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Section 11 - Wave Mechanics 

 

“[J]e tâchais de découvrir, dans les bruits … des flots, des mots que les autres hommes 
n’entendaient point, et j’ouvrais l’oreille pour écouter la révélation de leur harmonie…” 

Gustave Flaubert, Novembre 

In the last several sections, we discussed how a particle can be, to some extent, represented by a 
wave.  In the old quantum mechanics, this conceptual link was not a strong one; the De Broglie 
wave was referred to as the pilot wave, a wave that somehow accompanies the particle and guides 
its motion. In this section, we’ll discuss the Schrödinger picture, where the particle is completely 
described as a wave.  To be sure, there were a number of other pictures developed in the 20th 
century, such as the Heisenberg picture, which was eventually shown to be the same as the 
Schrödinger picture in matrix form. 

Operators 

Before we start, let’s talk a little about operators.  You may be familiar with operators from linear 
algebra, but if not, an operator is just an instruction as to what to do with a function.  For example, 
the differentiation operator Dx tells us to take the derivative of a function with respect to x: 

D෡୶ =  
d

dx
 , so D෡୶F =  

dF

dx
 . 

Operators are often distinguished by the addition of a caret over the symbol.  In linear algebra, 
operators are represented by matrices and operate on vectors.  As a simple example, here is an 
operator that will rotate a vector A in the x-y plane by π: 

R෡஠Aሬሬ⃗ = ቂ
−1 0
0 −1

 ቃ ൤
A୶

A୷
൨ =  ൤

−A୶

−A୷
൨ =  − ൤

A୶

A୷
൨ =  −Aሬሬ⃗  . 

Let’s look at another example.  Let’s rotate A CCW by π/2: 

R෡஠
ଶ

 Aሬሬሬ⃗ = ቂ
0 −1
1 0

 ቃ ൤
A୶

A୷
൨ =  ൤

−A୷

A୶
൨ . 

There’s an important difference between these two examples.  In the first, the resulting vector is a 
multiple of the original vector, in this case by -1.  In the second case, there is no number (well, 
certainly no real number) that will multiply the result to give back A.  In such a lucky situation as 
the first, the vector is said to be an eigenvector of the operator, and the multiple factor is an 
eigenvalue of the operator: 

Λ෡ Vሬሬ⃗ =  λVሬሬ⃗  . 

In our discussion, we’ll be using functions instead of vectors, but the idea is the same.  For 
example, 
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D෡୶ e஛୶ =  λ e஛୶ . 

So, the exponential function is an eigenfunction of the differential operator, with eigenvalue λ. 

The Schrödinger Picture 

It is said that one cannot derive the Schrödinger wave equation, but certainly we can make a guess 
based on certain requirements.  

1) The particle is represented by a wave function Ψ(r, t).  The function is continuous and 
single-valued.  Its spatial derivative is also continuous, except if the potential energy goes 
to infinity. See NOTE ONE. 

2) The wave equation should be analogous to the classical mechanical wave equation: 
∂ଶY

∂xଶ
=  

1

vଶ

∂ଶY

∂tଶ
     (written here for 1 − d). 

3) The picture should be consistent with the De Broglie notion, which demonstrated some 
success in the old quantum mechanics.  That is, the particle’s representation as a wave 
should have wavelength λ = p/h and energy E = hf = ωħ. 

4) We interpret the square1 of the wave Ψ2(r, t) as representing the probability that the particle 
is in a given position.  This should make sense in analogy with light waves, in that the light 
intensity is related to the square of the electric field, and represents the probability of a 
given photon landing in a particular spot, for example, on a screen.  The function Ψ2(r, t) 
is called the probability density.  We require that  
 

න Ψଶ(𝐫, t) 𝑑V = 1 , 

that is, the particle must be somewhere. 

5) We require linear solutions.  That is, if Ψ1 and Ψ2 are solutions, then aΨ1 + bΨ2 is also a 
solution. 

6) The model should be consistent with classical energy considerations: ETOTAL = K + U. 
7) If the potential energy is constant, i.e., there are no forces, then momentum and energy are 

conserved. 
 

O.K.  Let’s consider your basic one dimensional wave of frequency f and wavelength λ.  
Remember that the wave vector k = 2π/λ and ω = 2πf.  Also remember that the momentum p = h/λ 
= ħk and E = ωħ.  We’re going to use a complex representation2 of the wave: 
 

Ψ(x, t) = Ae୧(୩୶ି ன୲ା஦), 
 
where phi is the phase angle, which we’ll ignore from here on.  Let’s differentiate with respect to 
x: 

                                                           
1 This is the Born interpretation.  We’ll be more careful about this later. 
2 eix = cos(x) + i sin(x). 
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∂Ψ

∂x
=  ik Ae୧(୩୶ି ன୲) = ik Ψ. 

 
Keeping in mind from our discussion of waves in PHYS I that k = 2π/λ, this looks promising!  
Let’s construct an operator that will return the particle’s momentum; try 
 

pො୶ =  −iℏ
∂

∂x
 , 

so that 
 

pො୶Ψ =  −iℏ
∂Ψ

∂x
= −iℏ(ik Ψ) =  kℏ Ψ =

2π

𝜆

h

2𝜋
 Ψ =

h

𝜆
 Ψ = pΨ . 

 
So, now what about the particle’s kinetic energy?  We might remember that K = p2/2m, so let’s try 
 

K෡ =  
1

2m
 pො୶

ଶ =  
1

2m
pො୶pො୶ =

1

2m
൬−iℏ

∂

∂x
൰ ൬−iℏ

∂

∂x
൰ =

− ħଶ

2m
 

∂ଶ

∂xଶ
 , 

 

K෡Ψ =
− ħଶ

2m
 
∂ଶΨ

∂xଶ
=

− ħଶ

2m
(ik)ଶΨ =  

 ħଶkଶ

2m
Ψ =  

pଶ

2m
Ψ =  K Ψ . 

 
Let’s try for the total energy, E, which is most directly related to ω, so we’ll take a time derivative 
this time: 

∂Ψ

∂t
=  −iω  Ae୧(୩୶  ன୲ାம) =  −iωΨ,  

so let 
 

E෡ = iħ
∂

∂t
 .  

Then,  
 

E෡ Ψ = iħ
∂Ψ

∂t
= iħ(−iω) Ψ =  ħωΨ = E Ψ. 

 
There are, of course, some problems with this, most of which we can clean up.  First, we assumed 
a wave of infinite extent with well-defined values λ and ω (and therefor, for momentum and 
energy), even though any value of p and E would be allowed.  That’s not particularly useful.  If 
we want our particle to be localized and not spread out over the entire universe, we need to allow 
more values of momentum, or, if you prefer, have more uncertainty in the momentum, per the 
Heisenberg uncertainty principle.  See NOTE TWO for a discussion in more detail.  This is still 
O.K., per requirement 5 above; solutions with different momentum values are still collectively a 
solution. 
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Lastly, let’s look at the potential energy, U(x).  The wave function doesn’t contain any quantities 
related to U.  What can we do to the wave function to end up with the potential energy multiplied 
by the wave function? 
 
The operator is the potential energy function itself! 
 

U෡ = U(x)     →      U෡ Ψ = U(x)Ψ . 
 
So, let’s put it all together: 
 

− ħଶ

2m
 
∂ଶΨ

∂xଶ
+ U(x)Ψ =  iħ

∂Ψ

∂t
      →      KΨ + UΨ = EΨ     →   K + U = E. 

 
And, here we have arrived at the one dimensional, time dependent Schrödinger equation.  We’re 
not going to do any problems like that, so let’s simplify things a bit.  If the wave function does not 
evolve with time, then we’re talking about a stationary state, analogous to a standing wave in 
mechanical wave mechanics.  In such cases, the function acquires an envelope ψ(x) within which 
it oscillates as e±iωt and we can separate out the temporal behavior of the function from the spatial 
behaviour:3 
 

Ψ(x, t) =  ψ(x) T(t) = ψ(x) e±୧ன୲ .  
 
The kinetic and potential energy operators will have no effect on the time dependent term T, and 
the total energy operator will simply return E from T(t).   
 

− ħଶ

2m
 
∂ଶ(ψT)

∂xଶ
+ U(x)(ψT) =  iħ

∂(ψT)

∂t
     →     

− ħଶ

2m
 
∂ଶψ

∂xଶ
T + U(x)ψ T =  iħ ψ

∂T

∂t
= E ψ T . 

 
Dividing through by T, we arrive at the one dimensional time-independent equation, 
 

− ħଶ

2m
 
𝑑ଶψ

𝑑xଶ
+ U(x)ψ =  Eψ . 

 
See NOTE THREE for the extension to three dimensions. 
 
Just FYI, the sum of the kinetic and potential energy operators is sometimes written as H: 
 

H෡ψ =  Eψ . 
 

                                                           
3 Ψ is used to represent the function with both spatial and temporal dependences; 𝜓 represents the spatial only 
function. 
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Particle in a Box 

Once again, let’s examine the square well, a one dimensional box from x = 0 to x = L, with 
impenetrable walls at each end.  The potential energy function is then 

Region I: x < 0  UI = ∞ 

Region II: 0 < x < L  UII = 0 

Region III: x > L  UIII = ∞ 

In Regions I and III, the solution for 𝜓 is clearly zero.  For Region II, the Schrödinger 
equation becomes 

− ħଶ

2m
 
𝑑ଶψ

𝑑xଶ
=  Eψ . 

So, our solution is a function that is proportional to the negative of its own second derivative; 
there are two possibilities: 

ψ(x) = A sin(ax) + B cos(bx). 

Since the function must be continuous, it must equal zero at x = 0 and x = L to match the 
solutions in Regions I and III.  That eliminates the cosine and puts limits on the allowed values 
for a in the sine function: 

 

aL = nπ  n = 1, 2, 3, 4, …    →      a =  
nπ

L
 

So,  

ψ୬(x) = A୬ sin ቀ
nπ

L
xቁ ,     n = 1, 2, 3, 4, …  . 

 

Substitute this into the Schrödinger equation: 
 

− ħଶ

2m
 
𝑑ଶ ቀA୬ sin ቀ

nπ
L

xቁቁ

𝑑xଶ
=  E୬ A୬ sin ቀ

nπ

L
xቁ  

 
 

− ħଶ

2m
ቀ

nπ

aL
ቁ

ଶ

ቀ−A୬ sin ቀ
nπ

L
xቁቁ  =  E୬ A୬ sin ቀ

nπ

L
xቁ 

 ħଶ

2m
ቀ

nπ

aL
ቁ

ଶ

 =  E୬  
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E୬ =  nଶ
πଶ ħଶ

2mLଶ
 =  nଶ

hଶ

8mLଶ
 , 

as before when we made use of the Wilson-Sommerfeld relationship.   

Next, we need to take care of requirement four from above.  This process is called 
normalization.  We will find the values of An so that the probability of finding the particle 
somewhere is 100%. 

න ψଶ
ାஶ

ିஶ

𝑑x =  1 

න ψଶ
ାஶ

ିஶ

𝑑x =  න ψଶ
୐

଴

𝑑x = න A୬
ଶ sinଶ ቀ

nπ

L
xቁ

୐

଴

𝑑x =  A୬
ଶ ቎

x

2
−  

sin ቀ
2nπx

L
ቁ

4nπ
L

቏

଴

୐

=  
A୬

ଶ

2
L     for all n. 

This leaves us with 

A୬ =  ඨ
2

L
   , 

independent of n.  Finally, for Region II the wave functions and their corresponding energy 
eigenvalues are: 

ψ୬(x) =  ඨ
2

L
 sin ቀ

nπ

L
xቁ     E୬ =  nଶ

hଶ

8mLଶ
  . 

The probability densities between x = 0 and x = L are then 

ψ୬
ଶ =

2

L
 sinଶ ቀ

nπ

L
xቁ . 

The figure shows sketches of the first two probability 
densities (not the wave functions).  We can see that the 
probability of finding our particle in any given spot in the box 
is NOT constant as one might expect classically, which is that 
occupancy of every interval of length dx should be equally 
probable (see NOTE FOUR).  What’s more, the distribution 
of the probability density changes from one state to another.  
Let’s try some calculations.   What is the probability that a 

particle in the n = 1 state is located between x = 0 and x = L/4?  Classically, the result should 
of course be 25%.   However, we see that 
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P ൬0 < x <
L

4
; n = 1൰

=  න ψଵ
ଶ 𝑑x

୐/ସ

଴

=   න  
2

L
 sinଶ ቀ

π

L
xቁ 𝑑x =

2

L
቎

x

2
−  

sin ቀ
2πx

L
ቁ

4π
L

቏

଴

୐/ସ

=  0.091 = 9.1 %.
୐/ସ

଴

 

However, for the n = 2 function, we can see from the sketch and without any calculation, that 
the probability is 25% (See NOTE FOUR).  For fun, let’s do the calculation for n = 3: 

P ൬0 < x <
L

4
; n = 3൰

=  න ψଷ
ଶ 𝑑x

୐/ସ

଴

=   න  
2

L
 sinଶ ൬

3π

L
x൰ 𝑑x =

2

L
቎

x

2
−  

sin ቀ
6πx

L
ቁ

12π
L

቏

଴

୐/ସ

=  0.30 = 30%.
୐/ସ

଴

 

One last comment: we should expect, per the correspondence principle, that the quantum 
solution should become equivalent to the classical solution as n increases. The figure below 
shows the probability of the particle being in the left quarter of the box for different values of 
energy level, n.  We can see that the probability trends towards 25%.   

 

HOMEWORK 11-1 

Calculate the probability that a particle in the n = 2 state is in the left third of the box. 

  

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400

P(
0 

≤ 
x 

≤ 
a/

4)

n

Probability of the particle being in the left quarter of the box.
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Simple Harmonic Oscillator 

Next, we will return to the simple harmonic oscillator.  The force acting on the particle is, as for a 
mass on a spring, 

F(x) =  −Cx,  

     U(x) =
ଵ

ଶ
Cxଶ ,     

with ω୭ =  ඨ
C

m
  

being the frequency of oscillation of a classical system with the same parameters.  Since we’ve 
been using k as the wave vector in this section, we’ll use C for the spring constant to avoid 
confusion.   

The one dimensional time independent Schrödinger equation for the SHO is 

− ħଶ

2m
 
𝑑ଶψ

𝑑xଶ
+

ଵ

ଶ
Cxଶ ψ =  Eψ . 

This may look fairly simple, but the solution involves solving this differential equation, then an 
ancillary differential equation.  We’re going to take a different path.  We’ll generate an Ansatz 
Erlösung, which is just a fancy German way of saying ‘a guess.’  We should probably expect a 
superficial similarity with the solution for the infinite well, in the sense that the wave function 
should be symmetric for the lowest energy, and should tail off to zero in each direction but without 
the abrupt termination like we had at the infinitely hard wall.  Let’s try 

ψ଴(x) = A଴eି஑୶మ
. 

Then, 

𝑑ψ଴

𝑑x
= −2A଴αxeି஑୶మ

 and  
𝑑ଶψ଴

𝑑xଶ
= 4A଴αଶxଶeି஑୶మ

− 2A଴αeି஑୶మ
= (4αଶxଶ − 2α)A଴eି஑୶మ

=  (4αଶxଶ − 2α) ψ଴ . 

Substituting, 

− ħଶ

2m
 (4αଶxଶ − 2α) ψ଴ +

ଵ

ଶ
 C xଶ ψ଴ =  E଴ ψ଴  

 

−
2αଶ ħଶ

m
xଶ +

 αħଶ

m
 +

ଵ 

ଶ
C xଶ =  E଴ . 
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Collecting like powers4 gives us two equations: 

−
2αଶ ħଶ

m
+

ଵ

ଶ
 C =  0 .     →      α =  ඨ

Cm

4ħଶ
  

 

αħଶ

m
=  E଴      →     E଴ =  

αħଶ

m
=  ඨ

Cm

4ħଶ

ħଶ

m
=  

ଵ

ଶ
ඨ

C

m
ħ =

ଵ

ଶ
 ω୭ħ.  

 
So, our guess is indeed a solution to the Schrödinger equation.  Note however that this result for 
the energy does not agree with the old quantum mechanics, where the lowest energy level allowed 
was ħωo.  Hold on to this for a while. 

 
We also need to normalize 𝜓0: 

Require න A଴
ଶ eିଶ஑୶మ

ାஶ

ିஶ

𝑑x = 1. 

A଴
ଶ  න eିଶ஑୶మ

ାஶ

ିஶ

𝑑x = A଴
ଶ ට

π

2α
= A଴

ଶ

ඩ

π

2ටCm
4ħଶ

= A଴
ଶ ඨ

πħ

√Cm
= 1. 

 

A଴ =  ൬
Cm

πଶħଶ
൰

ଵ/଼

. 

 
Then, finally, 

ψ଴ =  ൬
Cm

πଶħଶ
൰

ଵ/଼

e
ିට

େ୫
ସħమ ୶మ

. 

 
Not too bad, but finding the next wave function and energy looks difficult.  Well, we could guess 
again; by analogy with the particle in a box, the wave function should be odd with a zero at x = 0, 
so we could try 
 

ψଵ(x) = Aଵxeିஒ୶మ
. 

 
HOMEWORK 11-2 
 

Verify that the function ψ1(x) above is indeed a solution to the harmonic oscillator problem.  
Find the corresponding energy of the system, E1. 

                                                           
4 We can do this because, at one point, x = 0.  Then, 

 ஑ħమ

୫
=  E଴.  But since these are constant terms, this is always true.  

Subtracting these terms from the original equation and dividing what’s left by x2 tells us that −
ଶ஑మ ħమ

୫
+ భ 

మ
C = 0. 
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As we’ll see later, this is actually the correct form.  But we don’t want to be guessing the 
eigenfunction for every possible value of n, and it would turn out to be very difficult after n = 1, 
anyway.5  We’d like a method that will give us the actual functions. 
 

OUTSIDE THE COMFORT ZONE 11-1* 
 

Turns out, there is an alternate, ‘outside of the box,’ solution method.6  It’s a bit tedious, but 
very systematic, and it will give us the eigenfunctions and energy levels.  The operators 
introduced below go by several names, but we’ll call them the ladder operators.  We won’t 
worry about where they come from,7 but we will test them to see if they do what we want them 
to do (see NOTE FIVE).  For reasons that will become clear, SU is the step up operator and 
SD is the step down operator:8 
 

SU෢ =  −iඨ
ħ

2mω୭

∂

∂x
+ iට

mω୭

2ħ
x     →      SU෢ =  Bଵ

∂

∂x
+ Bଶx   

 

SD෢ =  −iඨ
ħ

2mω୭

∂

∂x
−  iට

mω୭

2ħ
x     →      SD෢ =  Bଵ

∂

∂x
− Bଶx .  

 
We have some math to do, so the B’s will make that a bit easier. 
 
So, consider the following 
 

ଵ

ଶ
 ħω୭൫SD෢  SU෢ + SU෢  SD෢ ൯ ψ = E ψ; 

 
We’ll show that this is the same as the Schrödinger equation for the SHO.  Let’s do one term 
at a time: 
 

SD෢  SU෢  ψ =  ൬Bଵ

∂

∂x
− Bଶx൰ ൬Bଵ

∂

∂x
+ Bଶx൰ ψ

=  Bଵ
ଶ  

∂ଶψ

∂xଶ
+ BଵBଶψ + BଵBଶx

∂ψ

∂x
− BଵBଶx

∂ψ

∂x
− Bଶ

ଶxଶψ

=  Bଵ
ଶ  

∂ଶψ

∂xଶ
+ BଵBଶψ + −Bଶ

ଶxଶψ  

 

                                                           
5 For example, 𝜓2 = A(1-Bx2) exp(-Cx2) and 𝜓3 = A(x – Bx3) exp(-Cx2).  Not particularly obvious. 
6 Ziman reference. 
7 Actually, it’s not all that hard, and involve some factoring of the operators. 
8 These are usually called the raising operator and the lowering operator, but I want to avoid some possible confusion 
later in the course. 
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and  

SU෢  SD෢  ψ =  ൬Bଵ

∂

∂x
+ Bଶx൰ ൬Bଵ

∂

∂x
− Bଶx൰ ψ

=  Bଵ
ଶ  

∂ଶψ

∂xଶ
− BଵBଶψ − BଵBଶx

∂ψ

∂x
+ BଵBଶx

∂ψ

∂x
− Bଶ

ଶxଶψ

=  Bଵ
ଶ  

∂ଶψ

∂xଶ
− BଵBଶψ − Bଶ

ଶxଶψ . 

 

Putting them back together, 

൫SD෢  SU෢ + SU෢  SD෢ ൯ ψ = 2Bଵ
ଶ  

∂ଶψ

∂xଶ
− 2Bଶ

ଶxଶψ  

ଵ

ଶ
 ħω୭൫SD෢  SU෢ +  SU෢  SD෢ ൯ ψ =

ଵ

ଶ
 ħω୭ ቆ

−2ħ

2mω୭
 
∂ଶψ

∂xଶ
−

− 2mω୭

2ħ
xଶψቇ = Eψ  

 ቆ
−ħଶ

2m
 
∂ଶψ

∂xଶ
+

 mω୭
ଶ

2
xଶψቇ = Eψ  

−ħଶ

2m
 
∂ଶψ

∂xଶ
+

ଵ

ଶ
 C xଶψ = Eψ . 

 
O.K., so our proposed combination of ladder operators is the same as the left hand side of the 
Schrödinger equation for the one dimensional SHO.  Let’s see if we can make use of this. 
 
Let’s suppose that each of SU and SD have a family of functions9 ξ0, ξ1, ξ2, …, ξn, … such that 
 

SD෢  ξ୬ =  nଵ/ଶξ୬ିଵ  and  SU෢  ξ୬ =  (n + 1)ଵ/ଶξ୬ାଵ . 
 
If said functions exist, would they solve the Schrödinger equation?  Let’s test them: 
 

ଵ

ଶ
 ħω୭൫SD ෢ SU෢ + SU෢ SD෢ ൯ ξ୬ = E ξ୬ 

 
ଵ

ଶ
 ħω୭ ቀSD෢ ൫SU෢ ξ୬൯ +  SU෢ ൫SD෢ ξ୬൯ቁ  = E ξ୬ 

 
ଵ

ଶ
 ħω୭ ቀSD෢ ൫(n + 1)ଵ/ଶξ୬ାଵ൯ +  SU෢ ൫nଵ/ଶξ୬ିଵ൯ቁ  = E ξ୬ 

 
ଵ

ଶ
 ħω୭൫(n + 1)ଵ/ଶSD෢ ξ୬ାଵ + nଵ/ଶSU෢ ξ୬ିଵ൯  = E ξ୬ 

 
Now, careful on this step: 

                                                           
9 Not eigenfunctions, though. 
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ଵ

ଶ
 ħω୭൫(n + 1)ଵ/ଶ(n + 1)ଵ/ଶξ୬ + nଵ/ଶnଵ/ଶξ୬൯  = E ξ୬ 

 

ቀn +  
ଵ

ଶ
ቁ ħω୭  ξ୬  = E ξ୬   n = 0, 1, 2, 3, …. 

 
It appears that our ξn functions are indeed the solutions 𝜓n to the SHO equation, if their 
corresponding energy levels are given by  
 

E୬ =  ቀn +  
ଵ

ଶ
ቁ ħω୭,     n = 0, 1, 2, 3, …. 

 
Note that the Wilson-Sommerfeld approach actually wasn’t so bad, in that the energy levels 
actually are evenly spaced by ħωo; just the value of the starting point was off.  
 
Our last task is to find the actual wave functions.  Again, tedious but straightforward if we 
know even just one of them.  Luckily, we already have ξo = 𝜓o: 
 

𝜓଴ =  ൬
𝐶𝑚

𝜋ଶħଶ
൰

ଵ/଼

𝑒
ିට

஼௠
ସħమ ௫మ

. 

 
Then, we don’t have to solve the Schrödinger equation to find the rest of the solutions, we’ll 
just use the step up operator to find them.  For example, to find 𝜓1: 
 

SU෢ ψ଴ =  (0 + 1)ଵ/ଶψଵ = ψଵ , 
 

ψଵ = SU෢ ψ଴ =  ൬Bଵ

∂

∂x
+ Bଶx ൰ ψ଴ = ൬Bଵ

∂

∂x
+ Bଶx ൰ ൬

Cm

πଶħଶ
൰

ଵ/଼

e
ିට

େ୫
ସħమ ୶మ

=  ൬
Cm

πଶħଶ
൰

ଵ/଼

ቆBଵ

∂

∂x
e

ିට
େ୫
ସħమ ୶మ

+ Bଶx e
ିට

େ୫
ସħమ ୶మ

ቇ

= ቆ
4

π
൬

Cm

ħଶ
൰

ଷ/ଶ

ቇ

ଵ/ସ

x e
ିට

େ୫
ସħమ ୶మ

.  

 
You might want to double check the last step of this calculation, which I omitted.  Is this 
solution consistent with the result from HOMEWORK 11-2?   
 
The rest of the eigenfunctions, 𝜓n, can be found in the same manner:10 
 

                                                           
10 Different step up and step down operators can be used for other systems, although in some cases, direct solution 
of the Schrödinger equation may be easier.  For the SHO, they are worth the effort. 
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SU෢ ψଵ =  (1 + 1)ଵ/ଶψଶ     →    ψଶ =  
SU෢ ψଵ

√2
   , 

 

SU෢ ψଶ =  (2 + 1)ଵ/ଶψଷ   →    ψଷ =  
SU෢ ψଶ

√3
   , 

 

SU෢ ψଷ =  (3 + 1)ଵ/ଶψସ  →    ψସ =  
SU෢ ψଷ

2
   ,   𝑒𝑡 𝑐. 

 
Bouncing Particle 

Several sections ago, we used the quantization of the 
action to  examine the case of a particle subject to a 
constant force F for x > 0 and an impenetrable barrier 
at the origin.  Our goal now is to find the exact 
allowed energy levels of a particle trapped in this 
potential well, U(x) = Fx.  As before, the maximum 
position xm in the +x direction depends on the 
particle’s energy.  The right hand turning point is 
found by setting K = 0 and so E = F xm, and so xm = 
E/F. 

For x>0, the Schrödinger equation is then 
 

− ħଶ

2m
 
𝑑ଶψ

𝑑xଶ
+ Fx ψ =  Eψ  

 
We’re going to use a change of variable, so in preparation, we’ll subtract Eψ from both sides 
and multiply by -(2m/ℏ2F2)1/3 to obtain  
 

ቆ
ħଶ

2mF
ቇ

ଶ/ଷ

 
𝑑ଶψ

𝑑xଶ
 −  ൬

2mF

ħଶ
൰

ଵ/ଷ

൬x −
E

F
൰  ψ =  0  

and let  
 

w =  ൬
2mF

ħଶ
൰

ଵ/ଷ

൬x −
E

F
൰  . 

 
Note that w is a dimensionless quantity and that w = 0 when x = xm, the classical turning point 
on the right.  Continuing, 
 

𝑑w

𝑑x
=  ൬

2mF

ħଶ
൰

ଵ/ଷ

 and     
𝑑ଶw

𝑑xଶ
= 0. 
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Making use of the chain rule11 for the derivative results in, 
 

𝑑ଶψ

𝑑xଶ
=  

𝑑ଶψ

𝑑wଶ
൬

𝑑w

𝑑x
൰

ଶ

=  
𝑑ଶψ

𝑑wଶ
ቆ൬

2mF

ħଶ
൰

ଵ/ଷ

ቇ

ଶ

=  
𝑑ଶψ

𝑑wଶ
 ൬

2mF

ħଶ
൰

ଶ/ଷ

 

 
and substitution results in  
 

ቆ
ħଶ

2mF
ቇ

ଶ/ଷ

ቆ
𝑑ଶψ

𝑑wଶ
 ൬

2mF

ħଶ
൰

ଶ/ଷ

ቇ −  ൬
2mF

ħଶ
൰

ଵ
ଷ

൬x −
E

F
൰  ψ =  0 , 

 
𝑑ଶψ

𝑑wଶ
 −  w ψ =  0. 

 
The solutions to this differential equation are well known12, the Airy functions A(w) and B(w).  
B(w) grows to infinity as w goes to 
infinity, so we can’t use it as our 
solution, because our wave 
functions must be able to be 
normalized.  On the other hand, 
A(w) falls off to zero as w 
increases, as we would expect for 
an object attempting to penetrate 
into a barrier.  Here is a rough 
sketch of A(w). 
 
Notice that there are values of w for which A(w) = 0.  These 
values of w are, appropriately enough, called the zeros of A(w), 
Zn, and their values are also well-known.  The first ten values 
(there is an infinite number of zeros), counting from w = 0 toward 
negative infinity, are listed in the table at right. 
 
We’re almost done, but it’s going to be a bit hairy.  The original 
problem was stated in terms of x, with the infinitely high barrier 
at x = 0 and the classical turning point at x = xm = E/F.  When we 
switched variables to w, the classical turning point, the location 
of which depends on the energy of the particle, was set to w = 0. 
From previous discussions, we know that the wave function must 
be zero at x = 0, which means that x = 0 must correspond to a zero Zn of A(w).  So, 

                                                           

11 This may not seem very obvious.  The chain rule relationship is 
ௗమந

ௗ୶మ
=  

ௗమந

ௗ୵మ
ቀ

ୢ୵

ୢ୶
ቁ

ଶ

+  
ௗந

ௗ୵
 
ௗమ୵

ௗ୶మ
 , with the last 

term being zero in this example. 
12 Well known to mathematicians, anyway. 

n Zn 
1 -2.33810 
2 -4.08794 
3 -5.52055 
4 -6.78670 
5 -7.94413 
6 -9.02265 
7 -10.04017 
8 -11.00852 
9 -11.93601 
10 -12.82877 
… … 
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w =  ൬
2mF

ħଶ
൰

ଵ/ଷ

൬x −
E

F
൰  . 

at x = 0 becomes 
 

Z୬ =  ൬
2mF

ħଶ
൰

ଵ/ଷ

൬−
E୬

F
൰      →       E୬ =  − ቆ

ħଶFଶ

2m
ቇ

ଵ/ଷ

Z୬ . 

 
HOMEWORK 11-3 

 
Consider a xenon atom bouncing against a hard surface, like a ball bouncing on the ground.  
What is the lowest allowed energy for such a situation?  Assume that the atom’s weight is the 
only force acting on the atom, other than the ‘floor.’ 
 

For fun, let’s compare the 
Schrödinger results here 
with those from the Wilson-
Sommerfeld calculation.  
The energy levels are 
graphed in multiples of the 
quantity (F2h2/8m)1/3.  The 
blue line has slope one and 
is provided for comparison.  
We see that the agreement 
between the two 
calculations really isn’t too 
bad, and gets better for 
higher values of n. 
 
Now, some three dimensional examples.  I’m going to be fairly detailed about the first one, even 
though the wave solutions and energy values results may be obvious to you; this is to ‘get you in 
the mood’ for the hydrogen atom, where those steps will be necessary. 
 

Particle in a 3-d Box 
 

Consider a rectangular box of edges Lx, Ly, and Lz, presumably all different.  We’ll assume 
that the stationary state solution is separable, i.e., 
 

ψ(x, y, z) =  ψ୶(x)ψ୷(y)ψ୸(z). 
 
In three dimensions, the Schrödinger equation with no potential energy inside the box will be 
 

0

1

2

3

4
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6

7

0 1 2 3 4 5 6 7

W
-S

 E
ne
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y 
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ls
/(

F2 h
2 /

8m
)1/

3

Actual Energy Levels/(F2h2/8m)1/3
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− ħଶ

2m
 ቆ

∂ଶ

∂xଶ
+  

∂ଶ

∂yଶ
+

∂ଶ

∂zଶ
ቇ ψ(x, y, z) = E ψ(x, y, z) 

 
− ħଶ

2m
 ቆ

∂ଶ

∂xଶ
+ 

∂ଶ

∂yଶ
+

∂ଶ

∂zଶ
ቇ ψ୶(x)ψ୷(y)ψ୸(z) =  E ψ୶(x)ψ୷(y)ψ୸(z) 

− ħଶ

2m
 ቆψ୷ψ୸

∂ଶψ୶

∂xଶ
+  ψ୶ψ୸

∂ଶψ୷

∂yଶ
+ ψ୶ψ୷

∂ଶψ୸

∂zଶ
ቇ =  E ψ୶ψ୷ψ୸. 

 
Here, I dropped the explicit dependences on x, y, and z for brevity.  Now, let’s divide both 
sides by 𝜓x𝜓y𝜓z: 
 

− ħଶ

2m
 ቆ

1

ψ୶

∂ଶψ୶

∂xଶ
+  

1

ψ୷

∂ଶψ୷

∂yଶ
+

1

ψ୸

∂ଶψ୸

∂zଶ
ቇ =  E . 

 
Now, since each term is a function only of its proper variable, the terms must individually be 
constant: 
 

− ħଶ

2m

1

ψ୶

∂ଶψ୶

∂xଶ
 =  B୶  

− ħଶ

2m

1

ψ୷

∂ଶψ୷

∂yଶ
 =  B୷  

− ħଶ

2m

1

ψ୸

∂ଶψ୸

∂zଶ
 =  B୸ , 

 
with Bx + By + Bz = E.  We’ve already solved these equations, above, for the one dimensional 
box. 
 

ψ୬౮
(x) =  ඨ

2

L୶
 sin ൬

n୶π

L୶
x൰     B୬౮ =  n୶

ଶ
hଶ

8mL୶
ଶ

  

ψ୬౯
(y) =  ඨ

2

L୷
 sin ቆ

n୷π

L୷
yቇ     B୬౯ =  n୷

ଶ
hଶ

8mL୷
ଶ

  

ψ୬౰
(z) =  ඨ

2

L୸
 sin ൬

n୸π

L୸
z൰     B୬౰ =  n୸

ଶ
hଶ

8mL୸
ଶ

 , 

or, recombining the parts, the particle’s normalized wavefunction is 
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ψ(x, y, z) =  ඨ
8

L୶L୷L୸
 sin ൬

n୶π

L୶
x൰  sin ቆ

n୷π

L୷
yቇ  sin ൬

n୸π

L୸
z൰ 

with energy 

E୬౮,୬౯,୬౰ =  ቆ
n୶

ଶ

L୶
ଶ

+
n୷

ଶ

L୷
ଶ

+  
n୸

ଶ

L୸
ଶ

 ቇ
hଶ

8m
 . 

 
Of course, nx, ny, and nz are positive integers. 
 

Let’s look at a special case, where Lx, Ly, and Lz are all equal to L, i.e., a cube.  Then, the allowed 
energy values become 
 

𝐸௡ೣ,௡೤,௡೥ =  ൫𝑛௫
ଶ + 𝑛௬

ଶ +  𝑛௭
ଶ ൯

ℎଶ

8𝑚𝐿ଶ
 . 

 
The lowest energy state is when all three n values are one: E1,1,1 = 3h2/8mL2.  The next higher 
allowed energy is 3h2/4mL2, but there are three distinct stationary states that possess that energy: 
(1, 1, 2), (1, 2, 1), and (2, 1, 1). These states are said to be degenerate.13  What are the next few 
allowed energy values, and are the corresponding states degenerate or non-degenerate?   
 
(1, 2, 2), (2, 1, 2), (2, 2, 1)  E = 9h2/8mL2  three-fold degenerate 
(3, 1, 1), (1, 3, 1), (1, 1, 3)   E = 11h2/8mL2 three-fold degenerate 
(2, 2, 2)    E = 3h2/2mL2     non-degenerate 
(3, 2, 1), (3, 1, 2), (2, 1, 3), (2, 3, 1), (1, 2, 3), (1, 3, 2)    E = 7h2/4mL2     six-fold degenerate 
(3, 2,2), (2, 3, 2), 2, 2, 3)   E= 17h2/8mL2    three-fold degenerate 
In the cube, degenerate states occur not only when the n-indices are mixed around; the states (7, 
2, 1), (7, 1, 2), (2, 1, 7), (2, 7, 1), (1, 2, 7), (1, 7, 2), (6, 3, 3), (3, 6, 3), (3, 3, 6), (5, 5, 2), (5, 2, 5), 
and (2, 5, 5) all have the same energy and are therefor twelve-fold degenerate. 
 
HOMEWORK 11-4 
 

Calculate the energies of the first 15 energy levels for a rectangular box L×L×2L as multiples 

of  
୦మ

଼୫୐మ.  

 

Harmonic Oscillator in 3-d 
 

Next, let’s briefly examine the three dimensional SHO, specifically, the energy levels.  The 
method of solution is the same for the three dimensional box.  In the end, we obtain 

                                                           
13 This is not to say that some energy levels for the original box couldn’t be degenerate; it would depend on the 
ratios of Lx:Ly:Lz. 
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E୬౮,୬౯,୬౰ =  ቀn୶ +  
ଵ

ଶ
ቁ ħඨ

C୶

m
+  ቀn୷ +  

ଵ

ଶ
ቁ ħඨ

C୷

m
+  ቀn୸ +  

ଵ

ଶ
ቁ ħඨ

C୸

m
 . 

 
Here, each n is 0, 1, 2, 3, … .  If the oscillator is isotropic, or Cx = Cy = Cz = C, then  
 

E୬౮,୬౯,୬౰ =  ቀn୶ +  n୷ + n୸ +  
ଷ

ଶ
ቁ ħඨ

C

m
 =  ቀn୶ + n୷ + n୸ +  

ଷ

ଶ
ቁ ħω୭ . 

  
 
Our last example is a killer, mathematically: the hydrogen atom.  We shall devote an entire section 
to it. 
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______________________________________________________________________________ 
NOTE ONE 
 
Let’s rewrite the time independent Schrödinger equation this way: 
 

𝑑ଶψ

𝑑xଶ
=  

2m

ħଶ
 (U − E) ψ . 

 
So, if U ≠ ± ∞, then the second derivative is well-defined, and the first derivative is continuous. 
 
NOTE TWO 
 
For now, take a look at the final Heisenberg uncertainty principle discussion. 
 
NOTE THREE 
 
Since  

K =  
pଶ

2m
=  

p୶
ଶ + p୷

ଶ + p୸
ଶ

2m
 , 

 
we expect 

 

K෡ =  
− ħଶ

2m
 ቆ

∂ଶ

∂xଶ
+  

∂ଶ

∂yଶ
+

∂ଶ

∂zଶ
ቇ =  

− ħଶ

2m
 ∇ଶ . 

 
 
 

NOTE FOUR 

For fun, let’s compare these results with the classical approach.  The probability density for the 
particle in a certain region of width Δx is proportional to the time it spends there, and that is 
inversely proportional to the particle’s speed, and that in turn is related to the kinetic energy: 

P(a < x < a + Δx) ~
1

𝑣
~

1

√𝐾
 ,  

which is of course the same value everywhere in the box, except during the brief turn-arounds. So, 
although it may be obvious, we’ll normalize the probability density function 

න P(x) 𝑑x = 1     →      P(L − 0) = 1     →      P =  
1

L

୐

଴

  . 

P(a < x < a + Δx) =  න P(x) 𝑑x = න  
1

L
 dx =  

Δx

L

ୟା୼୶

ୟ

ୟା୼୶

ୟ

  . 
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Let’s return to the quantum solution again.  As n increases, the number of ‘humps’ in the wave 
function increases, making the probability density more evenly distributed.  Keep in mind that the 
average of the sine squared function is half the amplitude, and each hump has height 2/L.  If we 
were to average out the hills and valleys, as it were, the average value of the probability density 
would be ½ (2/L) = 1/L.  So, we see that the quantum world begins to agree with the classical 
world as n gets large. 

 


