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Section 13 - The Hydrogen Atom 

“…the periodic table is a colossal waste of time. Nine out of every ten atoms in the universe are 
hydrogen… . The other ten percent of all atoms are helium.”1 
 

Sam Kean 
 
 
Schrödinger’s Equation for the Hydrogen Atom 
 
Having gained some experience with Schrödinger’s equation, we are ready to apply it to the 
hydrogen atom.  As usual, we will make a number of approximations, such as considering the 
proton to be a featureless point charge of infinite mass.   Our goal is to find the wavefunctions and 
energy eigenvalues of a single electron in the proton’s electrostatic potential field. 
 
There is an advantage in that potential energy of the electron due to Coulomb’s law is dependent 
only on its distance from the proton, but the kinetic energy terms then get pretty difficult.2 
 

E = K + U =  
pଶ

2m
+  

−kୣeଶ

r
 . 

 
As a vector, the momentum can be broken up into perpendicular components, pr and pT, or the 
radial and tangential components: 
 

pሬ⃗ =  pሬ⃗ ୰ + pሬ⃗ ୘, so that   pଶ =  p୰
ଶ + p୘

ଶ  . 
 
Now, we might remember that for a point particle such as an electron, pT = mvT = mrω, the moment 
of inertia I = mr2, and the angular momentum L = Iω.  Putting these relationships together shows 
us that pT = L/r; since the Coulomb force is radial (no torques about the center), L is conserved 
and pT varies only with the distance, r. 
 

pଶ =  p୰
ଶ +  

Lଶ

rଶ
 , 

and so then,  
 

E =
pଶ

2m
+  

−kୣeଶ

r
=  

p୰
ଶ

2m
+  

Lଶ

2mrଶ
 + 

−kୣeଶ

r
 . 

 
Converting this algebraic expression into operators, we should expect to obtain 
 

                                                           
1 This is approximately correct.  All the other elements are roughly 0.1% of atoms. 
2 This section is based primarily on Tipler’s Modern Physics. 
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ቆ
pො୰

ଶ

2m
+  

L෠ଶ

2mrଶ
 +  U෡ቇ ψ = Eψ . 

 
where L෠ is (now) the angular momentum operator, which we’ll need to derive.  Let’s sit on this for 
a while. 
 

First, a Lot of Mathy Stuff * 
 

Let’s see if we can write the Schrödinger equation for this situation in terms of spherical 
coördinates: r, θ, and φ. It’ll take some doing (i.e., the next five pages).  Start with the following 
transformation equations:3 
 

𝑥 = (𝑟 𝑠𝑖𝑛𝜃) cos(𝜙) 
𝑦 = (𝑟 𝑠𝑖𝑛𝜃) sin(𝜙) 

𝑧 = 𝑟 𝑐𝑜𝑠𝜃 

𝑟 =  ඥ𝑥ଶ +  𝑦ଶ +  𝑧ଶ 
 
Let’s look at the kinetic energy term: 

 
− ħଶ

2𝑚
 ቆ

𝜕ଶ

𝜕𝑥ଶ
+ 

𝜕ଶ

𝜕𝑦ଶ
+

𝜕ଶ

𝜕𝑧ଶ
ቇ 𝜓 

and use some chain rule antics: 
 

𝜕𝑟

𝜕𝑥
=  

ଵ

ଶ

2𝑥

ඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ
=  

𝑥

𝑟
 ,   

 
𝜕𝜓

𝜕𝑥
=  

𝜕𝑟

𝜕𝑥

𝜕𝜓

𝜕𝑟
=  

𝑥

𝑟

𝜕𝜓

𝜕𝑟
 .    

Continuing, 
 

𝜕ଶ𝜓

𝜕𝑥ଶ
=  

𝜕

𝜕𝑥
൬

𝜕𝜓

𝜕𝑥
൰ =  

𝜕

𝜕𝑥
൬

𝑥

𝑟

𝜕𝜓

𝜕𝑟
൰ = ൬

𝜕𝑥

𝜕𝑥
൰ ൬

1

𝑟
൰ ൬

𝜕𝜓

𝜕𝑟
൰ + 𝑥 

𝜕

𝜕𝑥
൬

1

𝑟

𝜕𝜓

𝜕𝑟
൰

= ൬
1

𝑟
൰ ൬

𝜕𝜓

𝜕𝑟
൰ + 𝑥

𝜕𝑟

𝜕𝑥
 

𝜕

𝜕𝑟
൬

1

𝑟

𝜕𝜓

𝜕𝑟
൰ =  ൬

1

𝑟
൰ ൬

𝜕𝜓

𝜕𝑟
൰ + 𝑥 ቀ

𝑥

𝑟
ቁ ቈ

−1

𝑟ଶ

𝜕𝜓

𝜕𝑟
+

1

𝑟

𝜕ଶ𝜓

𝜕𝑟ଶ
቉

=  
1

𝑟

𝜕𝜓

𝜕𝑟
−  

𝑥ଶ

𝑟ଷ

𝜕𝜓

𝜕𝑟
+  

𝑥ଶ

𝑟ଶ

𝜕ଶ𝜓

𝜕𝑟ଶ
=   

(𝑟ଶ − 𝑥ଶ)

𝑟ଷ

𝜕𝜓

𝜕𝑟
+  

𝑥ଶ

𝑟ଶ

𝜕ଶ𝜓

𝜕𝑟ଶ
 . 

 
Ouch.  Well, at least the next two are easy: 
 

                                                           
3 The angle phi is measured around the z-axis, analogous to longitude on the earth, while theta is somewhat analogous 
to latitude, albeit measured from zero at the north pole rather than from the equator. 
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𝜕ଶ𝜓

𝜕𝑦ଶ
=  

(𝑟ଶ − 𝑦ଶ)

𝑟ଷ

𝜕𝜓

𝜕𝑟
+  

𝑦ଶ

𝑟ଶ

𝜕ଶ𝜓

𝜕𝑟ଶ
 , 

 
∂ଶψ

∂zଶ
=  

(rଶ − zଶ)

rଷ

∂ψ

∂r
+  

zଶ

rଶ

∂ଶψ

∂rଶ
 . 

 
Let’s add them up.  Remembering that (x2 + y2 + z2) = r2, we see that we’re left with  
 

 
− ħଶ

2m
ቆ

2

r

∂ψ

∂r
+

∂ଶψ

∂rଶ
ቇ . 

 
You might think that this expression will give us the kinetic energy, but it won’t.  The reason 
is that, when we went through the chain rule conversions, we only considered how x, y, and z 
changed with r, and not with either θ or φ. So, this term only accounts for the kinetic energy 
due to the radial movement of the electron, and not the transverse motion. 
 
Next, we’ll work on the angular momentum operators L෠୶, L෠୷, L෠୸, and L෠.  In classical physics, 

the angular momentum Lሬ⃑  can be expressed as 

Lሬ⃗ =  r⃗ × pሬ⃗  , 
with  

L୸ = xp୷ − yp୶,      L୷ = zp୶ − xp୸,   and     L୶ = yp୸ − zp୷  .  
 
We might hope the same for the operators, since we would expect, for example,  
 

L෠୸ ψ =  L୸ψ . 
 
So, let’s try 
 

L෠୸ψ = ൫xpො୷ − ypො୶൯ψ =  xpො୷ψ − ypො୶ψ =  xp୷ψ − yp୶ψ =  ൫xp୷ − yp୶൯ψ =  L୸ψ. 
 
Similarly for Lx and Ly, 
 

L෠୶ = ൫ypො୸ − zpො୷ ൯,      and  
 

L෠୷ = (z pො୶ − xpො୸ ) . 
 
Let’s try to find these operators in spherical coördinates.  We’ll look at Lz first, since it’s 
easiest.  Here are some useful transform relationships: 
 

x = r sinθ cos ϕ          
∂x

∂ϕ
=  r sinθ (−sinϕ) =  −y , 
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y = r sin θ sin ϕ          
∂y

∂ϕ
=  r sinθ (cos ϕ) =  +x , 

 

z = r cosθ         
∂z

∂ϕ
=  0 , 

 
∂ψ

∂ϕ
=  

∂x

∂ϕ

∂ψ

∂x
+

∂y

∂ϕ

∂ψ

∂y
+  

∂z

∂ϕ

∂ψ

∂z
= −y

∂ψ

∂x
+ x

∂ψ

∂y
+  0  

 
and so, 
 

∂ψ

∂ϕ
= x

∂ψ

∂y
− y

∂ψ

∂x
= ቆx

pො୷

−iℏ
− y

pො୶

−iℏ
ቇ ψ =

1

−iℏ
൫xp୷ − yp୶൯ψ =  

1

−iℏ
L୸ψ , 

 
so, clearly,4 
 

L෠୸ =  −iℏ
∂

∂ϕ
  . 

 
Lx and Ly are harder, but since we’ve done one in the correct direction, we’ll do the other two 
backwards, i.e., start with the answers and show that they are equivalent to what we already 
know.  So for Lx, we’re told that 5 
 

L෠୶ = iℏ ൬sinϕ
∂

∂θ
+ cotθ cosϕ 

∂

∂ϕ
൰ . 

Similar to above: 

x = r sinθ cos ϕ          
∂x

∂θ
=  r (cosθ)cosϕ =  r sinθ cosϕ

cosθ

sinθ
= x cot θ , 

 

y = r sin θ sin ϕ          
∂y

∂θ
=  r (cosθ)sinϕ =  r sinθ sinϕ

cosθ

sinθ
= y cot θ  , 

 

z = r cosθ         
∂z

∂θ
=  −r sinθ . 

So,  

                                                           
4 We are going to need this later. 
5 For example, in Serway, Raymond, Clement Moses, and Curt Moyer, Modern Physics 5th ed.,.Thomson 
Brooks/Cole, Belmont (2005) p 275. 
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∂ψ

∂θ
=  

∂x

∂θ

∂ψ

∂x
+

∂y

∂θ

∂ψ

∂y
+  

∂z

∂θ

∂ψ

∂z
= x cotθ

∂ψ

∂x
+ y cotθ

∂ψ

∂y
− r sinθ

∂ψ

∂z

=  
−1

iℏ
 ൫x cotθ pො୶ + y cotθpො୷ − r sinθpො୸൯ψ  , 

 
and, remember that  
 

∂ψ

∂ϕ
=  −y

∂ψ

∂x
+ x

∂ψ

∂y
 =  

−1

iℏ
൫−ypො୶ + xpො୷൯ψ.  

 
Now, we get a minor mess: 
 

L෠୶ψ = iℏ ൬sinϕ
∂ψ

∂θ
+ cotθ cosϕ 

∂ψ

∂ϕ
൰

= − ቀsinϕ൫x cotθ pො୶ + y cotθ pෝ ୷ − r sinθ pො୸൯

+ cotθ cosϕ ൫−ypො୶ + xpො୷൯ቁ ψ . 

 
Let’s collect like terms and see what we get. 
 

−(− r sinϕ sinθ pො୸) = y pො୸ . 
 

−൫ sinϕ y cotθ pෝ ୷ +  cotθ cosϕ x pො୷൯

= − ൬ sinϕ (r sin θ sin ϕ) 
cosθ

sinθ
 pෝ ୷ +   

cosθ

sinθ
 cosϕ (r sinθ cos ϕ) pො୷൰ = 

= −൫ (r cos θ sinଶ ϕ) pෝ ୷ + (r  cosθ cosଶ ϕ) pො୷൯ = 

= − ቀ(sinଶ ϕ +  cosଶ ϕ) (r cos θ) pො୷ቁ =  −zpො୷ 

 
−൫sinϕ(x cotθ pො୶) + cotθ cosϕ (−ypො୶)൯

=  −(sinϕ(r sinθ cos ϕ)cotθ pො୶ − cotθ cosϕ(r sin θ sin ϕ)pො୶) = 0 .  
 
So, as expected, 
 

L෠୶ = ൫y pො୸ − z pො୷൯. 
 
Next, we’ll show that 
 

L෠୷ = iℏ ൬− cosϕ
∂

∂θ
+ cotθ sinϕ 

∂

∂ϕ
൰ 

by confirming that  
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iℏ ൬− cosϕ
∂ψ

∂θ
+ cotθ sinϕ 

∂ψ

∂ϕ
൰ =  (z pො୶ − xpො୸)ψ . 

So, 
 

iℏ ൬− cosϕ
∂ψ

∂θ
+ cotθ sinϕ 

∂ψ

∂ϕ
൰

= ቀ cosϕ൫x cotθ pො୶ + y cotθpො୷ − r sinθpො୸൯ −  cotθ sinϕ ൫−ypො୶ + xpො୷൯ቁ ψ  

 
= ൫ cosϕ x cotθ pො୶ + cosϕ y cotθ pො୷ − cosϕ r sinθpො୸ + y cotθ sinϕ pො୶

− x cotθ sinϕ pො୷ ൯ψ . 
 
Collect the similar terms: 
 

cosϕ x cotθ pො୶ + y cotθ sinϕ pො୶

=  cosϕ (r sinθ cos ϕ) ൬
cosθ

sinθ
൰ pො୶ + (r sin θ sin ϕ) ൬

cosθ

sinθ
൰  sinϕ pො୶

=  (cosଶϕ +  sinଶϕ) (r cos θ)pො୶ = z pො୶  
 

cosϕ y cotθ pො୷ − x cotθ sinϕ pො୷

=  cosϕ (r sin θ sin ϕ) cotθ pො୷ − (r sinθ cos ϕ) cotθ sinϕ pො୷ = 0  
 

−cosϕ r sinθ pො୸ = −x pෝ ୸ 
 
Adding the terms gives the expected result: 
 

L෠୷ = (z pො୶ − xpො୸ ) . 
 
And now, the last step we need before we can actually do anything with the hydrogen atom!  

Find the operator Lଶ෡ .  Unsurprisingly, 

Lଶ෡ =  L෠ଶ , 
 since we expect that 
 

Lଶ෡ ψ = Lଶψ  
 
and, in fact (remembering that the value of L itself is a constant), 
 

L෠ଶψ =  L෠൫L෠ψ൯ = L෠(Lψ) =  L൫L෠ψ൯ = L(Lψ) =  Lଶψ =  Lଶ෡ ψ  . 
 
Then, since classically,  
 

Lଶ =  L୶
ଶ +  L୷

ଶ +  L୸
ଶ  , 
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we might expect that 
 

L෠ଶ =  L෠୶
ଶ

+ L෠୷
ଶ

+  L෠୸
ଶ

 . 
 
OK.  We already determined that  
 

L෠୸ =  −iℏ
∂

∂ϕ
 , 

so,  
 

L෠୸
ଶ

=  −iℏ
∂

∂ϕ
൬−iℏ

∂

∂ϕ
൰ =  −ℏଶ

∂ଶ

∂ϕଶ
 . 

 
Similarly, 
 

L෠୶
ଶ

= −ℏଶ ൬sinϕ
∂

∂θ
+ cotθ cosϕ 

∂

∂ϕ
൰ ൬sinϕ

∂

∂θ
+ cotθ cosϕ 

∂

∂ϕ
൰

=  −ℏଶ ቆsinଶϕ
∂ଶ

∂θଶ
+ sinϕ cosϕ 

∂

∂ϕ

+ cot θ cosଶϕ 
∂

∂θ
+ 2 cotθ sinϕ cosϕ 

∂ଶ

∂θ ∂ϕ
+ cotଶθ cosଶϕ 

∂ଶ

∂ϕଶ
ቇ  . 

 
Then, 
 

L෠୷
ଶ

= −ℏଶ ൬− cosϕ
∂

∂θ
+ cotθ sinϕ 

∂

∂ϕ
൰ ൬− cosϕ

∂

∂θ
+ cotθ sinϕ 

∂

∂ϕ
൰

=  −ℏଶ ቆcosଶϕ
∂ଶ

∂θଶ
− sinϕ cosϕ 

∂

∂ϕ

+ cot θ sinଶϕ 
∂

∂θ
− 2 cotθ sinϕ cosϕ 

∂ଶ

∂θ ∂ϕ
+ cotଶθ sinଶϕ 

∂ଶ

∂ϕଶ
ቇ  . 

 
Adding these three expressions finally results in 
 

L෠ଶ =  −ℏଶ ቆcotθ
∂ψ

∂θ
+

∂ଶψ

∂θଶ
+  

1

sinଶθ

∂ଶψ

∂ϕଶ
ቇ . 

 
This term will help us take care of the kinetic energy due to lateral motion of the electron.  Now, 
we can at last write the time-independent Schrödinger equation for the simplest of elements, the 
hydrogen atom.   
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− ħଶ

2m
൭

2

r

∂ψ

∂r
+

∂ଶψ

∂rଶ
+  

1

rଶ
ቆcotθ

∂ψ

∂θ
+

∂ଶψ

∂θଶ
+  

1

sinଶθ

∂ଶψ

∂ϕଶ
ቇ൱ −  

kୣeଶ

r
ψ = Eψ . 

 
Now, we just have to solve it. 
 

Solving the Schrödinger Equation for Hydrogen 
 
Let’s assume that the wavefunction ψ is a function of r, θ, and ϕ, and that the solution is separable, 
as for the quantum box: 
 

ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ). 
Here we go! 
 

− ħଶ

2m
൭

2

r
ΘΦ

∂R

∂r
+ ΘΦ

∂ଶR

∂rଶ
+  

1

rଶ
ቆRΦcotθ

∂Θ

∂θ
+ RΦ

∂ଶΘ

∂θଶ
+  RΘ

1

sinଶθ

∂ଶΦ

∂ϕଶ
ቇ൱ −  

kୣeଶ

r
RΘΦ

= E RΘΦ . 
 
As we did before, let’s divide through, this time by -2mRΘΦ/ℏ2r2sin2θ: 
 

rଶsinଶθ ൭
2

r

1

R

𝑑R

𝑑r
+

1

R

𝑑ଶR

𝑑rଶ
+ 

1

rଶ
ቆ

1

Θ
cotθ

𝑑Θ

𝑑θ
+

1

Θ

𝑑ଶΘ

𝑑θଶ
ቇ൱ +  

1

Φ

𝑑ଶΦ

𝑑ϕଶ
−  

2m

ℏଶ

kୣeଶ

r
rଶsinଶθ

= −
2m

ℏଶ
rଶsinଶθE . 

 
Why do this, you might ask.  Look in the middle of the left side and see that there is a term that is 
a function of only ϕ.  Since, as phi alone changes, the rest of the equation can not be affected, that 
term must be a constant.  Let’s say that  
 

 
1

Φ

𝑑ଶΦ

𝑑ϕଶ
=  −m௟

ଶ . 

 
Why that constant? Because I know what’s coming.  We’ve solved this differential equation 
before: 
 

𝑑ଶΦ

𝑑ϕଶ
=  −m௟

ଶΦ      →      Φ(ϕ) = Ae୧୫೗ம .  

EXERCISE 13-1 
 

Verify that the solution given above solves the equation to its left. 
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Since this is a function of phi, and the wave function must be single-valued, there are restrictions 
on ml, which must be an integer (0, ±1, ±2, et c.), or in other words, there must be an integer 
number of cycles of the function in one 2π cycle about the z axis.   
 
Let’s return to the rest of the equation with the substitution for the phi term: 
 

rଶsinଶθ ൭
2

r

1

R

𝑑R

𝑑r
+

1

R

𝑑ଶR

𝑑rଶ
+  

1

rଶ
ቆ

1

Θ
cotθ

𝑑Θ

𝑑θ
+

1

Θ

𝑑ଶΘ

𝑑θଶ
ቇ൱ − m௟

ଶ −  
2m

ℏଶ

kୣeଶ

r
rଶsinଶθ

= −
2m

ℏଶ
rଶsinଶθ E 

 
Rearrange again to get all r dependent terms on one side and all theta dependent terms on the other; 
we’ll start that by dividing both sides by sin2θ: 
 

൭
2r

R

𝑑R

𝑑r
+

rଶ

R

𝑑ଶR)

𝑑rଶ
+  ቆ

1

Θ
cotθ

𝑑Θ

𝑑θ
+

1

Θ

𝑑ଶΘ

𝑑θଶ
ቇ൱ −

m௟
ଶ

sinଶθ
−  

2m

ℏଶ

kୣeଶ

r
rଶ = −

2m

ℏଶ
rଶE 

 
2r

R

𝑑R

𝑑r
+

rଶ

R

𝑑ଶR)

𝑑rଶ
+

2m

ℏଶ
rଶ ቆE −

kୣeଶ

r
ቇ =

m௟
ଶ

sinଶθ
−  

1

Θ
cotθ

𝑑Θ

𝑑θ
−

1

Θ

𝑑ଶΘ

𝑑θଶ
 

 
Since the left side is a function only of r and the right side of theta, they each must be constant.  
Let’s call that constant – l (l + 1). 
 
O.K., so one at a time. 
 

1

Θ

𝑑ଶΘ

𝑑θଶ
+

1

Θ
cotθ

𝑑Θ

𝑑θ
−  

m௟
ଶ

sinଶθ
= −𝑙(𝑙 + 1), 

 
𝑑ଶΘ

𝑑θଶ
+ cotθ

𝑑Θ

𝑑θ
+  ቆ𝑙(𝑙 + 1) −

m௟
ଶ

sinଶθ
ቇ Θ = 0 . 

 
The solutions to this family of equations for positive integer values of l are well-known to 
mathematicians.  They are the associated Legendre polynomials, the forms of which depend on 
the values of l and ml: 
 
Pl

m
l Po

o 1 
  
 P1

o 2 cosθ 
 P1

1 sin θ 
 
 P2

o 4 (3cos2θ -1) 
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 P2
1 4 sinθ cosθ 

 P2
2 sin2θ 

 
 P3

o 24 (5cos3θ - 3cosθ) 
P3

1 6 sinθ (5cos2θ – 1) 
 P3

2 6 sin2θ cosθ 
P3

3 sin3θ 
 
et c. 

 
Note that there are solutions only when |ml| is less than or equal to l. 
 
EXERCISE 13-2 
 

Verify that P1
1 is a solution to the theta-only equation above when l and ml equal 1. 

 
And, finally, let’s look at the R expression: 
 

2r

R

𝑑R

𝑑r
+

rଶ

R

𝑑ଶR

𝑑rଶ
+

2m

ℏଶ
rଶ ቆE −

kୣeଶ

r
ቇ = − 𝑙(𝑙 + 1). 

 
Keep in mind that everything we’ve done so far would allow us to replace the Coulomb potential 
with any other radial force potential.  However, let’s plough ahead.  Solutions to this equation with 
the Coulomb potential form a family Rn,l (r) for n and l positive integers that is, again, well known 
to mathematicians.  Here are a few: 
 
 R1,0 = e-r/ao 
 
 R2,0 = (2 – r/a)e-r/2ao 
 R2,1 = r/a e-r/2ao 
 
 R3,0 = (1 – 2r/3a +2r2/27a2)e-r/3ao 
 R3,1 = (r/a)(1 –r/6a)e-r/3ao 
 R3,2 = (r2/a2)e-r/3ao 
 
 et c. 
 
Solutions exist for natural number values of n and integer values of l such that l varies from zero 
to n-1.  We’ll determine the parameter ao in a moment. 
 
Let’s put it together.  The solution for the wavefunction of the electron about the (unmoving) 
proton is 
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ψ(r, θ, ϕ) = A୬,௟,୫೗

 R୬,௟P௟
୫೗e୧୫೗ம,     

 
with n = 1, 2, 3, …       𝑙 = 0, 1, 2, … , (n − 1)     m௟ = 0, ±1, ±2, … , ±𝑙. 

 
Now, we have to figure out what all this means. 
 

Interpretation of the Solution to the Schrödinger Equation 
 
If we were to calculate the energy eigenvalues for these functions, we would see the following: 
 
E1,0 = -13.6 eV 
E2,0 = E2,1 = -13.6/22 eV 
E3,0 = E3,1 = E3,2 = -13.6/32 eV 
and, generally, 
En,l = -13.6/n2 eV. 
 
These are the same energies as predicted by the Bohr model, so the n here correlates to the orbit 
number n of the Bohr model; we now call this the principal quantum number. 
 
EXAMPLE 13-1 
 

The wavefunction for the n = 2, l = 0, ml = 0 state is 
 

ψଶ,଴,଴ =  Aଶ,଴,଴Rଶ,଴P଴
଴e଴ =  Aଶ,଴,଴ (2 −

r

a୭
)eି୰/ଶୟ౥ . 

 
Let’s substitute into the Schrödinger equation.  Any derivative with respect to θ or ϕ will result 
in zero.  That leaves 
 

− ħଶ

2m
ቆ

2

r

∂ψ

∂r
+

∂ଶψ

∂rଶ
 ቇ −  

kୣZeଶ

r
ψ = Eψ . 

The first derivative is 
 

∂ψ

∂r
=  Aଶ,଴,଴ ൬−

2

a୭
+  

r

2a୭
ଶ

൰ eି୰/ଶୟ౥ 

and the second is 
 

∂ଶψ

∂rଶ
= Aଶ,଴,଴ ቆ

3

2a୭
ଶ

− 
r

4a୭
ଷቇ eି୰/ଶୟ౥    . 

Then, we have 
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− ħଶ

2m
ቆ

2

r
൬Aଶ,଴,଴ ൬−

2

a୭
+  

r

2a୭
ଶ

൰ eି୰/ଶୟ౥൰ + ቆAଶ,଴,଴ ቆ
3

2a୭
ଶ

− 
r

4a୭
ଷቇ eି୰/ଶୟ౥ቇ ቇ

−  
kୣeଶ

r
൬Aଶ,଴,଴  ൬2 −

r

a୭
൰ e

ି
୰

ଶୟ౥൰ = E ൬Aଶ,଴,଴  ൬2 −
r

a୭
൰ e

ି
୰

ଶୟ౥൰ ; 

 
− ħଶ

2m
ቆ

2

r
൬−

2

a୭
+  

r

2a୭
ଶ

൰ + ቆ
3

2a୭
ଶ

−  
r

4a୭
ଷቇ ቇ − 

kୣeଶ

r
 ൬2 −

r

a୭
൰ = E ൬2 −

r

a୭
൰ . 

 
Now, we have three kinds of terms here, ones that are proportional to r, ones inversely 
proportional to r, and constant ones.  We should be able to construct three independent 
equations. 
 

1

r
 terms:       

2ħଶ

ma୭
− 2kୣeଶ = 0    →      a୭ =  

 ħଶ

mkୣeଶ
=  0.53 × 10ିଵ  m  .  

 
We recognize this as the Bohr radius, as was asserted above. 
 

r terms:       
ħଶ

8ma୭
ଷ = −

E

a୭
   →      E =  − 

ħଶ

8ma୭
ଶ

=  − 
(1.055 × 10ିଷସ)ଶ

8(9.11 × 10ିଷଵ)(5.3 × 10ିଵଵ)ଶ

= − 5.44 × 10ିଵଽ J = − 3.4 eV   .  
 
This is in agreement with the Bohr model for the n = 2 orbit, and more importantly, also with 
spectroscopic measurements. 
 

constant terms:   
− ħଶ

2m
൬

1

a୭
ଶ

+  
3

2a୭
ଶ

൰ +  
kୣeଶ

a୭
= 2E     →      E =  −

1

4
 
mkୣ

ଶeସ

2 ħଶ
=  − 3.4 eV   . 

 
The constant terms equation tells us nothing new. 
 

HOMEWORK 13-1 
 

Substitute the wavefunction for n = 1, l = 0, ml = 0 state into the Schrödinger equation and 
confirm that the energy is indeed -13.6 eV. 
 

HOMEWORK 13-2 

Use the L෠z operator −iħ
ப

பம
 on the wavefunction for n = 3, l = 2, ml = 2 state and confirm that 

it returns the correct value for Lz. 
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Are there other agreements with the Bohr model?  In terms of the ‘orbit’ sizes, generally the larger 
l, the farther out from the proton the wavefunction has its maximum; indeed, it can be shown fairly 
easily that the following correspondence is correct: 
 

Bohr 
state 

Bohr model 
radius 

Schrödinger state with wavefunction 
maximum at the same value 

n = 1 0.53 Å n = 1; l = 0     1s 
n = 2 2.12 Å n = 2; l = 1     2p 
n = 3 4.77 Å n = 3; l = 2     3d 
n = 4 8.48 Å n = 4; l = 3     4f 

 
EXAMPLE 13-2 
 

Show that the maximum probability for the n = 1, l = 0, ml = 0 state (1s) occurs at the same 
distance from the origin as the Bohr radius. 
 
The wave function is ψଵ,଴,଴ = Aଵ,଴,଴ Rଵ,଴(P଴

଴)e଴ =  Aଵ,଴,଴eି୰/ୟ౥.  The probability of finding the 
electron in some region is then 
 

Prob =  න ψଶ 𝑑V = Aଵ,଴,଴
ଶ  න൫eି୰/ୟ౥൯

ଶ
rଶ sin θ 𝑑r 𝑑θ 𝑑ϕ = 4π Aଵ,଴,଴

ଶ  න൫eି୰/ୟ౥൯
ଶ

rଶ𝑑r   . 

 
Let’s find the maximum of what’s left.  If we set 
 

𝑑

𝑑r
൫rଶeିଶ୰/ୟ౥൯ = 2reିଶ୰/ୟ౥ −  rଶ  

2

a୭
e

ି
ଶ୰
ୟ౥ = 0   , 

 
we get three solutions:  r = 0, r = ∞, and r = ao. 

 
HOMEWORK 13-3 
 

Verify that the probability for n = 2, l = 1, ml = +1 has a maximum at the same distance from 
the origin as the second Bohr orbit radius, 4ao.   
 
The wave function is 
 

𝜓ଶ,ଵ,ଵୀAଶ,ଵ,ଵ Rଶ,ଵ(Pଵ
ଵ)e୧(ଵ)ம = Aଶ,ଵ,ଵ  

r

a୭
eି୰/ଶୟ౥  sin θ e୧ம  . 

 
The probability of finding the electron in some region is then 
 

Prob =  න ψଶ 𝑑V =
Aଶ,ଵ,ଵ

ଶ

a୭
ଶ

 න ൬e
ି

୰
ଶୟ౥൰

ଶ

rସ sinଷ θ 𝑑r 𝑑θ 𝑑ϕ =
8𝜋

3

Aଶ,ଵ,ଵ
ଶ

a୭
ଶ

 න ൬e
ି

୰
ଶୟ౥൰

ଶ

rସ𝑑r   . 
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Find the maximum of what’s left.  Set 
 

𝑑

𝑑r
൫rସeି୰/ୟ౥൯ = 0   . 

Finish….. 
 
Next, let’s examine ml.  We are pretty certain that 
 

L෠୸ψ =  −iħ
∂ψ

∂ϕ
=  L୸ψ . 

and 
 

ψ(r, θ, ϕ) = R(r)Θ(θ)e୧୫೗ம. 
So,  
 

L෠୸ψ =  −iħ
∂ψ

∂ϕ
= −iħ

∂൫R(r)Θ(θ)e୧୫೗ம൯

∂ϕ
=  −iħ R(r)Θ(θ)

∂e୧୫೗ம

∂ϕ
=  −iħ R(r)Θ(θ) im௟e

୧୫೗ம

=  m௟ħ ψ , 
 
which tells us that  
 

L୸ =  m௟ħ , 
 
that is, the z-component of the electron’s angular momentum is quantized, or can have one of only 
a limited number of values, depending on the particular state.  This is also reminiscent of the Bohr 
model, except that the angular momentum is associated with quantum number ml and not with 
‘orbit number’ n.  In fact, the match is very poor:  for Bohr, n = 1 has Lz = ħ, but in the Schrödinger 
model, Lz = 0, and for n = 2, Bohr has Lz = 2ħ, but Schrödinger has Lz as either 0 or ± ħ, and so 
forth.   
 
Similarly, the index number l is also related to a physical quantity.  Remember that we determined 
that   
 

L෠ଶψ =  −ℏଶ ቆcotθ
𝑑ψ

𝑑θ
+

𝑑ଶψ

𝑑θଶ
+  

1

sinଶθ

𝑑ଶψ

𝑑ϕଶ
ቇ. 

 
But, back when we were separating out the solutions functions for the Schrödinger equation, we 
set this quantity in brackets to – l (l+1). So, 
 

L෠ଶψ =  − ħଶ(−𝑙(𝑙 + 1)) ψ =  Lଶψ. 
 
This then tells us the possible values of the magnitude of the angular momentum: 
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L =  ඥ𝑙(𝑙 + 1) ħ . 
 
So how do we interpret these results?  To recap, L is the angular momentum and Lz is the 
component of L along the z-axis.  That is, not only is the magnitude of L restricted to certain 
values, but its direction is limited as well, lying on a cone of angle θl,ml from the z-axis: 
 

n l ml L Lz θl, ml 
1 0 0 0 0 -- 
2 0 0 0 0 -- 
 1 0 21/2 ħ 0 90o 
 1 ±1 21/2 ħ ±ħ 45o, 135o 

3 0 0 0 0 -- 
 1 0 21/2 ħ 0 90o 
 1 ±1 21/2 ħ ±ħ 45o, 135o 
 2 0 61/2 ħ 0 90o 
 2 ±1 61/2 ħ ±ħ 66o, 114o 
 2 ±2 61/2 ħ ±2ħ 35o, 145o 

 
HOMEWORK 13-4 
 

Consider an electron for which n = 4.  Calculate the angle between Lሬ⃑  and the z-axis for all 16 

such states.  Remember that Lz is the projection of Lሬ⃑  along the z-axis.  
 
Evidence for Angular Momentum: The Zeeman Effect 

Is there any evidence that the electron actually has orbital angular momentum?  We’ve discussed 
the spectral lines given off by electrons in a Bohr atom and that the Schrödinger model, in 
predicting the same energy levels, predicts the same emission wavelengths.  What happens to these 
wavelengths if the atom is in a moderately strong magnetic field?  The result is called the normal 
Zeeman effect.  It is due to the orbital magnetic moment of the electron.  Remember that, since the 
electron is negatively charged, the magnetic moment and angular momentum will be in opposite 
directions.  A dipole in an external magnetic field B possesses energy 

U୑ =  − μሬ⃑ ୑ ∙ Bሬሬ⃑  . 

Let’s estimate the moment, μM, using a classical picture of the electron orbiting in a circle about 
the proton at the center of the atom.  The current in this ‘loop’ is the charge per time to complete 
one revolution (the period): 

 

I =
q

P
=

q

ቀ
2πr

v
ቁ

=  
qv

2πr
  . 

The magnetic moment of such a loop is  
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μ୑ = IA =
qv

2πr
 πrଶ =  

qvr

2
 .  

 
Let the +z direction correspond to the direction of the magnetic field.  The z-component of the 
electron’s orbital angular momentum is   
 

L୸ = (mrଶ)ω = mrv ,    but also     L୸ =  m௟ℏ.  

Then, the component of the magnetic moment parallel to the magnetic field is 

μ୑ ୸ =
qvr

2
 =

q(mrv)

2m
=

qL୸

2m
=

e(m௟ℏ)

2m
= m௟

eℏ

2m
  

and the potential energy is then 

U୑ =  − μሬ⃑ ୑ ∙ Bሬሬ⃑ =  − μ୑ ୸ B୸ =  m୪

eℏ

2m
B  . 

The quantity 
ୣℏ

ଶ୫
 appears often and is called the Bohr magneton; its value is 9.274×10-24 J/T.  The 

energy of the nth electron level is then 

E୬,୫೗
= −

1

nଶ
 
mkୣ

ଶeସ

2 ħଶ
+ m௟

eℏ

2m
B  . 

So, the energy levels of the electron should separate6 as a function of the applied magnetic field, 
B.  This will show up as a split in the emission lines of the atom.   

E୮୦୭୲୭୬ = E୬భ,୫ౢ భ
− E୬మ,୫ౢ మ

= ൫E୮୦୭୲୭୬൯
୆ୀ଴

+ ∆m௟

eℏ

2m
𝐵  . 

The graph shows the shift in the energy of one 
of the emission lines in cadmium as a function 
of applied magnetic field.7, 8  The slopes of the 
lines are each within about two per cent of the 
value of the Bohr magneton. 

EXAMPLE 13-3 

The Hα line (656.28 nm) from a distant star’s surface appears as three separate lines separated 
by 2.67 nm.  What is the magnetic field B on the star’s surface? 

                                                           
6 Just FYI, the linear behavior is only at fairly ‘small’ magnetic fields. 
7 “Measuring the Zeeman splitting of the red cadmium line as a function of the magnetic field – spectroscopy using a 
Fabry-Perot etalon,” LD Didactic GmbH. 
8 As usual, the situation is more complex than we let on here.  Each of these wavelengths is emitted by three transitions, 
although each with the same shift in energy. 
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E =  
hc

λ
     →      ∆E =  −

hc

λଶ
 ∆λ     →     Δm୪

eℏ

2m
 B =  −

hc

λଶ
 ∆λ 

 B =  −
4πmc

Δm୪eλଶ
 ∆λ   . 

If there is no change in ml, then the B-field could be anything.  A change of 1 results in a shift 
of 2.67 nm, in which case 
 

B =  
4π(9.11 × 10ିଷଵ)(3 × 10଼)

(1)(1.6 × 10ିଵଽ)(6.5628 × 10ି଻)ଶ
 (2.67 × 10ିଽ) =   133 T  . 

 

But Wait! There’s More! 
 
Now, we’ve mapped out the possible states for an electron in the hydrogen atom.  We might 
assume (correctly) that the same general scheme is present in multi-electron atoms.  But here is a 
question: why do not all of the electrons of an atom eventually fall into the n = 1, l = 0, ml = 0 
state, which is, after all, the lowest possible energy state?  This behavior is summarized by the 
Pauli exclusion principle, which says that there can be only one electron in any given state; if the 
lower states are filled, additional electrons can only go into higher states.  Particles that follow this 
rule are now referred to as fermions.  Now, this gives rise to an additional problem.  Chemistry 
tells us that there can be two electrons in the n = 1, l = 0, ml = 0 state.  Somehow, the two electrons 
there must actually be in different states; we need another quantum number! 
 
Let’s finish off the analogy of the electron motion with that of a planet around the sun.  Planets 

not only have orbital angular momentum (which we labelled Lሬ⃑ ), but also rotational angular 

momentum, Sሬ⃑ .  Particles such as electrons have an intrinsic magnetic moment, which we semi-
classically interpret as due to the rotation, or spin, s, of the particle.9  The spin angular momentum 
S is also quantized according to the relationship 
 

S =  ℏඥs(s + 1) , 
 
with the value of s determined by the particle.  For electrons, protons, and neutrons, s = ½.  Later, 
we’ll discuss particles with other values of s.  Additionally, we expect the z-component of S to be 
quantized: 
 

S୸ =  mୗℏ , mୗ =  ±
1

2
  . 

HOMEWORK 13-5 
 

Find the angles the electron’s spin Sሬ⃑  makes with the z-axis. 

                                                           
9 Uhlenbeck and Goudsmit, Nature 117 p264 (1926). 
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Evidence for Electron Spin: The Phipps-Taylor Experiment 
 
These two states are referred to as ‘spin up’ and ‘spin down.’  Experimentally, this was 
demonstrated by Phipps and Taylor,10 who projected a beam of fairly cool hydrogen atoms through 
a non-uniform magnetic field.  The atomic beam split into two clear deflections.  Since the atoms 
were cool, the electrons were mostly in the n = 1 lowest energy state11 where the orbital angular 
momentum is zero, and so no magnetic moment was expected from the ‘orbit’ of the electron.  The 
effect seen was orders of magnitude too large to be due to any magnetic moment of the proton, 
and so it must have been due to the spin moment of the electron. 
 
EXAMPLE 13-4 

 
First, let’s estimate the spin magnetic moments of the electron and proton.  Consider a point 
charge q moving uniformly in a circular path.  Just above, we showed that 
 

μ =
qL୸

2m
  .  

 
Note that this expresion does not depend on r or v, so let’s shrink the orbit so that it begins to 
resemble a rotating sphere rather than a revolving point.  The orbital angular momentum 
becomes the spin angular momentum, and we obtain, roughly, 
 

μ =
qL୸

2m
    →    

qS୸

2m
=  

q൫ଵ
ଶ

ℏ൯

2m
 =  

qℏ

4m
 .   

 
EXAMPLE 13-5 
 

Calculate the approximate values of the magnetic moments for the electron and proton:12 
 

μ୑ ୣ ≈  
(1.6 × 10ିଵଽ)(1.055 × 10ିଷସ)

4(9.11 × 10ିଷଵ)
≈  5 × 10ିଶସ  

Cmଶ

s
 .  

 

μ୑ ୮ ≈  
(1.6 × 10ିଵଽ)(1.055 × 10ିଷସ)

4(1.67 × 10ିଶ଻)
≈  3 × 10ିଶ଻  

Cmଶ

s
 .  

 
 

                                                           
10 Phipps, T. E., and J. B. Taylor, ‘The Magnetic Moment of the Hydrogen Atom,’ Phys. Rev. 21 p301 (1927).  This 
experiment presents much cleaner results than the more well-known Stern-Gerlach experiment. 
11 You actually had a homework question back when we were discussing the Boltzmann factor.  The probability of a 
system at 600K being in a level 10.2 eV above the lowest level was just about zero. 
12 These calculations are correct to the order of magnitude.  For the electron, it’s about half the correct value.  For the 
proton, the result is about one sixth the correct value.  Surprisingly, the neutron has a magnetic moment, as well. 
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Let’s do a quick derivation to see how this experiment works.  
Consider the magnetic moment to be due to a small bar magnet, 
consisting of north and south magnetic charges qM (monopoles!) 
separated by distance d.  In analogy with the electric dipole, we would 
have that  
 

μ୑ =  q୑d.  
 
Let’s shoot these dipoles in the x-direction through a non-uniform 
magnetic field in the z-direction, such that there is a field gradient 
dB/dz. There will be a force on each of the magnetic charges, FM = qMB, 
but the force on each charge will be different, due to the difference in 
field strength at each location.  The net force on the particle will be 
 

F୒୉୘ =  B୒q୑ −  Bୗq୑ = (B୒ −  Bୗ)q୑ =  ΔBq୑

d

d
=  

ΔB

d
(q୑d) →  

𝑑B

𝑑z
 μ୑  . 

 
Particles with their magnetic moments aligned with the field will be attracted to the region of 
stronger field, while those with anti-parallel alignment will be repelled to the region of lower field 
strength. 
 
EXAMPLE 13-6 
 

In the Phipps and Taylor experiment, a stream of hydrogen atoms moves in the x-direction 
from an oven at 390oC.  They move through a tube of length 0.03 m in which there is a non-
uniform magnetic field with dB/dz = 1250 T/m.  Two beams are detected on a screen at the 
end of the tube, separated by 0.2 mm.  At this temperature, the atoms are cool enough so that 
the electron is in the n=1, l = 0 state13 with no orbital angular momentum.  Is this separation of 
the beams due to the magnetic moment of the electron, or of the proton? 
  
The force on the atom is given by  

F୸ =  
𝑑B

𝑑z
 μ. 

 
The z-acceleration imparted by this force is  
 

a୸ =  
F୸ 

m
  

 
The distance traveled in the z-direction is: 

                                                           
13 As was discussed in a previous section, the electrons will be almost certainly in the n=1 state at this temperature. 
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∆z =  
ଵ

ଶ
 a୸ ∆tଶ =

ଵ

ଶ

 F୸

m
 ∆tଶ =  

 
𝑑B
𝑑z

 μ

2m
 ∆tଶ. 

 
The time over which the force was applied is given by14 
 

∆t =  
∆x

v୶
=  ∆x ඨ

m

3k୆T
   . 

 
So,  
 

∆z = ቌ
 
𝑑B
𝑑z

 μ

2m
ቍ ∆tଶ  =

 
𝑑B
𝑑z

 μ ൬∆x ට
m

3k୆T
൰

ଶ

2m
=  

 
𝑑B
𝑑z

 μ (∆x)ଶ 

6k୆T
  , 

and 

μ = ∆z 
6k୆T

𝑑B
𝑑z

 (∆x)ଶ
=  1.9 × 10ିସ

6 (1.38 × 10ିଶ )(663)

1250 × (0.03)ଶ
=  9.3 × 10ିଶସ  

Cmଶ

s
 . 

 
This value is approximately what we calculated for the electron,15 and three orders of 
magnitude greater than the value for the proton.  Hence, the electron clearly has a spin angular 
momentum. 

HOMEWORK 13-6 

Consider an electron in a magnetic field of 5 Tesla (pretty strong!).  What is the difference in 
the energies of the ‘spin up’ state and the ‘spin down’ state?  Use the currently accepted value 
for the electron’s magnetic moment, 9.28×10-24 J/T. 

Some Additional Stuff 

Here is one (of many) corrections to the model above.  The interaction between the magnetic dipole 
moment of the electron and that of the proton in hydrogen splits the n = 1 energy level into two 
levels (the hyperfine structure) separated by 5.874 micro-electron volts.   The math for this 
calculation is just barely beyond the scope of this course. 

HOMEWORK 13-7 

Calculate the wavelength of the photon emitted by the electron as it flips from one state (n = 
1, l = 0, ml = 0, mS = +1/2) to the other (n = 1, l = 0, ml = 0, mS = -1/2).  FYI, this emission is 
useful in astronomy for detecting cold neutral hydrogen in space. 

                                                           
14 The speed is estimated by the r.m.s. speed for ideal gases. 
15 The currently accepted value is 9.28476×10-24 J/T. 
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Summary 

We’ve applied the Schrödinger equation to a point particle moving through a central Coulomb 
field to determine the approximate energies of an electron in a hydrogen atom.  There are many 
aspects of a real atom that we have ignored.  For example, the proton is not infinitely massive, and 
therefor wobbles a bit as it and the electron ‘orbit’ their common center of mass.  We’ve ignored 
a number of effects that we know we should have included, but even if we were to consider these 
perturbations, they are nothing compared to the effect of adding just one more electron. 


