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Section 12 - Penetration and Tunneling 

One of the more useful properties of quantum systems is the tunneling effect. Let’s explore some 
specific examples of one dimensional wave functions in a little more depth.   

Consider a potential barrier U(x) that is not 
infinitely high at x = 0, extending off to 
infinity in the +x direction.  From a classical 
mechanics point of view, a particle of total 
energy E < Eo coming from the left could 
never pass over the barrier, much like a 
swinging pendulum bob can never rise 
above a particular height. 

In the modern view, such a particle can pass 
through such a barrier.  Let’s see how. 

The potential for negative x is zero.  
Consider a particle of energy E < Eo coming from the left.  Schrödinger’s time-independent 
equation is 

− ħଶ

2𝑚
 
𝜕ଶ𝜓

𝜕𝑥ଶ
+ 𝑈(𝑥)𝜓 =  𝐸𝜓 . 

We’ll re-arrange this to  

 

 
𝜕ଶ𝜓

𝜕𝑥ଶ
=  

2𝑚(𝑈 − 𝐸)

ħଶ
𝜓 . 

The nature of the solution in each region depends on U relative to E.  For x < 0, U = 0 and the 
equation becomes 

𝜕ଶ𝜓

𝜕𝑥ଶ
=  −

2𝑚𝐸

ħଶ
𝜓  

with solution of either sine or cosine: 

𝜓 = 𝐴 sin ቆ
±√2𝑚𝐸

ħ
𝑥 + 𝜙ቇ . 

On the other hand, when x > 0, the equation becomes 

𝜕ଶ𝜓

𝜕𝑥ଶ
=  

2𝑚(𝐸௢ − 𝐸)

ħଶ
𝜓  

with solution 
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𝜓 = 𝐴 exp ቆ
±ඥ2𝑚(𝐸௢ − 𝐸)

ħ
𝑥ቇ . 

Since the function can’t be allowed 
to increase to infinity as x goes to 
infinity (the probability of being 
somewhere can’t exceed 100%), we 
must take the solution with the 
negative sign: 

𝜓 = 𝐴 exp ቆ− 
ඥ2𝑚(𝐸௢ − 𝐸)

ħ
𝑥ቇ . 

 

Note that, unlike for the infinitely 
high wall, there is a non-zero 
wavefunction for x > 0, and therefor 
some probability that the object is 
actually inside the barrier!  

Now, suppose that the barrier is not 
infinitely thick, but instead has width L.  
Since, at x = L, the wave function has 
not exponentially ‘decayed’ to zero, 
there is some probability that the 
particle exists at locations to the right of 
the barrier.  The particle has ‘tunneled’ 
through a barrier over which it could 
never pass classically. 

Insert Classical Analog. 

All analogies fall apart eventually, and 
here is the problem with this one:  For 
the light waves, some of the light is 
reflected and some is transmitted.  
Obviously we can’t have some fraction of an electron be reflected and the rest transmitted; there 
is however a certain probability that the electron is completely reflected and the complementary 
probability that it is transmitted.  If a large number of identical electrons were to be launched at 
the barrier, the numbers of each sharing a fate would agree with these probabilities.  Let’s see if 
we can estimate the probability of transmission. 

One again, the Schrödinger Equation can be written as 
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𝜕ଶ𝜓

𝜕𝑥ଶ
=  

2𝑚(𝐸௢ − 𝐸)

ħଶ
𝜓  

Let’s assume solutions of the following type, much as we did in Section V-3. 

𝜓 = 𝑒ା௜௞  𝑎𝑛𝑑/𝑜𝑟   𝑒ି௜௞௫   , 

where we have again omitted the oscillating time dependence.  The quantity k is the magnitude of 
the wave vector (= 2π/λ) and i is the root of negative one, in which case,  

𝑘 =  ඨ
2𝑚(𝐸 − 𝐸௢)

ℏଶ
  . 

We have two terms for each region (x < 0, 0 < x <L, and x > L) in order to account for incoming 
and reflected waves, although we expect no reflected waves for x>L.  The solutions in the three 
regions then are: 

𝜓(𝑥 < 0) = 𝐴𝑒
ା௜ට

ଶ௠ா
ℏమ ௫

+ 𝐵𝑒
ି௜ට

ଶ௠ா
ℏమ ௫

   

𝜓(0 < 𝑥 < 𝐿) = 𝐶𝑒
ି௜ටଶ௠(ாିா೚)

ℏమ ௫
+ 𝐷𝑒

ା௜ටଶ௠(ாିா೚)

ℏమ ௫
=  𝐶𝑒

ାටଶ௠(ா೚ିா)

ℏమ ௫
+ 𝐷𝑒

ିටଶ௠(ா೚ିா)

ℏమ ௫
  

𝜓(𝑥 > 𝐿) = 𝐹𝑒
ା௜ට

ଶ௠ா
ℏమ ௫

 .   

What we would like to know is the transmission coëfficient T, the ratio of the probability of the 
outgoing wave for x > L to that of the incoming wave from x < 0: 

𝑇 =  
𝐹∗𝐹

𝐴∗𝐴
   . 

Here are the constraints placed on the coëfficients.  We required our wave functions to be 
continuous.  Therefore, at x = 0: 

𝐴𝑒
ା௜ට

ଶ௠ா
ℏమ ଴

+ 𝐵𝑒
ି௜ට

ଶ௠ா
ℏమ ଴

 = 𝐶𝑒
ାටଶ௠(ா೚ିா)

ℏమ ଴
+ 𝐷𝑒

ିටଶ௠(ா೚ିா)

ℏమ ଴
 →   𝐴 + 𝐵 = 𝐶 + 𝐷  . 

At x = L: 

𝐶𝑒
ାටଶ௠(ா೚ିா)

ℏమ ௅
+ 𝐷𝑒

ିටଶ௠(ா೚ିா)

ℏమ ௅
=  𝐹𝑒

ା௜ට
ଶ௠ா

ℏమ ௅
  . 

But, you may remember, we also required, in general, that the wave function’s derivative dψ/dx 
must be continuous when U≠ infinity, so: 
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−𝐴𝑖ඨ
2𝑚𝐸

ℏଶ
𝑒

ି௜ට
ଶ௠ா

ℏమ ଴
+ 𝐵𝑖ඨ

2𝑚𝐸

ℏଶ
𝑒

ା௜ට
ଶ௠ா

ℏమ ଴
 

= 𝐶ඨ
2𝑚(𝐸௢ − 𝐸)

ℏଶ
𝑒

ାටଶ௠(ா೚ିா)

ℏమ ଴
− 𝐷ඨ

2𝑚(𝐸௢ − 𝐸)

ℏଶ
𝑒

ିටଶ௠(ா೚ିா)

ℏమ ଴
 

or, 

−𝐴𝑖ඨ
2𝑚𝐸

ℏଶ
+ 𝐵𝑖ඨ

2𝑚𝐸

ℏଶ
 = 𝐶ඨ

2𝑚(𝐸௢ − 𝐸)

ℏଶ
− 𝐷ඨ

2𝑚(𝐸௢ − 𝐸)

ℏଶ
    , 

Then, at x = L, 

𝐶ඨ
2𝑚(𝐸௢ − 𝐸)

ℏଶ
𝑒

ାටଶ௠(ா೚ିா)

ℏమ ௅
− 𝐷ඨ

2𝑚(𝐸௢ − 𝐸)

ℏଶ
𝑒

ିටଶ௠(ா೚ିா)

ℏమ ௅
=  𝐹𝑖ඨ

2𝑚𝐸

ℏଶ
𝑒

ା௜ට
ଶ௠ா

ℏమ ௅
  . 

 

Lots of math I’ll add later….. 

 

𝑇 =  

⎝

⎜
⎛

1 +

𝑠𝑖𝑛ℎଶ ቆට
2𝑚𝑈௢𝐿ଶ

ℏଶ  ቀ1 −
𝐸

𝑈௢
ቁቇ

4
𝐸

𝑈௢
ቀ1 −

𝐸
𝑈௢

ቁ

⎠

⎟
⎞

ିଵ

   . 

 

When the barrier is quite thick, or when E<<Eo, this can be approximated with  

𝑇 = 16 
𝐸

𝑈௢
൬1 − 

𝐸

𝑈௢
൰ 𝑒

ିට଼௠௎೚ቀଵି ಶ
ೆ೚

ቁ ௅/ℏ
  . 

 

The tunneling effect is seen in many physical systems, and forms the basis for many technological 
devices. 

Now, what if we have a non- rectangular barrier?  Let’s start with two rectangular barriers that are 
back to back, one of height Uo1 and the other of height Uo2.  Any particle making it through the 
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combined barrier must have passed through the 
first one and the second.  If T1 is the probability 
of making it through the first and T2 is the 
probability of making it through the second, the 
probability of making it though both is  

𝑇 =  𝑇ଵ 𝑇ଶ  . 

If that’s OK, then what if we have N barriers? 

𝑇 =  𝑇ଵ 𝑇ଶ 𝑇ଷ … 𝑇ே  . 

EXAMPLE 

Let’s use this idea to see if we can find the 
transmission coefficient for a triangular barrier 
as shown in the figure; this corresponds roughly to what an electron in a reverse-biased diode 
would experience.  The barrier is formed by the energy gap between the valence and conduction 
bands. 

 

We’re going to make a lot of approximations and hope to get an order of magnitude value.  We’ll 
model the barrier as a series of rectangular barriers whose heights follow the relationship 

𝑈(𝑥) =  𝑈௢ ቀ1 −
𝑥

𝑏
ቁ  . 

First, let’s look again at the approximate result from above for one barrier: 

𝑇 = 16 
𝐸

𝑈௢
൬1 −  

𝐸

𝑈௢
൰ 𝑒

ିට଼௠௎೚ቀଵ ି ಶ
ೆ೚

ቁ ௅/ℏ
  . 



148 
 

The variable here appears to be E/Uo.  It 
seems clear that the exponential term will 
vary much more quickly than the terms in 
front, which are probably on the order of one, 
anyway.  So, let’s drop them, leaving 

𝑇௡ =  𝑒ିඥ଼௠(௎೚೙ି ಶ) ௅೙/ℏ  . 

Let’s let each barrier have thickness dx and 
substitute in the potential function U(x) to 
obtain 

𝑇(𝑥) ≈  𝑒ିඥ଼௠(௎(௫)ି ಶ) ௗ௫/ℏ  . 

Remembering that the transmission 
coefficient for all the barriers combined is the product of the individual coefficients, and that the 
product of exponentials is the exponential of the sum, we obtain 

𝑇 ≈  𝑒ି ∫
ඥ଼௠(௎(௫)ି ಶ) 

ℏ
 ௗ௫ =  𝑒

ିට
଼௠
ℏమ ∫ ට௎೚ቀଵି

௫
௕

ቁିா ௗ௫
=  𝑒

ିට
଼௠௎೚

ℏమ ∫ ටଵି
ா

௎೚
 ି 

௫
௕

 ௗ௫
 . 

Let’s concentrate for now on just the integral: 

න ඨ1 −
𝐸

𝑈௢
 −  

𝑥

𝑏
 𝑑𝑥 

We’ll need limits; the lower limit is clearly 0, but the upper limit a depends on Uo and E. 
Specifically, we’ll set U(a) = Uo(1-a/b) = E and find that a = (1- E/Uo)b: 

න ඨ1 −
𝐸

𝑈௢
 −  

𝑥

𝑏
   𝑑𝑥  .

ቀଵି
ா

௎೚
ቁ௕

଴

 

We’ll use the substitution z = 1 - E/Uo - x/b and dz = -dx/b, and change the limits: 

−𝑏 න 𝑧ଵ/ଶ 𝑑𝑧 =  𝑏 න 𝑧ଵ/ଶ 𝑑𝑧 =   
2𝑏

3
൬1 −

𝐸

𝑈௢
൰

ଷ/ଶ

.
ଵି

ா
௎೚

଴

଴

ଵି
ா

௎೚

 

Replacing this result into the exponential term above, 

𝑇 ≈ 𝑒𝑥𝑝 ቌ−ඨ
32𝑚

9ℏଶ

𝑏

𝑈௢

(𝑈௢ − 𝐸)
ଷ
ଶቍ. 

Next, we’ll do two things.  We might expect the energy of the electrons to be quite a bit smaller 
than the band gap energy, so Uo – E ≈ Uo.  The second thing is a bit weaslier.  The potential 
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difference Uo can be thought of as being due to an electric field, ε; certainly, we can modify the 
barrier (primarily its width) by applying our own E-field within the diode.  

𝑈௢ = 𝑞 Δ𝑉 = 𝑞 ℇ 𝑏     →      
𝑏

𝑈௢
=  

𝑏

𝑞ℇ
=  

1

𝑞ℇ
 

𝑇 ≈ 𝑒𝑥𝑝 ቌ−ඨ
32𝑚𝑈௢

ଷ

9𝑞ଶℏଶ
 
1

ℇ
ቍ    . 

Since we may naïvely think that the current through a p-n junction would be proportional to the 
tunneling probability, we predict that  

log൫𝐼(ℇ)൯ ∼  −
1

ℇ
  . 

Here is a graph of real data.  The agreement is O.K. for weak electric fields. 
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