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Section 10 – Quantum Effects Seen Macroscopically 

 

“… het groote geschiedt niet bij impulsie alleen en is een aaneenschakeling van kleine dingen die 
tot elkaar gebragt zijn.” 

 
Vincent Van Gogh – letter to his brother Theo, 22 Oct 1882 

 
 

We often tend to think of these quantum effects as being seen only in small systems, such as atoms.  
There are a number of macroscopic effects whose behaviors are controlled by underlying quantum 
effects.  In this section, we’ll discuss several of these. 

Molar Heat Capacity 

Previously, we discussed the molar heat capacities of an ideal gas and of a crystalline solid.  Solids 
follow the Dulong-Petit law: 

c୑ = 3RT  . 

Gases are a bit more complicated.  For monatomic gases, which can translate only, we showed that  

c୑୚ =  
3

2
RT  , 

but that diatomic gases, which we model as a spring with a mass at each end, are either  

c୑୚ =  
5

2
RT  or c୑୚ =  

7

2
RT  , 

depending on whether the molecules rotate only, or rotate and vibrate.  However, one might well 
wonder why a diatomic molecule wouldn’t vibrate.   

Let’s consider some data for diatomic hydrogen gas.1   

We can see that at low temperatures, the molecule acts as if it translates only and doesn’t rotate or 
vibrate.  At intermediate temperatures, it translates and rotates, but doesn’t vibrate.  It appears that 
at quite high temperatures, H2 would also vibrate; unfortunately for us, the molecule dissociates at 
these temperatures.  This effect of excluding certain motions because of quantum behaviors is 
called ‘freezing out’ the motion.  Section 8 showed us that there are restrictions on several on these 
motions; angular momentum and energy are required to have minimum values larger than zero. 
When the energy available to our particle is less than the minimum allowed energy, that motion 

                                                           
1 Insert TWO references. 
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should cease.  Let’s run the numbers for 
some rough estimates.  Keep in mind of 
course that some particles have more, 
and others less, energy than the average 
value. 

We have shown previously that the 
average energy of translation of a gas 
molecule is given by 

K୘୰ୟ୬ୱ୪ୟ୲୧୭୬ =  
3

2
k୆T  , 

where T is the absolute temperature of 
the gas.  The lowest allowed 
translational energy allowed for a 
particle trapped in a cubic container is, 
from Section 8, 

Eଵ = 3 
hଶ

8maଶ
 .    

where we’ve set n = 1 and multiplied by three to account for motion in all three directions.  Setting 
these equal, we see that the temperature below which there is not enough energy to support 
translational motion is approximately 

T =  
2hଶ

8maଶk୆
. 

EXAMPLE 10-1 

Estimate the temperature below which we would expect ‘no motion’ for H2 in a 1 cm cubic 
container. 

 

T =  
2hଶ

8maଶk୆
=  

2(6.6310ିଷସ)ଶ

8(21.6710ିଶ଻)(0.01ଶ)(1.3810ିଶଷ)
≈  10ିଵସ Kelvins  . 

 

Well, since the lowest temperature achieved by humans is about 10-7 Kelvins, the translational 
movement will not, under normal circumstances, be frozen out.  

Next, let’s consider rotational motion.  We’ve shown that for a rotating object, the lowest non-zero 
angular momentum value is given by  

𝐿௭ ଵ =  ħ  . 
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The corresponding energy of rotation about a specific axis for a diatomic hydrogen molecule, 
assuming a simple dumbbell shape of two point masses separated by distance d, is 

𝐾௥ =
𝐿ଶ

2𝐼
=  

ħଶ

2 ቆ2𝑚 ቀ
𝑑
2

ቁ
ଶ

ቇ

    . 

The kinetic energy of rotation around one axis should on average equal 

K୰ =
1

2
k୆T. 

Setting these equal, we find the freeze out temperature to be approximately 

T =  
2ħଶ

k୆mdଶ
  . 

EXAMPLE 10-2 

Estimate the transition temperature to freeze out rotation for H2. 

 

T =  
2ħଶ

k୆mdଶ
 =  

2(1.0510ିଷ )ଶ

(1.3810ିଶଷ)(1.6710ିଶ଻)(7410ିଵଶ)ଶ
=  175 Kelvins. 

 

You may notice in the graph above that about half of the hydrogen’s rotational energy 
contribution disappears when the temperature is about 160K or so. 

Next, let’s estimate the freeze out temperature for vibration.  The lowest energy of vibration of a 
one dimensional harmonic oscillator is2 

Eଵ =  
ħ

2
ඨ

C

m
   , 

where C is the ‘spring constant.’  Since we have two masses vibrating, we’ll cut the spring in two, 
and therefor double the spring constant, and consider just one mass.  The spring constant of an H-
H bond is estimated to be 570 N/m.  So, we’ll set E1 equal to the average energy expected from 
vibration: 

ħ

2
ඨ

𝐶

𝑚
 =  

2

2
𝑘஻𝑇  . 

                                                           
2 The Wilson-Sommerfeld calculation gave us twice this amount, but I’m using the more accurate result we will get 
later in Section 11. 
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We took two halves here because the energy includes both kinetic and potential energy. 

𝑇 =  
ħ

2 𝑘஻

ඨ
𝐶

𝑚
   . 

EXAMPLE 10-3 

Estimate the freeze out temperature for H2 in terms of vibration.  We’ll consider one mass only, 
but then need to double C. 

 

T =  
ħ

2 k୆

ඨ
C

m
=

1.0610ିଷସ

21.3810ିଶଷ
ඨ

2570

1.6710ିଶ଻
=   3200 Kelvins     . 

 

So, for hydrogen, as the temperature cools to several thousand Kelvins, we would expect that the 
vibrational motion contribution to the heat capacity will become negligible, which is roughly 
compatible with the experimental data.  Remember, at these temperatures, the hydrogen molecules 
begin to break up. In any case, we can clearly see the three regions of different behaviors. 

Let’s take a quick look at vibration in some other diatomic molecules: 

Compound Estimated Temperature Observed Temperature at which CV = 6/2 kB
3 

H2 3200 K 1700 K 
HCl 2070 K 1300 K 
F2  400 K 
Cl2 400 K 250K 

 

HOMEWORK 10-1 

Estimate the transition temperature to freeze out vibrational motion in F2.  How does your 
result compare to the value taken from actual data? 

Finally, let’s examine the behavior of a solid.  In Physics Two, we worked out that the average 
energy of an atom in a crystal should be 3kBT, that is, 1/2kBT for each of the kinetic and potential 
energies in each of the three axis directions (the DuLong-Petit law).  Should we not again expect 
that this motion will be affected at low temperatures?   

In three dimensions, the lowest energy of an oscillator is4 

                                                           
3 That is, halfway between 5/2kB and 7/2kB. 
4 Using the ‘correct’ relationship and multiplying by three to account for each direction of motion, x, y, and z. 
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𝐸 =  
ଷ

ଶ
 ħඨ

𝐶

𝑚
  , 

which we’ll set equal to 3kBT to obtain 

𝑇 =  
ħ

2𝑘஻

ඨ
𝐶

𝑚
  . 

Let’s calculate this temperature for a number of metallic crystals.  We’ll need an estimate for the 
‘spring constants’ for each metal.  We can obtain that from the Young’s modulus (see Note One).  
The graph refers to a quantity called the Debye temperature, D.  Its meaning is beyond the scope 
of this course, but we might think of it as a quantity that characterizes the temperature at which 
the molar heat capacity deviates from classical theory.  From theory, the molar heat capacity falls 
to one half of its classical value at about 0.3 D. The graph compares our roughly calculated freeze-
out temperatures for a number of metallic elements with the corresponding Debye temperatures, 
and shows fairly good agreement. The dotted line has slope one and indicates where the two values 
would be equal.  

 

HOMEWORK 10-2 
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The Quantum Hall Effect 

The quantum Hall effect is seen at very low temperatures and very high magnetic fields.  We saw 
in Physics Two that charged particles in a transverse magnetic fields will move in circular orbits 
with a frequency (the cyclotron frequency) of  

ωେ =  
qB

m
 . 

This circular motion can be thought of as comprising two harmonic oscillators moving at right 
angles to one another with the same frequency.  As such, the particle possesses quantized energy 
levels given by 

E୨ =  ቀn +  
ଵ

ଶ
ቁ ℏେ = ቀn +  

ଵ

ଶ
ቁ ℏ

qB

m
  ,     n = 0, 1, 2, 3, …   . 

Note, however, that there is no potential energy involved; that is why the energy levels are half 
what we might expect for the sum of two oscillators.  The allowed energy levels are proportional 
to the applied B-field and are sketched on the graph below. 

If the temperature is very low, we 
expect the vast majority of 
conduction electrons to be in their 
lowest possible energy states.  The 
maximum energy in this situation is 
called the fermi energy, EF; no 
electrons are available for 
conduction above this energy.5  As 
the magnetic field is increased, we 
expect the allowed energy levels to 
become farther and farther apart.  
For sufficiently high B, only the 
lowest energy state is accessible to 
the carriers, and this corresponds to 
a particular conductivity in the 
sample.  In the figure, the six lowest 
allowed energy levels are plotted as 
a function of applied magnetic 
field, B; there are obviously many more levels represented by lines of increasing slope, passing 

                                                           
5 At zero temperature, all of the electrons have energies equal to or below the Fermi energy, and no electrons have 
energy above the Fermi energy. 
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through the origin.  The position of the line representing the fermi energy was chosen as a typical 
value for metals at low temperatures (~4eV).   

As we look at, for example, B = 30T, we see that only the n = 0 state is available to the conduction 
electrons and conductivity is therefor low.  As the magnetic field is decreased to 20T, however, 
the n = 1 state also becomes available, and more electrons are able to move.  As the field continues 
to decrease, more and more levels become available and the resistivity of the material will decrease 
in steps.  The magnetic field strengths at which transitions from one conductivity value to another 
occur are then   

𝐵௡ =  
𝐸ி𝑚

ℏ𝑞
 

1

𝑛 +  ଵ
ଶ

  . 

The graph illustrates the 
theoretical behavior of a 
two-dimensional system 
of electrons.6  As the 
magnetic field is 
reduced, the steps 
become smaller and 
closer together, so that as 
B goes to zero, the 
expected classical 
behavior of the Hall 
resistivity being 
proportional to the 
applied magnetic field is 
observed.  That is, the 
steps come to resemble a 
line. 

We haven’t worked on 
the theory for the values 
of the resistivities, only 
where the transitions 
between them appear, so 
let’s concentrate on that.  
The graph shows 

experimentally 
determined transitional 
B-field values plotted 
against (n + 1/2) -1.  The 

                                                           
6 Tong, David, ‘The Quantum Hall Effect: TFIR Infosys Lectures,’ preprint (2016). 
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data are for a GaAs/AlxGa1-xAs heterostructure at a temperature of 0.008 K.7  The linear 
relationship helps to verify the equation above.  

 

  

                                                           
7 Von Klitzing, Klaus, Nobel Lecture: ‘The Quantized Hall Effect’ (1985). 
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Summary 

We’ve looked at two examples of quantum effects that manifest macroscopically. 


