
HW 13-1 Soln) 

The wavefunction for the n = 1, l = 0, ml = 0 state is 
 

ψଵ,଴,଴ =  Aଵ,଴,଴Rଵ,଴P଴
଴e଴ =  Aଵ,଴,଴ eି୰/ୟ౥ . 

 
Let’s substitute into the Schrödinger equation.  Any derivative with respect to θ or ϕ will 
result in zero.  That leaves 
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Then, we have 
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Now, we have two kinds of terms here, ones that are inversely proportional to r and ones 
that are constant.  We should be able to construct two independent equations. 
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We recognize this as the Bohr radius, as was asserted in the notes. 
 

constant terms:       
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= − 2.176 × 10ିଵ଼ J = − 13.6 eV   .  

 


