfaces or radiuses rA and rB>rA and length L.  The space betweeen them is filled with a material of 
uniform resistivity, .
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First, find the resistance of the material for a current directly along the length.
Well, this is fairly easy because the cross sectional area is constant along the length of the object.  So, 
R = L/A L/[ rB

2 - rA
2] = L/ [rB

2-rA
2].

Now find the resistance if the current were to run radially.
Break the material up into thin cylinders.  Each has cross-sectional area 2 rL and thickness dr.  The resistance of such a sheet is then
dR = dr/2 rL.
The slices are in series in this case, so we simply add them up:
R = rA rB dr/2 rL = [ /2 L] rA rB dr/r = [ /2 L] ln(r) rA|rB = [ /2 L] ln(rB/rA) .

Consider an LxLxd rectangular slab of uniform resistivity.  Find the resistance from one small face to the opposite face.
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Again, the cross sectional area is constant along the length, so we have that
R = L/A = L/Ld = /d, independent of L!
This is sometimes called the sheet resistance and has units of Ohms per square (

Another example:  Consider a cylinder of radius R and length L for which the resistivity is given by (x) = o(1 + 3x), where x 
indicates the position along the lenght of the cylinder (we'll assume that the numbers in brackets have the correct dimensions). Let the 
potential difference be applied across the ends of the cylinder.

Slice the cylinder up into discs; for each, the resistance throughits face is
dR = (x)dx/  = o(1 + 3x)dx/ R2

Since the slices are arranging in series, the total resistance is then

R = 0 L
o(1 + 3x)dx/ R2 = o(x + 3/2x2)/ R2

 0|L= o(L + 3/2L2)/ R2

Consider two hemispheres (rA and rB) with a resistive material between them.  The resistivity is given by:
(x) = o(r +a)

(we'll assume that the numbers in brackets have the correct dimensions). Let the potential difference be applied across the 
hemispherical surfaces.
Break the material up into thin hemispheres of thickness dr and area 2 r2.  The resistance of such an object with the current normal to 
its curved surface will be:
dR = (x)dr/  = o(r + a)dr/ r2 .
Since all of these layers are arranged in series, we just add the individual resistances:
R = rA rB

o(r + a)dr/ r2 = rA rB
o/  r-1dr + rA rB [a o/  r-2 dr = (skipping a few steps) o/  ln(rB/rA) + [a o/  [1/rA - 

1/rB]

One last example: Consider a cone of material of uniform resistivity. The cone has length L and the side is described by r = ax, where 
x is the distance along the central axis measured from the apex.  Let eh current run fronm teh apex to the base.  Again, we slice the 
cone into discs of thickness dx and area r2 = a2x2.
The resistance of each slice is then
dR = dx/ a2x2 

These slices are in series, so once again,
R = 0 L dx/ a2x2 = 0 L / a2] x-2 dx = / a2] x-1 

0|L = / a2] [L-1 - 0-1] = infinite.
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Does this make sense?  What happens at the apex?

Batteries

We have been rather incautiously applying potential differences to capacitors and resistors.  Let's discuss one device which can do 
this, the battery.  The classic battery is a container of acid into which are placed two electrodes composed of different metals (here, A 
and B). 

The materials are chosen so that two chemical reactions take place.  One has the result of removing electrons from Metal B and 
placing them into the acid solution, the other has the effect of placing electrons onto Metal A from the solution.  As a result, electrode 
A becomes negatively charged while B becomes positively charged. 

The symbol for a battery is: 

The longer line represents the positive terminal and the shorter line the negative terminal (makes sense, since we need twice as much 
line to make a cross as a dash); here the vertical lines represent wires connected to the battery terminals. 

Why do the metals have to be different? 

Answer 

When does this reaction stop?  There is a chemical potential difference which drives the electrons over to electrode A, but as A is 
charged up, it gets harder and harder to place the next electron over there (electrostatic repulsion), and so there is a reverse electrical 
potential difference forming as well.  When these two cancel each other, the reaction stops.  The electrical potential difference of the 

battery in this state is called the emf  ( , unit is volts).  The letters of  'emf' do stand for words, but they are misleading and do not 
accurately describe the nature of emf; better to think of emf as a new word meaning the potential difference between the terminals of 
a battery when this static equilibrium has been reached. 

Now, connect a wire (with some small resistance) from the terminal of electrode A to that of B.  Now, the electrons have a way of 
returning to B without having to fight against the chemical potential.  As charge is transferred on an outside path from one terminal to 
the other, the electrical potantial difference between the electrodes will decrease and the chemical reation will restart, resupplying 
charges to the terminals.  So, unlike in a capacitor, the plates or terminals are continually resupplied with charge. 
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As the charge flows, a new dynamic equilibrium will be achieved such that the charge transfer due to the chemical reactions and the 
current in the outside circuit are equal; this will occur however at a potential difference between the terminals (TPD) which is less 
than the emf.  The larger the current through the battery, the lower this equilibrium TPD will be. 

Let's use the water analogy, in which water corresponds to charge and water depth corresponds nicely to potential difference.  The 
cistern in your toilet has a valve attached to a lever with a floater; when the water level in the tank lowers, the floater also lowers and 
the valve is opened, thus refilling the tank.  Often, though not always, the rate at which water refills the tank is greater when the level 
of water in the tank is lower (since the valve is more open).   This device represents the chemical reaction, since the rate of the 
chemical reaction will increase when the TPD is lower. 
Now, suppose that you have a leak (current) in the tank; the water level will sink, opening the valve, until the rate of leakage and the 
rate of refilling match (current in and out of the battery).  This will necessarily occur at a water level (TPD) lower than 'full.'  If the 
leak (current) becomes larger, the equilibrium will be reached when the water level (TPD) is even lower.  Stopping the leak allows 
the water level (TPD) to return to its 'full' value (the emf). 

We model this effect by assuming that there is an internal resistance rINT inside the battery, across which there is a potential 
difference (I* rINT) while current is flowing.

In that case, the potential across the terminals of the battery should be given by: 

TPD =  - I rINT.

We can calculate rINT by looking at the slope of the line in the graph above (in this case, about 2.75 Ohms).
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We find that larger batteries tend to have smaller internal resistances, since the larger plates inside provide more surface area for the 
reactions to take place more efficiently, and also that the internal resistance of a given battery tends to increase as the reactants are 
used up. 

Remember though that there is not really such a resistor inside batteries; this is just a model. 

Here are some questions to consider: 

Batteries generally get hot while providing a current.  Why? 

Answer 

Why do batteries 'run out?' 
Answer 

Why do batteries run down slowly, rather than work fine and suddenly stop working? 
Answer 

What could one do to resuscitate a dead battery? 
Answer 

Why are some batteries non-rechargeable? 
Answer 

Can the TPD ever be greater than the emf? 
Answer 

Here is an example.  Consider your car battery with an emf of about 12.6 V.  Turn on your headlights, which draw a current of about 
20A.  Now, try to start your car.  What happens to the headlights? 

Answer 

The starter of a typical car draws about 400A from the battery.  Because of this huge drain, the TPD of the battery is reduced to about 
6V, and correspondingly this reduction in the potential difference across the lamps forces less current through them, making them 
dimmer.  Once the starter is disconnected from the battery, the TPD rises back to about 12V and the lights regain their former 
brilliance. 

Let's consider briefly the possibility of placing batteries in series or in parallel; the same rules apply, of course.  In series the total emf 
will be the sum of teh individual emfs, and the current will be the same through each battery. In parallel, the total current out of the 
combination will be the sum of the individual currents, but we have to be careful in terms of the potential differences across each 
which must be the same; two different emf batteries in parallel will cause one to discharge and the other to charge.  This is why 
mixing old and new batteries (even of the same nominal emf) in a device is not a good idea. 

Kirchhoff's Rules

Some arrangements of resistors (and of other components) are not so amenable to the reduction treatment outlined above.  For those, 
we need to use a more powerful, if more tedious method, now known as Kirchhoff's Rules.  These are restatements of the same two 
concepts discussed previously: conservation of charge and the fact that the electric field is conservative.  As we work through 
Kirchhoff's Rules, let's consider a simple concrete example, simple enough that we need not even use the rules to find the currents 
and potential differences. 

Consider a node, a spot where there is a choice of directions to go in a circuit.  Some books define a node as a spot where two wires 
are connected, but some students invariably have problems with distinguishing nodes from bends in a wire. 
Mark all of the nodes in the circuit.  Here, we see that there are two nodes. 
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Next, we shall look first for the branches of the circuit.  A branch is any path which connects two nodes without passing through any 
other node. 

Here, we see that there are three branches.  Each branch carries a current, Ii.  We have at this time no idea even in which directions 
the currents are flowing, but the beauty of Kirchhoff's rules is that everything will work out in the end; if we guess a current direction 
incorrectly, we shall merely obtain a negative answer.  Assign currents to each branch (I1, I2, et c.) along with a direction for each 
(indicated on circuit diagram with arrows). 

Note that the current is I1 in all of the first branch, that is, before, after, and through the battery. 

Conservation of charge indicates that the sum of all currents entering a node must equal the sum of all currents leaving a node, else 
charge would be either created or destroyed. 

i (Iin)i = j (Iout)j
I would prefer to write this differently.  Let's say that the sum of all currents entering a node is zero, but make those actually entering 
be counted as positive, and those currents actually leaving the node be negative ('negative in' = 'out,' right?): 

i (Iin)i = 0 
These equations may look very different, but remember that they are simply based on different bookkeeping methods.  In this 
example, we would write: 
top node: I1 - I2 + I3 = 0, 
bottom node: - I1 + I2 - I3 = 0. 
Notice the redundancy of the two equations; the second one gives us no additional information over the first one, and so we can 
ignore it.  This is discussed in more detail below. 

Now let's look at the potential difference we encounter as we trace a loop around the circuit; a loop is a closed path around the 
circuit.  Because of the fact that the electric field is conservative, the work we do moving some test charge completely around the 
loop back to its starting place must be zero.  So, then, the sums of all the potential differences we encounter while doing this must add 
to zero; some will be increases in potential and others must be decreases in potential: 

i Vi = 0. 
These potential differences will be of two types (for now): the emfs of batteries and potential differences across resistors.  I prefer to 
count these two types separately by summing the voltage rises across the batteries (a drop would be counted as a 'negative rise') and 
the drops across the resistors.  Since I will put these two types of terms on opposite sides of my equation, the sign problem will be 
accounted for: 

i Ri Ii = i i
What sign should be assigned to each term?  For resistors, current always flows from higher potential to lower potential, so it seems 
that if I traverse the resistor with the current, I should count that as a positive drop, and if I cross the resistor against the current, that 
would be an increase in potential or a 'negative drop,' and I should insert a minus sign.  If I cross the battery from the negative 
terminal to the positive terminal, that would be an increase, so I stick a plus sign in front of it, but if I cross it the other way, that's a 
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decrease and I should insert a negative sign.  Note that the sign given to a battery emf does not depend on the direction of the current 
though it. 

Let's look at out example.  How many loops are there? 

Answer 

Note that it doesn't matter which way we travel around a loop, since drops will become rises and rises drops, and we'll end up with 
the same equation in the end.  Let's write the loop rule for each of the loops shown in the figure: 

L1: + R1I1 + R2I2 = +  [We traverse R1 and R2 with the respective currents, and we cross the battery from low to high potential.] 
L2: - R2I2 - R3I3 = 0   [We traverse R2 and R3 against the respective currents.] 
L3: -R1I1 + R3I3 = - [We traverse R1 against the current and R3 with the current, and we cross the battery from high to low 
potential.] 
We notice that the third equation can be obtained by adding the first and the second then multiplying by negative one, and so it gives 
us no new information and we therefor ignore it (more on this later). 

So, we have three equations which we can use to solve for three unknown currents: 
I1 + - I2 + I3 = 0

R1 I1 + R2 I2 = +
- R2 I2 + - R3 I3 = 0

Generally, at this point the math gets really ugly, even for so simple a circuit. 
Multiply the first equation by R1and subtract it from the second equation: 
R1 I1 + -R1 I2 + R1 I3 = 0

R1 I1 + R2 I2 = +
to get: 
(R1 + R2) I2 - R1 I3 = +
Now multiply this equation by R3 and the third of the original equations by R1, 
(R1 + R2)R3 I2 + - R1R3 I3 = +R3

- R1R2 I2 + - R1R3 I3 = 0
and subtract to get 
(R3(R2 + R1) + R1R2) I2 = +R3

or that 

I2 = R3 /[R1R2 + R2R3 + R2R3]. 
Substituting this back into the third of our original equations gives: 

I3 = -[R2/R3]I2 = -[R2/R3]R3 /[R1R2 + R2R3 + R2R3] = -R2 /[R1R2 + R2R3 + R2R3]. 
The negative sign indicates that we guessed the direction of I3 incorrectly and that it actually flows in the opposite direction, as we 
would expect from looking at the circuit. 
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Now, substitute these values for I2 and I3 back into a previous equation to find I1: 

I1 = I2 - I3 = R3 /[R1R2 + R2R3 + R2R3] - - R2 /[R1R2 + R2R3 + R2R3] = [R2+ R3] /[R1R2 + R2R3 + R2R3]. 

Now, in this particular case, it would have been easier to use reduction to find the equivalent resistance, but this was a good exercise.  
Some systems can not be solved with reduction.  Also, in this case, we assumed that we knew the emf and the resistances and were 
looking for the currents, but we could just as easily have known one current and not known one resistor value, et c., so long as we 
have an equal number of independent equations and unknown variables (Note, mathematically, other conditions have to be met, but 
since we assume that there is only one physical solution for a system like this, that condition suffices). 

In general, how many of each type of equation (loop and node) do we need in order to solve a problem?  We find that if we have N 
nodes, we need N-1 node equations, since the last node equation will be some combination of the others and it therefor presents no 
new information.  If there are M small loops in the circuit, then we need M loop equations.  Again, any more past that number will be 

combinations of the others and we shall learn nothing new about the circuit from them.  Generally, we know all the Rs and s, and 
are asked to find the Is.  We can double check our information, since the rule is that we need Z equations to find Z unknowns.  You 
should find that M + N - 1 is equal to the number of branches in the circuit, and therefor also equal to the number of currents we need 
to find. The rest is just algebra..... 

So, consider this generic example: 

How many nodes are there? 

Answer 

How many loops? 
Answer 

How many independent loops? 
Answer 

How many branches? 
Answer 

How many of each equation type should we write to solve this problem? 
Answer 

There is a Kirchhoff's Rules Solver on the course Excel Workbook.  This will determine up to six currents (and other quantities with 
some imagination).  Just write the (M+N-1) equations and place the co-efficients in the correct cells.  Below is an example of how the 

worksheet should be filled in with the co-efficients for the example done above with R1 = 20 , R2 = 30  and R3 = 50 , and  = 
14V: 

I1 + - I2 + I3 = 0
20 I1 + 30 I2 = +14

- 30 I2 + - 50 I3 = 0

KIRCHHOFF'S RULES SOLVER 

1 I1   + -1 I2   + 1 I3   + 0 I4   + 0 I5   + 0 I6   = 0
20 I1   + 30 I2   + 0 I3   + 0 I4   + 0 I5   + 0 I6   = 14
0 I1   + -30 I2   + -50 I3   + 0 I4   + 0 I5   + 0 I6   = 0
0 I1   + 0 I2   + 0 I3   + 1 I4   + 0 I5   + 0 I6   = 0
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0 I1   + 0 I2   + 0 I3   + 0 I4   + 1 I5   + 0 I6   = 0
0 I1   + 0 I2   + 0 I3   + 0 I4   + 0 I5   + 1 I6   = 0

I1   = 0.361 I2   = 0.226 I3   = - 0.140 I4   = 0 I5   = 0 I6   = 0

A Further Note for Those Who Care

If one were to try to work out the assertions made in this paragraph in detail, one would probably fail.  The reason is that the whole 
story has not been presented.  One might say the following: 
L is doubled, so for constant V, the E field is halved. 
E is halved, so the force FE = qE is halved and the acceleration a = F/m is halved. 
The electrons are assumed to start from rest after each collision and accelerate against the field until the next collision with a 
scattering site, perhaps a distance d away.  Using the kinematic equations from previous discussions, one sees that vAVE = 1/2 vf  = 1/2

[2ad]1/2, so that the average velocity does not halve when the acceleration halves. 

The resolution to this problem is in the details of the motions of the electrons.  When the electric field is zero, the electrons are not 
motionless, but actually moving very quickly.  The fact that the current in this situation is zero only means that just as many electrons 
are flying in one direction as in the opposite direction, so that there is no net movement of charge.  In fact, in a metal, the conduction 
electrons are bouncing around inside the metal in much the same way as gas molecules in a box do.  One can even use the results of 
the equipartition of energy theorem to estimate the rms speed: 
1/2m vrms

2 = 3/2kBT; at room temperature, vrms = 105 m/s, compared to the asserted average drift speed of the current, ~10-4 m/s. 
The point here being that the quantity which is constant is the time between collisions, not the distance traveled between collisions.  
So the relationship one should consider is 
(vDrift)AVE = 1/2 (vDrift) f = at/2, 
so that the average drift speed of the motion against the electric field which is superimposed on the random motion is indeed 
proportional to the acceleration and so also to the electric field. 

Let's back up a little bit: how do we know that the drift speed is so low?  Consider a typical metal wire with cross sectional area 
1mm2 carrying 1A of current.  In one second, 6x1018 electrons will pass a given point.  These electrons on average occupy the same 
volume that their 'host' atoms do; since metal atoms are typically separated by about 3Ao = 3x10-10m, the total volume occupied by 
the electrons will be 6x1018*[3x10-10]3 = 1.6x10-10m3.  Given that the cross-sectional area of the wire is 10-6m2, the electrons must 
then move at 0.16x10-3 m/s or as stated at about 0.1 mm/s. 

Continue on to the Next Section
Return to the Notes Directory

D Baum 2001 
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