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Laboratory Exercises 

 
About the Laboratory Component -  

The scheduled laboratory periods may be used for lab exercises, as question sessions before the exams, 
or if necessary as additional lecture time.  A student who misses a lab will be given an opportunity to 
perform a substitute exercise during the semester at a time arranged with the consent of the 
instructor.  The average of the lab grades will count as 25% of the student's final course grade, unless 
the course instructor indicates otherwise. Lab partners will be assigned and rotated several times 
during the semester.  

The student will keep a notebook (e.g. Ampad #26-251) of all laboratory work. Notebooks will be written 
neatly and clearly, and in ink.  All laboratory objectives, equipment lists (include model and serial 
numbers), procedures, techniques, data, results, and conclusions will be written in the notebook (see 
below for guidelines).  The notebook will then form the outline for any formal reports required.  No 
loose sheets may be used as scrap.  Any errors or changes must be struck out with a single, light 
stroke with the corrected value written nearby.  No pages are to be removed, and the information is 
not to be recopied later into a 'cleaner, neater' notebook.  Graphs printed by computer or drawn on 
loose leaf graph paper should be glued or stapled into the book, one graph per page.  The instructor 
will examine and sign each notebook before it leaves the laboratory classroom; it is the student's 
responsibility to ensure that this is done.  Never disassemble your apparatus until your notebook has 
been checked!  While all this may seem rather AR, the student must realize that, at the least, a 
notebook must be capable of reminding the author of his procedures and results in case he must 
repeat them or if his work is questioned, and at the other extreme could be the factor 
determining  who gets credit for a patent or other discovery.  A good self test if enough information 
has been included is to ask whether a friend at some other school could duplicate the experiment 
using just the notebook and lab manual.   

Construct a table similar to the one below on the first page of your notebook.  

Lab # Date Title Instructor’s Initials 

01                                           

02      

03      

The grade for the lab portion of the course will be based on formal reports (due typically one week after 
the exercise) and the notebook checks.  If a laboratory exercise is performed, but no report is 
submitted, the signed notebook is your proof that you did the lab.  Notebooks and formal reports 
will follow the general format given below, although some sections may be combined if it seems 
better to do so.   

 Student Name - Title - Date - Names of Partners 
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 Objective of Experiment - The objective is often to verify some relationship which was presented in 
class.  In these cases, a brief discussion of the concept is required, along with an outline of how this 
experiment will support (or disprove) it. 

 Description of Experimental Apparatus - A labeled schematic sketch is often enough for the 
reports.  Artistic renderings of the apparatus are not necessary.  Notebooks should include model 
and serial numbers, scale settings, et c. 

 Procedure(s) – If the procedure corresponds exactly with that given in the lab manual, then write 
‘The procedure in the manual was followed exactly.’  Any deviations from the given procedure should 
be included in the report.  The goal is that the available information should be specific enough that 
another student taking PHYS I could reproduce the experiment.  In particular, any steps with may be 
considered novel or unusual should be documented in detail. 

 Data (if appropriate) - For reports, it is a judgment call as to how much raw data are included.  Often, 
data can be presented in the form of a graph more efficiently than as columns of numbers.  In the 
notebooks, however, all data should be recorded in some way, if at all possible.  All measurements 
must be accompanied by an estimate of the uncertainty in that measurement.  It may be that the 
student will not be asked to propagate the uncertainty through to the result, but at least the 
necessary information will be available. 

 Results - Results often call for comparison of the student's answer to some accepted value; generally 
a per cent difference can be calculated, or a check can be made to see if the accepted value is within 
the uncertainty of the experimental result.    Other times, a particular relationship among variables 
may be found by graphing.  Results should be clearly indicated. 

 Conclusions - This can often be combined with the results section.  Did the experiment support 
whatever hypothesis was discussed?  What mathematical relationship connects two or more 
variables?  What are the implications of these results?  Were there any problems with the 
experiment that could be corrected? 

The reports should be typed, although figures may be hand-sketched while graphs should be constructed 
with Excel or some similar package.  Reports do not need to be overly long; just include what’s 
necessary.  The language should be clear, concise, and natural, without the pretentious use of 
synonyms (e.g., 'use' and 'utilize' do not mean the same thing.).  Do not blame poor results on 'human 
error' unless there is a reaction time effect or something similar; poor experimental technique should 
not be explained away, it should be corrected before you leave.  Now, on occasion, it may be that an 
apparatus will not yield good results, either because the equipment is worn or broken, or because 
the experiment is truly ill-conceived.  We can only assure the student that the instructor has 
performed each experiment and obtained reasonable results.  
 

In addition, note that there will be no food or drink allowed in the lab room, no cell phone activity, and 
that appropriate dress is required (no sandals, occasionally, long pants are required).  Lab groups will 
be assigned and will comprise no more than four students.  Attendance at and participation in 
laboratory exercises is mandatory; students more than a few minutes late to lab will be asked to 
perform a make-up instead.  Students are responsible for returning the lab equipment to its original 
state.  Students must sign into the lab and be certain to have the instructor sign notebooks before 
leaving.  Violations of these and other general classroom policies may result in ejection from the 
classroom under the College’s Code of Conduct. 
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Lab 401 – Reflection and Refraction 
   
OBJECTIVE 
 
To confirm the laws of reflection and refraction (Snell’s Law) 

BACKGROUND 
 
In this laboratory exercise, the optical phenomena (reflection and 

refraction) that are the basic means by which most optical devices work 
are investigated.  The law of reflection states that the angle of incidence 
of a light ray, as measured from a normal to the reflecting surface, is 
equal in size to the angle of reflection, measured in the same manner 
(see Figure 1). 

 
The law of refraction (Snell’s Law), in its modern form, states that the 

angles formed by a ray (relative to a normal) passing from one 
material to another meet this condition: 

n1 sin 1  = n2 sin 2 

 
where n1 and n2 are each the index of refraction of the respective 
materials. The index of refraction of a material is the ratio of the 
speed of light in vacuum to the speed in the material (n = c/v) and is 
equal to the square root of the material’s dielectric constant, κ 

PROCEDURE and ANALYSIS 

I REFLECTION 
 
1. Mount the Light Source Box near one end of the magnetic rail.  Place the Slit Plate on the front of the 

Light Source with the slits vertical.  Place the Parallel Ray Lens on a magnetic holder and mount it on 
the rail, approximately 9 cm in front of the Source. Place the White Angle Table on the tilted bracket 
and mount that at about the middle of the rail.  Adjust the position of the lens and the bulb in the 
light source until several parallel rays fall across the white angle table.   Next, place the Slit Mask over 
the slit plate so that only one ray emerges.  Lastly, adjust everything so that the one ray is incident 
along the 0o line of the angle table and so that it is as thin as possible. 

 
2. Place the flat side of the mirror so that it aligns exactly along the ±90o line.   
 
3. Rotate the angle table by ten degrees at a time and record the incident and reflected angles.  Which 

is your independent variable and which is the dependent variable?  Graph the values in such a way 
as to obtain a straight line.  Is the Law of Reflection valid? 

 

Figure 2 - Refraction 

Figure 1 - Reflection 
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II REFRACTION 
 
1. Remove the mirror and replace it with the Cylindrical Lens.  Place the flat side of the lens toward the 

light source and align it exactly along the ±90o line.  Adjust the table and slits so that the incident ray 
comes in exactly along the 0o line.  

 
2. Rotate the table by five degrees at a time and record the incident and refracted ray angles.  Which is 

your independent variable and which is the dependent variable?  Graph the values in such a way as 
to obtain a straight line.  Is Snell’s Law valid?  How is the index of refraction of the plastic represented 
on the graph?  What is the index of refraction, n, for this particular plastic?  The manufacturer’s 
accepted value is 1.5. 

 

III TOTAL INTERNAL REFLECTION 
 
1. Set up the cylindrical lens as in Part II, except have the flat side of the lens away from the light source, 

so that the light will emerge from the plastic at the flat surface.  Slowly, rotate the lens until the 
refracted ray appears to emerge parallel to the flat surface.  Record the critical incident angle.  
Calculate the index of refraction again.  Compare this value with the one obtained in Part II by 
calculating a per cent difference.  This is not very accurate; do your best. 
 

IIII DIFFRACTION 
 
1. You will return to diffraction with much more detail in a later exercise.  For now, this is an experiential 

exercise.  Remove the cylindrical lens from the angle table and adjust the apparatus again so that 
only one ray falls on the table.  Remove the parallel ray lens and replace it with the diffraction grating.  
The grating is an array of many very narrow slits. 

 
2. Describe, in words or perhaps with a sketch, what you see.  How many ‘rays’ are there now?  How 

are the rays different?   
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V POLARIZATION 
 
1. Remove the angle table and its bracket.  Remove the diffraction grating, but leave the magnetic 

holder in place.  Put two more holders on the rail, one perhaps two inches away from the original 
holder, and the other perhaps two or three inches further down.  On the last holder, place the white 
screen.   
 

2. Note how bright the light appears to be on the screen.  Now place one polarizer on the first holder 
so that 0o is up in the notch.  Once again note the brightness of the light on the screen and describe 
it in words.   

 
3. Place the second polarizer on the middle holder so that its 0o mark is in the notch.  Again, qualitatively 

describe the brightness of the light you see. 
 

4. Now, rotate the second polarizer in 10o increments.  Describe what happens to the brightness of the 
light seen on the screen after each rotation.  At what angle does the screen go dark?  What happens 
as the angle continues to increase?  Find the angles for which the transmitted light is brightest (tough 
to do exactly) and darkest (much easier). 
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Lab 402 – Thin Lenses 
 
OBJECTIVE 
 
To confirm the Thin Lens Equation and investigate several types of aberrations. 
 
BACKGROUND 
 
Lenses are categorized according to what effect they have on light passing through them, namely 

converging and diverging lenses.  These categories may be further subdivided according to the 
curvatures of the two surfaces: 

 
Converging (f > 0) Diverging (f < 0) 

meniscus  )) meniscus  )) 
plano-convex  |) plano-concave  |( 
double-convex  () double-concave  )( 

 
The following is a summary of the properties of thin lenses with which you should become familiar.  More 

detail on each topic is found in the textbook.  Keep in mind that the effects of real lenses are more 
complicated. 

 
A. The relationship among the object distance, o (the distance from lens to object), the image distance 

i (the distance from lens to image), and the focal length of the lens, f, is  
 

1

𝑜
+ 

1

𝑖
=  

1

𝑓
 

 
The object distance is positive for objects in front of the lens and the image distance is positive for 
objects behind the lens.  The focal length is positive for a converging lens, and negative for a diverging 
lens. 

 
B. The magnification is the ratio of the image size to the object size (hi/ho); this can be shown to be 

equal to the ratio of the image distance to the object distance: 
 

𝑚 =  
−𝑖

𝑜
 

 
If the magnification is the positive, the image is upright; if it is negative, the image is inverted.   

 
C. Chromatic aberration is a variability in the focal length of a lens due to dispersion, the property that 

the index of refraction varies with wavelength.  For most glasses, the index of refraction is larger for 
blue light than for red light; this then causes the focal length of a converging lens to be shorter for 
blue light than for red. 
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D. Spherical aberration is an imperfection in the focal properties of a lens due to the fact that rays 
passing through the outer portion of the lens are bent more than those that pass through the central 
portion; the focal length for such rays is therefor shorter than that for rays passing through the center 
of the lens. 

 
E. Coma is an aberration affecting incoming rays not parallel to the optical axis.  Such rays do not 

converge, thereby blurring the image formed. 
 
F. Astigmatism is a defect in which the focal length of a lens is different for rays passing through the 

lens in different planes. 
 

PROCEDURE 

A. Converging Lens 
 
1. Place the light source at one end of the optical rail.  Clip 

the object slide to the front of the light source.  Set up 
the optical bench using the 75mm converging lens as in 
Figure 1.  Look through the lens and find the image.  
Approximately, where does the image appear to be?  

 
2. Attach the screen holder with screen to the optical 

rail (Figure 2).  The frosted side of the glass screen 
should face the lens so that the image will form on the 
front surface, but you may still observe it from the 
backside.  Locate the image on the screen and record the 
following information:  object distance (measured from 
the plate with the arrow-shaped hole, not from the center 
of the lamp), image distance, image real or virtual, object 
size (measure the length of one of the arrows), image size 
(same), and image upright or inverted.  

 
3. Compute and record the focal length fC of the converging lens. 
 

4. Compute and record the magnification of the image (from hi/ho).  Calculate a predicted value for the 
magnification based on the object and image distances and do a percent difference between the 
predicted value and the actual value. 

 
5. *Construct a ray diagram using the object distance and image distance in Step 1.  Determine the focal 

length and magnification from your diagram and compare with values found in Steps 3 and 4 by 
performing per cent difference calculations. 

Figure 1 - Looking at the Image through a 
Converging Lens 

Figure 2 - Projecting the Image onto the 
Screen 
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6. Using the same object distance as in Step 1, place a red filter in the light path.  Focus the image of 

the screen and record the image position.  Compare this value with the original image position.  
Repeat this step using a blue filter; record the image position.  Comment on how chromatic 
aberration affects the image position. 

 
7. Using the same object distance as in Step 1, place a circular disc over the center of the lens. Re-focus 

and record the image position. Replace the disc with an aperture, refocus, and again record the image 
position.  What can you conclude about spherical aberration?   
 

B.  Diverging Lens 
 
NOTE: The image of a real object formed by a diverging lens is 

always virtual.  A virtual image cannot be focused on the 
screen; it can, however, be seen by eye if you sight through 
the lens at the object.  It is always upright, reduced in size, 
and appears to ‘hang’ in mid-air between the object and the 
lens.  There are a number of ways to determine the position 
of a virtual image.   

 
1. Remove the screen and replace the converging lens with a diverging lens.  Can you see an image 

through the lens (Figure 3)?  Describe its approximate position.  
  

2. Mount the Virtual Image Locator on another magnetic holder so that it is above the opening in the 
holder.  Place the locator at the approximate position of the image (Figure 4).  Now, you will make 
use of an effect known as parallax; move your head left and right, watching the arrow on the locator 
and the image as seen through the lens.  Most likely, the arrow and the image will shift back and 
forth differently.  Adjust the location of the arrow locator until the arrow and image move together, 
i.e., they are in the same spot.  Record the location of the image.  Calculate the focal length of the 
diverging lens and compare with the given value with a per cent difference. 

 

Note that this is a difficult task.  Try to do as well as you can, then ask your instructor to check it. 
 
  

Figure 1 
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Lab 403 - Interference 
 
OBJECTIVE 
 
Determine the wavelength of the light from a gas laser using interference. 
 
BACKGROUND 
 
Interference is an effect that directly supports the 

wave nature of light.  When coherent light 
from two (or more) sources arrives at a 
particular point, the waves can add 
constructively (always in phase), completely 
destructively (always out of phase), or 
somewhere in between.  In this exercise, you 
will make use of a gas laser1 as both sources 
of light by passing the light perpendicularly 
through a double slit; the two resulting 
sources are therefor exactly in phase with one 
another.  The light then continues on until it 
hits a screen. If the two beams are in phase on 
arrival at a particular spot on the screen, then the waves add constructively and a bright spot is seen. 
If the beams are 180o out of phase (and of the same intensity), a dark spot will appear.  As derived in 
class, the condition for these two cases are 

 
𝑑 𝑠𝑖𝑛𝜃 = 𝑚𝜆     (𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒)                      𝑑 𝑠𝑖𝑛𝜃 = ቀ𝑚 +  

ଵ

ଶ
ቁ 𝜆    (𝑑𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒) 

 
Now, because the slits themselves are not infinitely thin, as was assumed in the derivation, there is 
also a diffraction effect.  This appears in the interference pattern as an alternating decrease, then 
increase in the brightness of the spots.   
 

Let’s simplify the relationship for destructive interference, since the angles are small.  The sine of theta 
should be about the same as the tangent of theta, which is x/Y, so that 

 

𝑑 𝑡𝑎𝑛𝜃 ≈ ቀ𝑚 +  
ଵ

ଶ
ቁ 𝜆 

2𝑑 𝑡𝑎𝑛𝜃 ≈ (2𝑚 + 1)𝜆 

𝑑 
2𝑥

𝑌
≈ (2𝑚 + 1)𝜆 

𝑋 = ൬
𝑌𝜆

𝑑
൰ 𝑁 

 

                                                      
1 If you laser light is red, it is probably a HeNe laser with a wavelength of 632.8 nm. 

Figure 1 - Interference of Light Set-up 
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In this expression, X is the distance along the screen between a dark spot on the left side of the 
central maximum and the corresponding dark spot on the right side (X = 2x), while N is the number 
of bright spots between the dark spots, i.e., m = (N-1)/2.  

PROCEDURE: 
 
1. Be very careful to avoid looking at the laser light!   

 
2. Cover the screen with white paper.  Mount the laser, slit plate, and screen on the optical rail.  The 

plate should be about 6 cm from the laser, but the screen should be as far as possible from the slits 
while still showing a clear interference pattern.  Measure this distance from slits to screen, Y.  Watch 
out for reflected laser light! 

 
3. The slits to be used are D and E.  Align the laser and slits so that a clear pattern is seen on the screen.   

 
4. For Slit Set D, measure the distance X from a dark spot on one side of the central maximum to the 

corresponding dark spot in the other side.  Count how many bright spots appear between the marks; 
this is N.  It might be easier to mark the spots with a pencil and measure the distance after removing 
the paper from the screen.  Repeat for as many dark spot pairs as possible.   

 
5. Repeat for Slit Set E. 
 
ANALYSIS 
 
Separately for each slit set, plot X against N in such a way as to obtain a straight line and perform a least-

squares best fit.  What is the physical meaning of the slope of the best fit line?  What is the value you 
obtain for the slit separation, d for each set?  Check your results with your instructor. 
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Lab 404 – Atomic Spectra 
 
OBJECTIVE 
 
To measure the wavelengths of several optical transition lines of mercury.   
To verify the theoretically derived condition for maximum constructive interference from multiple slits. 
 
META-OBJECTIVE 
 
To investigate the properties of diffraction. 
 
BACKGROUND 
 
A diffraction grating provides an example of interference using many sources.  In this case, light from a 

single source is passed through many slits (not just two as in a previous lab).  As discussed in class, 
there are many interference maximums, but the very brightest interference maximums occur when 
the following condition is met: 

 
m = d sin m 

 
where 

            
m is the order of the maximum (waves from adjacent slits are in phase but the distance traveled to 
the screen differ by m wavelengths), 
d is the separation between two successive lines or slits on the grating (usually on the order of a few 
wavelengths), 
 is the wavelength of the light, and  
m is the angle at which the mth maximum occurs. 

             
In this experiment, you will determine the wavelengths of the four principal lines in the emission 

spectrum of the element mercury. 

PROCEDURE 
 
1. Note the slit spacing d of your grating.  It will probably be written as the number of lines per 

millimeter.  Convert this to nanometers per line. 
 

2. Mount the diffraction grating in its magnetic holder at one end of the optical bench.  Position the 
optical bench so that that end hangs slightly over the edge of the table in such a way that it will be 
comfortable to look through the grating.  Mount the mercury lamp at the other end of the optical 
rail.  Adjust the heights of the grating and lamp to be approximately the same.  Mount the two-meter 
stick on its stands and blocks well behind the optical rail (see Figure 1); be sure that it is reasonably 
well centered and perpendicular to the optical bench.  Record the distance between the grating and 
the meter stick as D (you may use the horizontal distance).   
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3. Turn on the lamp by plugging it in.  Mercury has a number of ultra-

violet lines, so avoid looking directly at the lamp; looking at the 
lamp through the glass grating should present no problem.  Look 
through the grating to observe the diffraction maximums; you 
should see a violet line (405 nm), a blue line (436 nm), a green line 
(546 nm), and two yellow lines (577 & 579 nm), then the pattern 
should repeat.  You should be able to see two complete orders 
and part of the third order on each side of the mercury lamp.  
Adjust the grating so that the lines are sharp and clear and appear 
in a horizontal line. 

 
4. Measure the apparent positions (XLeft and XRight) of as many first order lines as you can.  Partner A 

should look through the grating at a given line so that the line appears near the meter stick.  Partner 
B will move the edge of a sheet of white paper along the meter stick until A says that the edge and 
the line under observation are aligned.  Partner C will then shine the flashlight onto the stick and 
record the position of the paper’s edge.  Be sure to make measurements of the lines on each side of 
the lamp.  Measure the locations of as many lines as you can.  Simply record the positions of the lines 
on the meter stick; do not bother to measure the distance from the center.  This will be taken care 
of in the next step. 

 
ANALYSIS 
 
1) Calculate X, the difference of the apparent positions of the corresponding lines on each side divided 

by two (X = (XRight- XLeft)/2); this process helps to reduce errors by averaging the distances of the lines 
from the central axis.  Find and record the angles between each line and the optical axis (Hint: what 
is the relationship among X, D, and the angle θ?). 
 

2) Calculate and record the wavelength of each line.  Compare your values to the values given above in 
Part 3 by computing a percent difference.  As an aside, the wavelengths of these lines can be 
measured with spectrometers to within a few parts per thousand. 

 
 
  

Figure 1 
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Lab 501 – Speed of Electro-magnetic Waves 
 
OBJECTIVE 
 
To determine the speed of an electromagnetic pulse and confirm that the speed matches the known 

speed of light. 
 
META-OBJECTIVE 
 
To provide practice with the oscilloscope. 
 
BACKGROUND 
 
You may remember that, in Physics I, we developed the wave equation for a transverse pulse on a string 

along the x-axis: 
∂ଶY

∂xଶ
=  

1

vଶ

∂ଶY

∂tଶ
 

 
where Y(x, t) is the displacement of the string from its equilibrium position and v is the speed of the 
pulse or wave.  In the 1840s, Fizeau and Michelson independently measured the speed of light to be 
approximately 3×108 m/s.  In the 1860s, Maxwell made use of the laws we discussed in E&M (Gauss’s 
laws for electricity and for magnetism, Ampère’s law, and Maxwell’s corrected version of Faraday’s 
law of induction) to predict the existence of electro-magnetic waves.  For example, the following 
analogous equations can be derived:  
 

∂ଶE

∂xଶ
=  ε୭μ୭

∂ଶE

∂tଶ
 

 
∂ଶB

∂xଶ
=  ε୭μ୭

∂ଶB

∂tଶ
 . 

 
The implication here is that the speed of these waves in a vacuum (symbol c) should be 
  

c ≡ vୟୡ୳୳୫ =  
1

ඥεμ

≅ 3 × 10଼ m/s . 

 
We might then jump to the conclusion that light is an electro-magnetic wave. 
 

In this exercise, you will measure the speed of light and the speed of an electromagnetic wave using the 
time-of-flight method as described in class.   

 
 
Oscilloscope Calibration 
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PROCEDURE 
 

Since the accuracy of the time measurement is critical, the time-base of the oscilloscope must be 
calibrated.  Connect the function generator directly to the scope input and set it to SQUARE WAVE, 
50Ω output, and adjust the frequency to as close to 1 MHz as possible.  Connect a cable directly from 
the output to Channel One of the scope with a T and a 50Ω terminator.  Adjust the scope until 
something resembling a square wave appears on the screen; you will need to be able to see two such 
pulses.  Adjust the VARIABLE SWEEP on the time base until corresponding points on adjacent pulses 
lie on the grid lines.  For example, if the time base is set to 0.2 μS per division, the 1 MHz pulses 
should be exactly five boxes apart.  Once the variable sweep adjustment is made, do not touch it 
again. 

 
Speed of Light 
 
PROCEDURE 
 
The speed of light apparatus comprises 

electronics that produce a series of 
short pulses, which are used to 
trigger the oscilloscope and power 
a diode.  The light from the diode is 
split into two parts; one is diverted 
to a photodetector and the rest is 
collected by a lens and collimated, 
or made parallel.  The light travels 
across the room to a retroreflector. 
This special type of mirror ensures 
that the light is reflected back along 
its original path regardless of the 
actual angle of incidence.  The lens collects this returning light and directs it into the detector, which 
in turn converts the light to an electrical signal.  When viewed on an oscilloscope, both of the pulses 
are visible.  The time between the two peaks is the time of flight of the light.   

 
Since more data points are better than fewer, do the following:  place the retroreflector approximately 

10m from the emitter, but measure the distance carefully.  Obtain the double pulse signal and 
measure the time of flight, t.  Repeat for increments of 8 or so meters until the distance is about 45 
m (5 data points).  Remember that the distance the light actually travels is twice the separation 
between the emitter and the retroreflector. 
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ANALYSIS 
 
Construct a graph (t vs d).  What does the slope of this graph represent?  Calculate the speed of light in 

air.  Compute a per cent difference between your experimental value and the theoretical value of 
2.997×108 m/s. 

 
Speed of an Electromagnetic Wave 
 
In this part of the exercise, an electro-

magnetic pulse will be generated with 
a square wave produced by a function 
generator and a differentiating circuit.  
The output of the circuit will be zero 
when the input is high or low, and will 
be positive or negative when the 
square wave rises or falls.  The pulses 
are sent simultaneously to the Y-input 
of an oscilloscope and down a 75Ω 
coäxial cable.  When the pulse reaches the open end of the cable, it is reflected without inversion 
back to the oscilloscope, and a second pulse will appear on the screen.  The time difference between 
these two pulses will be used to determine the speed of the pulse.  This time will be much less than 
the time between generated pulses. 
 

Now, the velocity that you will measure will be a bit less than the expected speed of light.  The pulses 
generated here travel not though vacuum, but along a coäxial cable with a dielectric material 
separating the conductors.  Think back to our discussion of capacitors in Physics II.  We showed that  

C =  
ε୭A

d
 (empty capacitor) 

 

C =  
κε୭A

d
 (capacitor with dielectric) , 

 
that is, we replaced εo with κ εo.  Therefore, perhaps, naïvely, we might predict that the velocity of a 
wave in a dielectric should be 
  

vୈ୧ୣ୪ୣୡ୲୰୧ୡ =  
1

ඥκεμ

=  
c

√κ
 .  (Eq. 1) 

 
We’ll see later that √𝜅 is what was previously known as the index of refraction, n, of the material. 

 
So, in order to predict the speed of EM waves in the cable, the dielectric constant of the insulating layer 

between the conductors must be found.  Again referring to an exercise from Physics II, you may 
remember that the capacitance of two coäxial cylinders of a great length L is given by  
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C =  
2πκε୭L

ln ቀ
r୳୲ୣ୰

r୍୬୬ୣ୰
ቁ

 .  (Eq. 2) 

 
For RG6/QS cable, rOuter = 2.286mm and rInner = 0.512mm.   

 
PROCEDURE 

 
1) Determine the dielectric constant of the insulator.  Connect the leads of a capacitance meter to 

the center conductor and the ground connection.  Record the value indicated.  Use Eq. 2 to 
calculate the dielectric constant, κ.  Use Eq. 1 to calculate the expected speed of the EM pulse. 

 
2) Connect the cable, function generator, oscilloscope, and differentiator box as shown.  Connect 

the 75Ω termination resistor to the other end of the cable.  This should ensure no reflection from 
that end of the cable. 
 

3) Set the function generator to SQUARE WAVE, 600Ω output, ~100kHz, Amplitude at about 12 
o’clock.  All other functions should be disabled. 
 

4) Adjust the ‘scope until a positive pulse of width ~ 0.1 μS is seen on the left edge of the screen.  
Adjust the HOLDOFF knob so that you can just see the peak of this pulse.  Remove the terminator 
from the far end of the cable (this allows a reflection) and adjust the ‘scope settings again until a 
second positive pulse is also seen (with no negative pulses in between the two).   
 

5) Measure the time for the pulse to travel down and back up the cable.  Repeat the measurement 
after adding another length of cable to the end.  Add a third, then a fourth cable and repeat. 
 

ANALYSIS 
 
Construct a graph similar to the one for light, and find the speed of the electromagnetic wave.  Compute 
a per cent difference between your experimental value and the theoretical value you calculated above. 
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LAB 502 – Properties of Electro-magnetic Waves 

OBJECTIVE 
 
To demonstrate that electro-magnetic waves have the same properties as light and gain confidence that 

light is an electro-magnetic wave. 
 
META-OBJECTIVE 
 
To learn that “quick-and-dirty” experiments are often sufficient to prove very important relations in 

Physics (see e.g. the Compton Effect). 
 
BACKGROUND 

 
In this experiment, you will make measurements only to the accuracy necessary to convince yourself 

that EM waves follow the laws of reflection, refraction, diffraction, and polarization.  With the 
exception of polarization, you will simply look for transmission peaks and show that these peaks 
correspond to what is predicted by optics.  The EM waves in this exercise are microwaves of 
frequency 10.5 GHz.  Although the power output is roughly 10-4 that of a microwave oven, please try 
to avoid placing body parts in the beam. 

 
PROCEDURE and ANALYSIS 
 
1) Calculate the wavelength in vacuum (or air) of an EM wave of frequency 10.5 GHz. 

 
2) Place the emitter and receiver on the goniometer rails.  Check that the angles on the dials on the 

mounts for each read the same position.  Place a metal plate on the magnetic holder on the center; 
be sure that the surface of the plate is located exactly above the center of the rotating table.  Rotate 
the reflecting plate to an incident angle of 20o.  Move the receiver about until the signal is maximized 
and measure the angle of that location; the difference of this angle and the incident angle is the 
angle of reflection.  Repeat for many angles, then plot the reflection angles against the incident 
angles.  Is the law of reflection upheld? 

 
3) Adjust the arms of the goniometer so that the receiver and emitter are 

facing one another.  Place the empty Styrofoam prism on the table (be 
sure that the hypotenuse of the empty space is located above the center 
of the rotating table) and move the emitter up to the prism so that the 
microwaves are entering it at 0o.  Gently swing the receiver back and forth 
until the position of maximum signal is found; it should be straight ahead 
from the emitter.  Now, fill the prism with plastic beads.  Repeat your 
investigation.  Swing the detector back and forth to find the direction of peak intensity.  Is the 
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position roughly consistent with refraction at an interface?  Reverse the prism and repeat.  Again, is 
the result consistent with refraction?   

 
4) Remove anything between the emitter and receiver and again place them facing each other.  Your 

instructor will now quickly demonstrate that microwaves are polarized by rotating a slotted metal 
sheet between the devices.  Plot the receiver’s signal as a function of angle (every 5o) and verify that 
these EM waves follow the Law of Malus: 

 
𝐼(𝜃) =  𝐼𝑐𝑜𝑠ଶ𝜃 . 

Construct a graph. 
 

5) Place a double slit barrier on the center table.  The slits should be about one inch wide and several 
inches apart.  Predict at what angles diffraction maximums will appear.  Gently swing the receiver 
around and look for these angles experimentally.  Compare your experimental results with the 
theory.  Are EM waves diffracted?   

 
CONCLUSION 
 
Make an argument for or against the notion that light waves are EM waves.    
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Lab 503 – Millikan Oil Drop Experiment 
 

OBJECTIVE 
 
To determine the elementary charge of an electron and demonstrate that electric charge is quantized. 
 
BACKGROUND 
 
The Millikan ‘Oil Drop’ experiment showed that the charge is quantized, that is, it only occurs as an 

integer multiple of some given fundamental value.  The experiment is extremely tedious to perform, 
so you will make use of Millikan’s own data.   

 
The essentials of the experiment are given here.  A small spherical drop of oil of radius r is given an 

electric charge q (by either adding or removing some small number of electrons through exposure to 
a radio-active source) and then allowed to fall through air while between two charged metal plates.  
Since the drop is so small, it achieves its terminal velocity (due to drag from the air) in a very short 
time.  As may have been discussed in Physics 1, the magnitude of the drag force D acting on the drop 
moving at speed v is given by a ‘corrected’ Stokes’s Law:1 

 

D =  
6πμr

1 +
b
Pr

 v       (Eq. 1) 

 
where μ is the viscosity of the air, P is atmospheric pressure, and b = 8.2×10-3 Pa m.  The other 
possible external forces include the weight W of the drop, a buoyant force B on the drop due to the 
air, and an electric force FE: 

W = gm = g
4π

3
 rଷ ρ୍  

B = g
4π

3
 rଷ ρ୍ୖ 

F = qE =
q∆V

d
 

 
where ρOIL is the density of the oil, ρAIR is the density of the air, q is the charge on 
the drop, and ΔV and d are the potential difference and physical separation 
between the metal plates.  A particular drop is chosen and viewed through a 
microscope.  With the electric field off, the drop falls distance y in time tF at 
constant speed vF = y/tF.  Making use of Newton’s Second Law, we then have that 

 
Σ F୧ =  +B − W + D = ma = 0 

 

                                                      
1 Pasco manual 012-13093D p2. 

Figure 1 - Forces on a 
falling drop (left) and 

on a rising drop (right) 
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g
4π

3
 rଷ ρ୍ୖ −  g

4π

3
 rଷ ρ୍ +  6πμr ቌ

1

1 +
b
Pr

ቍ
y

t
= 0    (Eq. 2) . 

 
Unfortunately, the viscosity requires a correction factor because the drops are smaller than Re-arrange 

Eq. (2) to get the radius r; we need to do this because there is no easy way to measure r. 
 

g
4π

3
 rଷ (ρ୍ − ρ୍ୖ) =  6πμr ቌ

1

1 +
b
Pr

ቍ
y

t
 

 

g
2

3
 rଶ (ρ୍ − ρ୍ୖ) =  3μ ቌ

1

1 +
b
Pr

ቍ
y

t
 

 

rଶ ൬1 +
b

Pr
൰  =  

9μy

2g t (ρ୍ − ρ୍ୖ)
 

 

rଶ +
b

P
r −  

9μy

2g t (ρ୍ − ρ୍ୖ)
= 0 

 
Solving the quadratic equation: 
 

r =  ඨ൬
b

2P
൰

ଶ

+
9μy

2g t (ρ୍ − ρ୍ୖ)
 −

b

2P
   . 

 
Then, the electric field is turned on and the same drop is watched while it rises distance y in time tR at 

constant speed vR = y/tR.  Newton’s Second Law now looks like this: 
 

Σ F୧ =  +B − W − D୰ + F = ma = 0    (Eq. 3) 
 

𝑔
4𝜋

3
 𝑟ଷ 𝜌ூோ −  𝑔

4𝜋

3
 𝑟ଷ 𝜌ைூ −  6πμr ቌ

1

1 +
b
Pr

ቍ
y

tୖ
 +  

qΔV

d
 = 0   

 
We can eliminate the drag function by combining Eq. 3 with Eq. 2: 
 

g
4π

3
 rଷ (ρ୍ − ρ୍ୖ)t =  6πμr ቌ

1

1 +
b
Pr

ቍ y     

 
Substitute: 
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−g
4π

3
 rଷ (ρ୍ − ρ୍ୖ) −  g

4π

3
 rଷ (ρ୍ − ρ୍ୖ)

t

tୖ
 +  

qΔV

d
 = 0   

 

q =
4πd

3ΔV
 rଷ g(ρ୍ − ρ୍ୖ) ൬1 +

t

tୖ
൰    

 

q =
4π

3
 ቌඨ൬

b

2P
൰

ଶ

+
9μy

2g t (ρ୍ − ρ୍ୖ)
 −

b

2P
ቍ

ଷ

 g(ρ୍ − ρ୍ୖ) ൬1 +
t

tୖ
൰

d

ΔV
    (Eq. 4)  

 
 

OK, then.  Note that only the last two terms will change from trial to trial, so long as the temperature 
is constant. 

 
Here are some values you will need: 
 

Plate separation, d 1.60 x10-2 m 
Distance to fall or rise, y 1.010 x10-2 m 
Density of oil at 25oC, ρOIL 896.0 kg/m3 
Density of air at 25oC, ρAIR 1.184 kg/m3 
Viscosity of air at 25oC, µ 
Atmospheric Pressure 
Gravitational Field Strength 

1.862 x10-5 Ns/m2 

1.01×105 Pa 
9.8017 N/kg 

 
Procedure 
 
Your instructor will assist you in setting up the apparatus.  Once you have found a suitable oil drop, use 

the hand switch to apply and disengage the electric field.  Time the drop as it crosses the reticle lines.  
Choose only either PLUS and OFF or NEGATIVE and OFF.   

 
Program an Excel sheet to calculate from Eq. 4 the charge values for each of the data sets given.  Plot 

the resulting values of the charge to shown the quantization effect, and then estimate the value of 
the fundamental charge. 
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Lab 503a – Millikan Oil Drop Experiment (dry) 
 

OBJECTIVE 
 
To determine the elementary charge of an electron and demonstrate that electric charge is quantized. 
 
META-OBJECTIVE 
 
To provide practice with Excel. 
 
BACKGROUND 
 
The Millikan ‘Oil Drop’ experiment showed that the charge is quantized, that is, it only occurs as an 

integer multiple of some given fundamental value.  The experiment is extremely tedious to perform, 
so you will make use of Millikan’s own data.   

 
The essentials of the experiment are given here.  A small spherical drop of oil of radius r is given an 

electric charge q (by either adding or removing some small number of electrons through exposure to 
a radio-active source) and then allowed to fall through air while between two charged metal plates.  
Since the drop is so small, it achieves its terminal velocity (due to drag from the air) in a very short 
time.  As may have been discussed in Physics 1, the magnitude of the drag force D acting on the drop 
moving at speed v is given by Stokes’s Law: 

 
D =  6πμrv    (Eq. 1) 

 
where μ is the viscosity of the air.  The other possible external forces include the weight W of the 
drop, a buoyant force B on the drop due to the air, and an electric force FE: 

𝑊 = 𝑔𝑚 = 𝑔
4𝜋

3
 𝑟ଷ 𝜌ைூ  

𝐵 = 𝑔
4𝜋

3
 𝑟ଷ 𝜌ூோ 

𝐹ா = 𝑞𝐸 =
𝑞∆V

𝑑
 

 
where ρOIL is the density of the oil, ρAIR is the density of the air, q is the charge on 
the drop, and ΔV and d are the potential difference and physical separation 
between the metal plates.  A particular drop is chosen and viewed through a 
microscope.  With the electric field off, the drop falls distance y in time tF at 
constant speed vF = y/tF.  Making use of Newton’s Second Law, we then have that 

 
Σ 𝐹 =  +𝐵 − 𝑊 + 𝐷 = 𝑚𝑎 = 0 

 

𝑔
4𝜋

3
 𝑟ଷ 𝜌ூோ −  𝑔

4𝜋

3
 𝑟ଷ 𝜌ைூ +  6πμr

y

t
= 0    (Eq. 2) 

 

Figure 1 - Forces on a 
falling drop (left) and 

on a rising drop (right) 
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Re-arrange Eq. (2) to get the radius r; we need to do this because there is no easy way to measure r: 

𝑟 =  ඨ
9𝜇𝑦

2𝑡ி  𝑔 (𝜌ைூ −  𝜌ூோ)
 

 
Then, the electric field is turned on and the same drop is watched while it rises distance y in time tR at 

constant speed vR = y/tR.  Newton’s Second Law now looks like this: 
 

Σ 𝐹 =  +𝐵 − 𝑊 − 𝐷 + 𝐹ா = 𝑚𝑎 = 0 
 

𝑔
4𝜋

3
 𝑟ଷ 𝜌ூோ −  𝑔

4𝜋

3
 𝑟ଷ 𝜌ைூ −  6πμr

y

tୖ
 +  

qΔV

d
 = 0   

 
Now, substitute the expression for r above into Eq. (3) and solve for q: 

 

𝑞 = 18𝜋𝑑 ቀ
ఓయ௬య

ଶ(ఘೀಽିఘಲೃ)
ቁ

భ

మ
 

൭
௧ೃା௧ಷ

௧ೃ ௧ಷ

య
మ

൱
ଵ


      (Eq. 3) 

 
Note that only the last two terms will change from trial to trial, so long as the temperature is 
constant. 

 
Here are some values you will need: 
 

Plate separation, d 1.60 x10-2 m 
Distance to fall or rise, y 1.010 x10-2 m 
Density of oil at 25oC, ρOIL 896.0 kg/m3 
Density of air at 25oC, ρAIR 1.184 kg/m3 
Viscosity of air at 25oC, µ 1.862 x10-5 Ns/m2 

 
Program an Excel sheet to calculate from Eq. 3 the charge values for each of the data sets given.  Plot 

the resulting values of the charge to shown the quantization effect, and then estimate the value of 
the fundamental charge. 
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Lab 504 – Microwave Simulation of X-Ray Diffraction 
OBJECTIVE 
 
To determine the lattice spacing of a simulated crystal. 
 
BACKGROUND 
 
X-Ray diffraction is a powerful analytic technique that gives insight into crystalline structure, atomic 

spacing, and the determination of the masses of atoms.  The structure of DNA was determined 
primarily on the basis of X-Ray diffraction measurements. 

 
X-Rays are typically produced in a vacuum tube by accelerating 

electrons to high velocities (in a manner similar to that in a 
cathode ray tube) toward a metal target.  As the electrons 
impact on the metal, they must decelerate and, as was 
discussed in Physics II, they therefor emit electromagnetic 
radiation of high energy called Bremsstrahlung (braking 
radiation).  If enough energy is present, these electrons can 
also knock other electrons in the metal target out of their 
atoms, at which point a third electron already in the atom 
will fall to replace the removed one, thus emitting X-Rays 
with energies (or wavelengths) characteristic to the metal 
of the target.  Figure 1 shows a schematic diagram of the 
output of such a tube.  In this example, the Kα lines corresponds to an electron falling from the n=2 
orbit to the n=1 orbit, Kβ corresponds to the n=3 to n=1 transition.  Use of suitable absorption filters 
will reduce the output of the tube to essentially one emission line, such as the Kα.  For a copper 
target, the wavelength of the Kα line is 1.54Å. 

 
X-Rays can be detected by a number of means: fluorescent screens, film, and various types of solid-state 

counters. 
 
Crystals come in one of fourteen basic arrangements; we will discuss only the simple cubic lattice (Figure 

2).  Consider a cubic cell of side length a that has one atom at each of the eight corners (or more 
correctly, an eighth of an atom at each corner, since each atom is at the corners of eight adjacent 
cells).      

Figure 1 - Bremsstrahlung and characteristic 
emission lines 
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Figure 2 - The simple cubic lattice structure  

When X-Rays are incident on these crystals, the rays are diffracted, much as visible light is diffracted 
by a grating; each atom becomes a new source of radiation.  In some directions, the emitted X-Rays 
will interfere constructively and a bright beam will emerge from the crystal.  In other directions, they 
will interfere destructively. 

 
Consider two planes of atoms in the crystal that are separated by 

distance d (Figure 3).  In class, we discussed how the first 
requirement for constructive interference suggests that the 
incoming and outgoing angles theta should be equal.  In Figure 
3, we see a 2-d schematic of a crystal with the diffraction planes 
running parallel to one set of sides of the cubic cell.  X-Rays 
incident from the left are assumed to be in phase with each 
other.  In order to get a bright ‘reflection’ from the two planes, 
the rays at the right must also be in phase.  The lower beam travels a longer distance than the upper 
beam does, specifically, 2L = 2 d sinθ.  In order for the beams to remain in phase, 2L must equal an 
integer number of wavelengths, so 

 
2 d sinθ = mλ,   (m a positive integer) 

 
Of course, the same relationship must hold for any two adjacent planes. 

 
To confuse matters a bit, realize that there are a number of different planes that could cause this 

interference effect, each with its own plane spacing, d.  Figure 4 shows two of these ‘planes’ for a 

Figure 3 - Constructive interference 
for the (100) plane. 
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two dimensional lattice.  Planes are 
described using Miller indices, each set of 
(h k l) indicating a vector perpendicular to 
the plane of interest.  For example, the 
black plane in the top of Figure 4 is the 
(100) plane, in the lower, the red is the 
(110) plane. The lattice parameter a is 
the same in each diagram.  The spacing d 
between adjacent planes of a given 
orientation (h, k , l) in a cubic cell of side 
length a is given by: 

 

𝑑 =  
𝑎

√ℎଶ + 𝑘ଶ + 𝑙ଶ
 

 
 Combining the relationships above, we 

see that interference maximums should 
appear when  

 

𝑠𝑖𝑛𝜃 =  
𝑚𝜆

2

√ℎଶ + 𝑘ଶ + 𝑙ଶ

𝑎
 

 
The apparatus is shown schematically in Figure 5.The source of 

X-Rays is shown on the left and is usually fixed.  The sample 
itself is mounted on a rotating stage so that the incident 
angle θ of the X-Rays can be varied.  The detector is 
mounted on a goniometer that swings though twice the 
angle of rotation of the sample; this is to keep the detection 
angle equal to the incident angle.  As a result, the data are 
recorded as a function of 2θ, rather than θ. 

 
In this simulated experiment, you will use micro-waves of 

wavelength 2.86 cm.  The crystal will be replaced by a regular three-dimensional arrangement of ball 
bearings embedded in Styrofoam.  With these data, you will determine the ‘lattice parameter,’ a. 

 
PROCEDURE 
 

1) Orient the “crystal” such that the (110) plane is examined.  Place the cube very carefully such 
that it is at a 45o angle from the 0o marking on the rotating table. 

Figure 5 

Figure 4 - Some ‘planes’ in a two dimensional lattice. 

Figure 4 
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2) For angles between 0o and 60o, measure the diffracted beam in one degree intervals.  Plot a graph 

and look for diffraction peaks.  Calculate the lattice parameter, a.  Compare to a directly 
measured value with a percent difference. 
 

3) *Repeat for the (100) orientation.  Using the actual measured lattice parameter, identify each 
peak. 
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Lab 505 – The Compton Effect (dry) 
 
OBJECTIVE: 
 
To verify the result derived by Compton, thereby confirming that photons behave as particles 

and have momentum. 
 
META-OBJECTIVE 
 
To learn about curve fitting. 
 
BACKGROUND 
 
Even in the classical picture of light, it is well-known that electro-magnetic waves carry 

momentum.  The Poynting vector S is given by 

𝑺 =  
1

𝜇
 𝑬 × 𝑩 

and the radiation pressure is given by  

𝑃ோௗ =
< 𝑺 >

𝑐
 

 According to J.J. Thomson, these waves should be scattered from particles such as electrons 
in a classical manner by causing electrons to oscillate at the frequency of the light, thus re-
radiating the light at the same frequency as that as which it was absorbed.  Compton, on the 
other hand, assumed that the X-Rays behave as relativistic particles (photons) that collide 
elastically with the electrons, much as two pool balls might collide.  The scattered photon 
transfers energy to the electron, and is thereby shifted in wavelength by an amount that 
depends on the final direction of the X-Ray.  A moderately long derivation (done elsewhere) 
results in this relationship: 

 

𝜆ௌ௧௧ௗ =  𝜆ூௗ௧ +  
ℎ

𝑚𝑐
 (1 − 𝑐𝑜𝑠𝜑) 

 
 where me is the rest mass of the electron and φ is the scattering angle, the angle between 

the initial and final paths of the X-Ray. 
 
In a separate paper, Compton scattered X-Rays from the Kα line of a molybdenum target 

(wavelength λIncident = 0.711Å) from a graphite (carbon) target.  Scattered X-Rays were 
measured at 45o, 90o, and 135o from the direction of the incident rays.  The wavelengths of 
the scattered rays were measured by diffracting them from a calcite crystal (rhombohedral 
structure, distance between planes d = 3.036Å).  The results are presented in the worksheets 
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at the end of this lab (data are also in the PHYS III Excel worksheet).1  It should be clear that 
there are two peaks, one that shifts and one that does not.  The shifting peak corresponds to 
Compton scattering from the outer electrons of the carbon atoms, while the unshifted peak 
corresponds to ‘classical’ scattering (with no wavelength change) from the more tightly bound 
inner electrons of the atoms. 

 
PROCEDURE 
 

1) Fit the data in each graph (45o, 90o, and 135o) to a double Gaussian curve.2  Determine 
the central angle for each peak.  You will use either data in an Excel spreadsheet or you 
will use a set of worksheets, depending on your instructor’s wishes. 
 

2) Using your knowledge of X-Ray diffraction, determine the wavelength corresponding to 
the center of each shifted peak. 

 
3) Plot your data is such a way as to obtain a straight line.  Comment on how well these data 

support Compton’s theoretical prediction.  What is the slope of your line, and how well 
does it compare to the theoretical value?  Compute a percent difference. 
 

  

                                                      
1 These data were taken from Compton’s original paper and transcribed by Mr Russell Scott.  Compton, Arthur H., ‘The 
Spectrum of Scattered X-Rays,’ Phys. Rev. 22 5 p409 (1923). 
2 Your instructor will indicate the method to use for this; see the Appendix to this exercise for a description of each. 
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WORKSHEETS FOR COMPTON EFFECT ANALYSIS 
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Data for these worksheets were adapted by Russell Scott from: 
 

Compton, Phys. Rev. 22, 411 (1923).  
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APPENDIX 
 
The Gaussian curve is just one of many we could use 

to fit the data points, but it is fairly easy to analyze.   
 

The mathematical formula for such a curve is 
 

𝑦(𝑥) = 𝐴 𝑒
ష(ೣషೣ)మ

ೢమ  , 
 

where A is the maximum value of the curve, xo is 
the location of the maximum, and w is related to 
the width of the curve.  Often, two Gaussian curves 
overlap, but we can only see the sum of the two, 
as in the figure below. We would like to be able to deconvolute the two curves, so that they 
can be analyzed independently.  For this exercise, we are interested only in the peaks of the 
two curves, i.e., the double angle of the diffraction maximum.   

 
Your instructor will ask you to find these maximums 
in one of two ways.  The first method is to make 
use of the worksheets included with this exercise 
and draw by hand the gaussian curves. The 
location of the peak can then be estimated by eye.  
The second method makes use of a feature in 
Excel called Solver.  Open the Excel workbook 
Compton Data.xlxs.  The same data as in the 
worksheets appear in each of four spreadsheets. 
 
Start with the 0o worksheet.  Theoretically, there is 

only one curve to fit here.  A gaussian curve is already programmed into the sheet, but you can 
change the shape by adjusting the height, center double angle, and width parameters.  The R2 
factor is the same one you’re familiar with from fitting a line to data.  Try to guess vaules of the 
parameters so as to maximize the value of R2.  Record the center double angle value. 
 
Move on to the 135o worksheet.  Here, there are two gaussian curves already calculated.  You 
must adjust six parameters to maximize the fit to the data, and then record the center double 
angles for each.  Try your best; we’ll come back to these data later. 
 
Go to the 90o worksheet.  Once again, the calculations have been done for you.  The parameters 
to fit two gaussian curves to the data and the resulting R2 value are near the top of the sheet.  
Excel’s Solver is able to adjust a number of parameters in order to optimize a particular condition.  
Enter what you think are reasonable guesses for the six parameters.  Click the DATA tab, then 
Solver.  In the Solver box, enter the location of the cell containing the R2 value, and click the 
MAX button.  While holding down the CTRL key, click the cells containing the guessed 
parameters, then hit the SOLVE button.  Solver’s optimal values will appear in the cells, and the 
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R2 value will update.  If the fit line does not match the data well (this does ocassionally happen), 
try guessing other initial values and repeat. 
 
Return to the 0o and 135o worksheets and unlock them.  Repeat the procedure above and optain 
best estimates of the center double angles. 
 
Move on to the 45o worksheet.  Here, you are expected to program the sheet yourself.  The 
formula for R2 is 
 

𝑅ଶ = 1 −  
∑ (𝑦 − 𝑦ா)ଶ



∑ (𝑦 − 𝑌)
ଶ


 , 

 
where yi is the X-ray count for the i-th double angle, yAVE is the average of all count values, and 
Yi is the fitting function’s value for the i-th double angle.   
 

1) Calculate the average of all count values given in the worksheet. 
2) Using the values in the six parameter cells near the top of the sheet, program in a fit curve 

using this formula: 
 

𝑌 = 𝐻ଵ𝑒
ష(మഇషమഇభ)మ

ೢభ
మ

+  𝐻ଶ𝑒
ష(మഇషమഇమ)మ

ೢమ
మ

 

where the Hs are the respective heights, the ws the respective widths, and the 2θ is 
the respective center double angles. 
 

3) Program in the R2 function as given above. 
 

4)  Run Solver again to get a best fit and record the center double angle.  
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Lab 506 - The Photo-electric Effect 

 
OBJECTIVE 
 
To measure the work function of the metal in the Pasco tube; to determine a value for Planck’s 

constant, h. 
 
BACKGROUND 
 
In Einstein’s model of light, energy is carried by particles called photons, each with an energy 

dependent on the frequency of the light: 
 

EPHOTON = hf = hc/λ 
 
 When one of these particles is incident on a metal surface, it is absorbed by an electron in 

the metal, which acquires the photon’s energy.  If 
enough energy is transferred, the electron will 
leave the metal with kinetic energy, K.  However, 
in order to penetrate the surface barrier of the 
metal, a minimum amount of energy is necessary, 
now called the work function, φ. 

 
 Since there may be losses of energy during the 

process, we usually write that 
 

KMAX = hc/λMIN – φMIN   (Eq. 1) 

 
The kinetic energy of the electrons emitted into vacuum 

can be measured by placing a collector electrode 
near to the metal (now called a photocathode).  
Connect a source of potential difference, as shown.  
If the collector plate is held at the same potential as 
the photocathode, electrons of sufficient energy will 
be emitted in random directions, as shown.  If the 
collector is made positive, the electrons will be attracted to the plate; if it is positive enough, 
virtually all of the ejected electrons will be collected.  In this situation, the current can be 
monitored as a function of light intensity.1  If instead the collector plate is made negative, it 
will repel the ejected electrons; only electrons whose kinetic energy is greater than qΔV will 
cross the gap.  By measuring the stopping potential, the potential difference at which the 

                                                      
1 The Pasco and Cenco apparatus are not capable of making this measurement. 
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current goes to zero, we can find the maximum kinetic energy, and from that the work 
function.  By making these measurements at a number of light wavelengths, we can fit the 
data to Eq 1 and determine a value for h. 

 
PROCEDURE 
 
For the CENCO apparatus, you can control only the reverse bias of the tube.  Attach a zeroed 

galvanometer to the current output on the PEE box.  Adjust the height of the mercury source 
so as to be opposite the window to the phototube.   Rotate a filter into place and turn on the 
lamp.  Turn the room lights off and if possible, cover the apparatus with a black cloth.  Adjust 
the reverse voltage until the current goes to zero; the voltage at this point is the stopping 
potential for that wavelength.  The built-in filters are long-pass filters each with a cutoff just 
to the short side of a bright mercury line.  Determine which mercury line each filter 
corresponds to.  

 
The PASCO apparatus is designed a bit differently than the apparatus described above.  The 

photo-tube acts like a capacitor that gets charged by the transfer of electrons from one plate 
to the other.  Like for any other capacitor, the potential difference between the plates 
increases as more change is transferred. This potential difference is monitored using a high 
impedance operational amplifier as a source follower.  When the potential difference across 
the tube reaches the stopping potential, charging stops (no more charge can cross the gap 
between plates); the stopping potential is then read directly from the op amp’s output with a 
voltmeter.  The filters are labelled with the  

 
Determine the bright emission lines of the mercury vapor lamp.  Match each of them if possible 

to one of the transmission filters.  Plot your data is such a way as to obtain a straight line.  
Determine the values of the work function and Planck’s constant.  Compare your values to 
the accepted values: φ = 1.41 eV and h = 4.14x10-15 eV-s. 
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Lab 14 - The Franck – Hertz Experiment 
 
OBJECTIVE: 
 
To observe evidence that atoms (such as neon and mercury) have discrete energy levels. 
 
BACKGROUND 
 
One year after Bohr’s model of the atom explained the optical spectrum of hydrogen as energy 

released by electrons as they dropped from one discrete energy level to another within the 
atom, the Franck-Hertz experiment demonstrated by independent means the existence of 
these discrete levels in mercury gas and the correspondence with observed emission lines. 

 
Figure 1 shows the basic apparatus.  The grid on the left is 

present only in the neon tube, not in the mercury tube.  
The heater on the left boils electrons off of the attached 
wire, which fly into the tube.  They are accelerated by 
the potential difference VG; some pass through the grid 
on the right and are decelerated by a reverse bias VT.  If 
the electrons make it to the plate on the right, they are 
measured as a current by the ammeter.   

 
The basic concept is that electrons that have a kinetic energy less than 4.9 eV (this corresponds 

to the transition from ground state to first excited level) do not interact with the mercury atoms, 
since there is not enough energy to raise an electron.  However, if VG is large enough, the 
electrons near the plate do have more than 4.9 eV of energy, and a collision with a mercury 
atom results in a transfer of energy to the atom.  Two things happen: as the atom returns to 
the ground state, it emits a characteristic wavelength of light with energy 4.9 eV (= 2530 A), 
and the electron starts to accelerate again.  If VT is set to prevent slow moving electrons from 
hitting the end plate, the current will drop.  Raising VG will accelerate the electrons more 
quickly, so that after one collision, they still have enough energy to make it to the plate.  If VG 
is high enough, the electrons may even gain enough energy to have a second collision with 
a different atom, thus lowering the current again.  So, what should be observed is a I-V curve 
with minimums separated by about 4.9 Volts. 

 
The theory for the neon tube is the same, except that the critical voltage difference is about 19 

Volts and the transition corresponds to a rise from the 2s to the 3p level.  The visible emission 
corresponds however to a drop from 3p to 3s. 

 
PROCEDURE 
 

Figure 1 - Schematic of Franck-Hertz tube. 
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1) Turn the control box off.  Turn all knobs on the control box to the left.  Connect the tube 
to the control box as directed.  Connect up the oscilloscope in XY mode. 

 
2) Set to Ramp and set filament voltage VH (Heizung) to about 8 volts.  Wait about 2 minutes 

for the cathode to warm up. 
 

3) Turn the accelerating voltage (VG) to about 70 volts for neon.  Observe the I-V curve on 
the scope.  You may need to increase the heater voltage and adjust the reverse bias 
(Gegenspannung) to optimize the curve. 
 

4) Measure the spacings between the minimums of the I-V curve.  Average and compare to 
the accepted value (4.9V for Hg, 19V for Ne).  Remember that the voltage displayed on 
the oscilloscope is one-tenth of the actual VG. 
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Lab 508 – Diffraction of Electrons 
 
OBJECTIVE 
 
To verify the wave-like nature of small particles. 
 
BACKGROUND 
 
In 1924, De Broglie postulated that, if light can be thought of as a particle, perhaps particles can 

be thought of as waves.  For photons, the momentum is given by  

𝑝 =  
ℎ

𝜆
 , 

 so then we might expect the wavelength of a particle to be given by 

𝜆ௗ  =  
ℎ

𝑝
 . 

 Several years later, Davisson and Germer performed an experiment analogous to X-ray 
diffraction, in which electrons were incident on a crystalline target.  The resulting angular 
dependence of the scattering matched the pattern seen for X-Rays, thereby confirming the 
wave nature of electrons. 

 
In a vacuum tube, non-relativistic electrons are accelerated across a potential difference ΔV, 

thereby acquiring kinetic energy  

K = e ΔV =  
pଶ

2mୣ
 , 

 resulting in a theoretical De Broglie wavelength of 
 

λୢ =  
h

ඥ2mୣe ΔV
 .    (Eq. 1) 

 
Making use of the Bragg diffraction criterion for X-Rays,  we see that waves scattered at 
angle theta from a set of parallel planes of spacing d will have a wavelength of  
 

λ =
2d sinθ

m
 ,    (Eq. 2) 

 
where m is the order of the diffraction maximum and d is the plane spacing.  The material 
used in this experiment is graphite, with plane spacings d10 = 2.13Å (inner ring) and d11 = 
1.23 Å (outer ring). 
 
Since the crystal target is poly-crystalline, the scattered electrons strike the phosphorescent 
screen in a ring pattern and the scattering angles can be measured. 
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There are two types of tubes available for this lab 

experiment.  The first one has a flat-ish screen 
for which the angle θ can be determined fairly 
easily by  

𝜃 =  
𝑠

4𝑅
 

 
where s is the arc-length corresponding to the 
diameter of the diffraction ring measured along 
the screen on the screen and R is the distance from the sample to the screen.   
 

For the round tubes, the situation is more complicated.  Let s be 
the diameter of the ring as measured along the curved surface 
of the tube.  Do not measure the diameter directly and try to use 
the relationship above; different diameter rings will be different 
distances L from the sample.  The angle phi is given by  
 

𝜙 =  
𝑠

𝑅
 , 

 
where R is the radius of the tube.  Let L be the distance from the sample to the screen.  Then, 
a short derivation indicates that  
 

𝜃 =  
1

2
 𝑎𝑟𝑐𝑠𝑖𝑛 

⎝

⎛
sin (

𝜙
2

)

ටቀcos ቀ
𝜙
2

ቁ +
𝐿 − 𝑅

𝑅
ቁ

ଶ

+ 𝑠𝑖𝑛ଶ(
𝜙
2

)⎠

⎞ . 

 
PROCEDURE 
 

1) Make certain that the High Voltage supply is turned off and that the HV control is set 
all the way CCW.  Connect the high voltage and cathode heater power supplies to the 
tube as directed.   

 
2) Turn the heater supply on and let it run for at least a minute so that electrons will be 

thermally ejected from the cathode. 
 

3) Turn the HV supply on and slowly increase the accelerating voltage until diffraction 
rings are clearly visible. 
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4) Measure the diameters of the rings in a manner appropriate for your tube shape and 
record the corresponding accelerating potential.  You should measure the diameters 
on the inside edges of the rings; this is where the most energetic electrons should 
impact the screen. 

 
5) Adjust the potential to several other values (over as large a range as possible) and 

measure the corresponding ring diameters. 
 

6) Calculate the theoretical De Broglie wavelengths of the incident electrons from Eq. 1.  
Calculate the measured De Broglie wavelengths of the diffracted electrons from Eq. 2.  
Plot these data in such a way as to generate a straight line.  Comment on the 
agreement between theory and your experimental results. 
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Lab 509 – Particle in a Box: Quantum Dots 
 
OBJECTIVE 
 
To verify the relations derived for a particle in a box with impenetrable walls. 
 
BACKGROUND 
 
A quantum dot is a small particle or inclusion within a larger piece of material (approximately 
10-50 times the diameter of an atom) in which small particles such as electrons may be 
confined.  In class, we determined that the bound energy levels of an electron in a one 
dimensional square potential well with impenetrable walls is 
 

𝐸 =  
𝑛ଶ𝜋ଶℏଶ

2𝑚𝐿ଶ
 

 
A similar, though much more difficult, derivation for a particle in a spherical container of radius 
R results in a similar relationship: 
 

𝐸 =  
𝑛ଶ𝜋ଶℏଶ

2𝑚
∗𝑅ଶ

 

 
In the present situation, however, additional terms and corrections must be introduced.   
 
First, consider that almost all of the electrons in a 
semi-conductor are bound to atoms; these electrons 
are said to be in the material’s valence band.  It 
requires a certain amount of energy to lift an electron 
out of the atom so that it may move around freely 
within the material (in the conduction band).  The 
minimum amount of energy necessary is referred to 
as the band gap of the material, EGap.  For this 
particular material, EGap is 1.344 eV at room 
temperature.  Often, a diagram similar to the one at right is drawn, with energy on the vertical 
axis and position (in 1d only) on the horizontal axis.  Now, when an electron is removed from 
its usual position, it leaves behind an empty space.  Many electrons can move around in the 
valence band, but it is much easier to follow the motion of the empty space than to follow the 
positions of the many electrons around that space.  As an analogy, consider a bubble in a 
beer glass.  The bubble is actually a region in which there is no beer; rather than describe 
the complicated motion of the beer moving downward in the glass, it is much easier to 
describe the motion of the bubble upward.   In the same way, we define a new particle, the 
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hole, as a location at which we expect to see an electron, but don’t.  Note that the energy for 
a hole increases toward the bottom of the figure, since a hole moving downward actually 
corresponds to real electrons moving upward to higher energies.   
 
Once enough energy is transferred to the electron, it will jump to the conduction band, then 
fall into the lowest stationary state allowed in the ‘box’ according to the equation above.  The 
hole, also, will ‘fall’ into its lowest stationary state: 
 

𝐸 =  
𝑛ଶ𝜋ଶℏଶ

2𝑚
∗ 𝑅ଶ

 . 

 
Other corrections are necessary.  For example, the electron in the box is not moving through 
vacuum but rather through a semi-conductor material.  As a result, the effective mass (in this 
particular material, me* = 7.29x10-32 kg) must be used.  Similarly, the hole also has an 
effective mass: in this material, mh* = 5.47x10-31 kg.  Note that the effective masses and the 
bandgap energy are determined from measurements in a larger bulk sample, where the 
quantum effect being investigated is not seen. 
 
The last step is that the electron falls out of the conduction band and recombines with the 
hole, emitting a characteristic energy photon: 
 

𝐸ଵ,ଵ =  
𝜋ଶℏଶ

2𝑚
∗𝑅ଶ

+  
𝜋ଶℏଶ

2𝑚
∗ 𝑅ଶ

+  𝐸        (𝐸𝑞. 1)  

 
You will verify this relationship by 
exciting the production of an electron-
hole pair with ultraviolet light (EPhoton = 
3.07 eV using the keychain source or 
3.40 eV using the lamp).  This energy 
lifts the electron out of the hole into the conduction band.  Then both particles fall into their 
ground states.  After some time, the electron falls back into the hole in the valence band, 
emitting its characteristic energy photon (note that there is some spread in the energy 
released).    
 
The four samples of quantum dot solutions are identical except for the size of the dots.  
Radiuses given by the manufacturer are 
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Green 2.367 nm 

Yellow 2.534 nm 

Orange 2.718 nm 

Red 2.925 nm 

 
 
PROCEDURE 
 
1) Mount the rack of solution cells so that only one can be observed by the spectrometer. 
2) Excite the material in the cell with a UV light source. 
3) Record the emission spectrum and determine the peak output wavelength. 
4) Calculate the theoretical emission energy using Eq 1. 
5) Calculate the observed emission energy using Eph = hc/λ. 
6) Repeat for the rest of the cells. 
7) Plot your points on a graph in such a way as to obtain a straight line. 
8) Comment on the validity of the theory. 
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Lab 510 – The Emission Spectrum of Hydrogen 
 
OBJECTIVE 
 
To verify the predictions of Bohr’s planetary model with regards to the differences in energy 
levels by measuring the energy radiated during Balmer line transitions. 
 
BACKGROUND 
 
Bohr’s planetary model assumes that electrons can orbit the hydrogen nucleus only with 
certain well defined energies, given by 
 

𝐸 =  −
𝑚𝑒ସ

8ℇ
ଶ𝑛ଶℎଶ

       𝑛 = 1, 2, 3, …. 

 
Photons emitted by electrons changing orbits must have energies given by 
 

𝐸→
=  

𝑚𝑒ସ

8ℇ
ଶℎଶ

 ቆ
1

𝑛
ଶ −  

1

𝑛
ଶቇ = 13.6 𝑒𝑉 ቆ

1

𝑛
ଶ −  

1

𝑛
ଶቇ     𝑛 > 𝑛 

 
Only four such lines are visible to the naked eye.  They are all in the Balmer series (nf = 2) 
and correspond to ni = 3 through 6.  Spectrometers with sensitivity into the UV and near-IR 
can record several others.  The nf = 1 and the rest of the Balmer series are in the UV, while 
all other lines (nf >2) are in the infrared.   
 
Atoms other than hydrogen follow the same behavior, with the nuclear change replaced with 
Ze, so long as there is only one electron: 
 

𝐸→
= 13.6 𝑒𝑉 𝑍ଶ ቆ

1

𝑛
ଶ −  

1

𝑛
ଶቇ     𝑛 > 𝑛 

 
The introduction of even a second electron distorts the energy function of the first enough to 
render this result invalid.  However, atoms with one outer electron follow this relationship 
approximately due to shielding. 
 
PROCEDURE 
 
1) Calculate the wavelengths of the first seven or eight Balmer emission lines of hydrogen. 
2) Use the spectrometer to record the emission spectrum of hydrogen gas.  Identify the 

wavelengths of all lines. 
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3) Try to match each line to one of the predicted emission lines of hydrogen.  Plot your data 
in such a way as to obtain a straight line.  Comment on the validity of the Bohr model. 

4) Try to identify any other lines that may have been recorded.  If you are successful, add 
these to your graph. 

5) *Repeat this experiment with helium.  Predict the emission lines from an ionized atom 
and try to match the observed lines to the theoretical lines.  How valid is the Bohr model 
for helium? 
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Lab 511 – Simulated Radio-active Decay 
 
OBJECTIVE 
 
To study the rates of radio-active nuclear decay through simulation. 
 
BACKGROUND 
 
Spontaneous emission of radiation is fairly common and is the result of the decay or 
disintegration of unstable nuclei.  Three types of radiation can be emitted by such a radio-
active material: alpha (α) particles (helium nuclei comprising two protons and 2 neutrons); 
beta (β) rays (either electrons or positrons); and gamma (γ) rays (high energy photons).  One 
important characteristic of this process is that the probability of decay P of any one nucleus 
in a given time interval dt is proportional to the length of that interval, or 
 

P =  λ 𝑑t. 
 
If there are some number N of nuclei at the beginning of some time interval, then the number 
of nuclei that are expected to decay by the end of the interval, -dN, is 
 

−𝑑N = P N =  λ N 𝑑t. 
 
Re-arranging this relationship leads to the familiar differential equation you encountered in 
PHYS 2: 

𝑑N

𝑑t
= −λ N. 

 
Often, it is stated in textbooks that the rate of nuclear decay in a sample is proportional to 
the number of atoms that are present.  Although this statement is true, it sounds a bit like 
magic and obfuscates the true reason for this behavior, developed from the equations above.  
The solution of this equation is well-known: 
 

N(t) = N୭eି୲ .  
 
The decay parameter λ is often described in terms of a quantity called the half-life, t1/2.  The 
half-life is the amount of time after which only half of the original nuclei are expected to 
remain. 
 

N൫tଵ/ଶ൯ =  
ଵ

ଶ
 N୭ =  N୭eି୲భ/మ 
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1

2
=  eି୲భ/మ 

 

tଵ/ଶ =  
ln2

λ
=

0.693

λ
 

 
After an additional half-life, only half of the half, or one quarter, of the original number will 
remain un-decayed.  After each subsequent half-life has passed, half of the remaining nuclei 
will have decayed. 
 
The activity A of a sample is the rate at which nuclei decay: 
 

A =  −
ௗ

ௗ୲
=  λN୭eି୲. 

 
Generally, this is the quantity that is actually measured. 
 
PROCEDURE 
 
1) You will use special dice as the substitute nuclei in this exercise.  The dice have twelve 

sides, each with an equal probability of appearing face-up when a die is thrown.  If the 
time interval dt is made to correspond to one throw, calculate λ. 
 

2) Starting with 200 dice, roll them, then pick out and count the dice that land with ‘1’ facing 
up.   The number picked out per roll is the activity, A.  Continue to roll, remove, and count 
dice, recording the activity for each roll.  

 
3) Plot the activity v. time.  Determine lambda from the best-fit curve using Excel.  Compare 

this value to that which was calculated from theory.   Alternately, give your data to your 
instructor, who will combine it with that of previous classes. 

 
4) Discuss why the plot of your data does not follow exactly the theoretical behavior 

expected. 


