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Section 14 - The Nucleus 

“If, as I have reason to believe, I have disintegrated the nucleus of the atom, this is of greater 
significance than the war.” 

Ernest Rutherford 

Since the nucleus of the hydrogen atom can 
be readily identified as a proton with charge 
e, and since we can suss the charge on the 
nucleus of each of the various elements, we 
presume that the charge will be Ze, with Z 
the number of protons.  We also should be 
able to predict the masses of any nucleus to 
be Z mP ,1 that is, an integer times the mass 
of a proton. However, as seen in the graph 
at right, the masses are higher than expected 
by roughly a factor of 2.5!  What’s more, the 
mass of each element is generally not 
actually an integer multiple of mP. 

Isotopes 

One experiment that will help us solve this puzzle is the discovery of isotopes, sets of nuclei with 
the same electric charge, but different masses.  Although there was some early work by Thomson 
(neon has isotopes of 20 and 22 times the proton mass2), we’ll concentrate on the results of F.W. 
Aston.3  Aston made use of the mass spectrometer, a device we examined briefly in Semester Two.  
Material is heated to the gas phase, ionized (i.e., some number of electrons are removed), sent 
through a velocity selector, then turned in a large magnetic field.  The radius of the resulting curves 
path is proportional to the mass to charge ratio.  Since e is a well-known value, Aston could 
determine the masses to within 0.1%. 

One of the questions asked above was, why are the masses of atoms of a particular element not 
integer multiples of the proton mass?  For example, neon has an atomic mass of approximately 
20.2 mP.  Aston confirmed the existence of two types of neon, one (Ne-20) with a mass of almost 
exactly 20 mP and the other with a mass of 22 mP, with Ne-22 being about 10% of the total.   

EXAMPLE 14-1 

What would be the average mass of neon if 90% were Ne-20 and 10% were Ne-22? 

Atomic mass = 0.920 + 0.122 = 20.2 mP, as expected. 

                                                           
1 For now, we’ll use the mass of the proton as the unit of mass.  You may be familiar with the atomic mass unit 
(a.m.u.), which is 1/16th the mass of an oxygen atom and which is now considered an antiquated unit.  The currently 
correct unit is the Dalton, which is 1/12 the mass of a carbon-12 atom.  We’ll be more specific later. 
2 These numbers are almost exactly integers. 
3 Francis W. Aston, ‘Mass Spectra and Isotopes,’ Nobel Lecture, December 12th, 1922.  
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HOMEWORK 14-1 

Aston measured two isotopes of chlorine 
to have masses of 35 and 37 mP, 
respectively.  The average mass of 
chlorine is 35.46 mP.  What is the ratio of 
Cl-35 to Cl-37? 

Aston went on to measure the masses of 84 
isotopes of 34 different elements; each mass 
came out to be an integer number of proton 
masses, to within 0.1%.  Here are some 
modern data for the light end of the periodic 
table; none of these masses is more than 0.7% 
away from an integer number of proton 
masses.  It’s difficult to believe that the 
nucleus is composed of anything but protons! 

The Aston Model 

Here is the model put forth by Aston.  As 
usual, Z is the net charge of the nucleus.  A 
will be the atomic mass in proton masses, 
which equals the number of protons.  Since 
A>Z, we need to neutralize some of the 
charge by adding A-Z electrons to the 
nucleus.  Since the charge of the electron is 
exactly opposite that of the proton, one electron cancels one proton.  In terms of mass, the electrons 
are 0.05% of a proton mass, and will have little effect on the mass measurements.   

Element number = charge of nucleus Z 

Atomic mass A 

Protons in the nucleus A 

Electrons in the nucleus A - Z 

Electrons in orbits around the nucleus Z 
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Now, let’s see why this model 
won’t work.  Consider one of the 
‘nuclear electrons.’  It is 
essentially trapped in the nucleus, 
presumably due to coulomb 
forces.  Assume we have a fairly 
massive nucleus, so that A is a 
large number.  We’ll assume that 
the A protons and the other A-Z-1 
nuclear electrons are uniformly 
distributed in a sphere of radius R, 
the net charge of which would 
then be (Z+1)e.  Ignoring the 
orbiting electrons (we’re well 
inside a gaussian surface that excludes them), we can find the potential energy of our nuclear 
electron as a function of distance from the center of the nucleus.  You did this as an example in 
Semester Two: 

𝑈(𝑟) =  −
𝑘௘𝑄𝑞

𝑟
→  − 

𝑘௘(𝑍 + 1)𝑒ଶ

𝑟
  𝑓𝑜𝑟 𝑟 > 𝑅, 

𝑈(𝑟) =  
𝑘௘𝑄𝑞

2𝑅ଷ
𝑟ଶ −  

3𝑘௘𝑄𝑞

 2𝑅
→  

𝑘௘(𝑍 + 1)𝑒ଶ

2
ቆ

𝑟ଶ

𝑅ଷ
− 

3

 𝑅
ቇ   𝑓𝑜𝑟 0 < 𝑟 < 𝑅. 

Let’s approximate this potential well as a cube of edge length 2R.  If the walls were infinitely high 
(which they are not), the lowest possible energy for such an electron would be  

Eଵ,ଵ,ଵ =  (1ଶ + 1ଶ + 1ଶ )
hଶ

8mLଶ
 ≅ 3

hଶ

8m(2R)ଶ
=  

3

32

hଶ

mRଶ
  above the bottom of the well. 

EXAMPLE 14-2 

Calculate the depth of the Coulomb well based on the diagram above.  An order of magnitude 
calculation is fine.  Assume the radius of the nucleus to be about 10 -14 m and Z to be 79 (gold). 

Calculate the lowest possible energy state for an electron in an infinite cubic well of edge 2R. 
An order of magnitude calculation is fine. 

Alternatively, calculate the energy of an electron confined to the nucleus using the De Broglie 
wavelength, i.e., λdB ≃ 2R. 

What do these results indicate? 

U(0) =
3kୣ(Z + 1)eଶ

2R
=   

3(9 × 10ଽ)(80)(1.6 × 10ିଵଽ)ଶ

2(10ିଵସ)
 ≈ 3 × 10ିଵଶJ ≅ 20 MeV. 

Eଵ,ଵ,ଵ =  
ଷ

ଷଶ

୦మ

୫ୖమ
=  

ଷ

ଷଶ

൫଺.଺ଷ×ଵ଴షయర൯
మ

(ଽ.ଵଵ×ଵ଴షయభ)(ଵ଴షభర)మ
≅ 510ିଵ଴ J ≅ 300 MeV.   
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E =  
pଶ

2m
=  

hଶ

2mλୢ୆
ଶ =

hଶ

8mRଶ
=  

(6.63 × 10ିଷସ)ଶ

8(9.11 × 10ିଷଵ)(10ିଵସ)ଶ
 ≅ 6 × 10ିଵ଴ J ≅ 300 MeV.   

So, this suggests that an electron restricted to the nucleus would have an energy much higher 
than the depth of the potential well.  So, it seems unlikely that there are any electrons in the 
nucleus.4  Any electrons there would quickly scoot out.   

So, it appears Aston’s model is a no go.   

Enter the Neutron 

Like many discoveries of modern physics, that of the neutron was accidental.  Streams of neutrons 
were initially mis-identified as a type of gamma ray; subsequent experiments indicated that this 
unknown radiation was a neutral particle with a mass roughly equal to that of a proton.  So, we 
now have a candidate to explain the unexpected extra mass of the nucleus and the existence of 
isotopes; the nucleus contains Z protons that determine the X-ray spectra and, indirectly, the 
chemical properties of the atom, and A-Z neutrons that account for the ‘extra’ mass of the atom.   

Wrong ideas often linger for a while after discoveries are made.  Consider the possibility that a 
neutron is just a ‘paired’ proton and electron, that is, that Aston’s model is essentially correct but 
that the electrons, for some reason, can’t escape the nucleus.  Chadwick and Goldhaber5 irradiated 
the nucleus of ‘heavy hydrogen’ (deuterium) with gamma radiation.  The assumption was that the 
nucleus comprises a proton and a neutron, and that the energy of the gamma-ray will split the 
nucleus.  The energy released will appear as the kinetic energies of the proton and neutron.  The 
energy of the proton is fairly easy to measure (it’s charged) and the actual mass of the neutron can 
then be calculated. 

EXAMPLE 14-3 

The mass of a proton by definition is 1 proton mass.  The mass of deuterium is 1.9990 proton 
masses.  A gamma ray of energy 2.62 MeV strikes a stationary deuteron and splits it.  As an 
approximation, we’ll assume that the kinetic energies of the resulting particles are equally 
distributed between them (See Note One).  The kinetic energy of the proton Kp is measured to 
be 0.25 MeV.  Then, making use of the relativistic rest energies of the particles: 

mୈcଶ + hf = m୔cଶ +  m୒cଶ + 2K୔  

m୒ =  mୈ −  m୔ +
hf

cଶ
−  

2K୔

cଶ
 

                                                           
4 This is complicated in that we do occasionally see electrons ejected from the nucleus (beta decay). More on this 
later. 
5 Chadwick, J., and M. Goldhaber, ‘A Nuclear Photo-effect: Disintegration of the Diplon by γ-Rays,’ Nature 134 
(1934) p 237. 
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m୒ = 1.9990 × 1.672622 × 10ିଶ଻ − 1.672622 × 10ିଶ଻ +
2.62 × 10଺ × 1.602 × 10ିଵଽ

(3 × 10଼)ଶ

−  
2 × 0.25 × 10଺ × 1.602 × 10ିଵଽ

(3 × 10଼)ଶ
=  1.674736 × 10ିଶ଻ kg

= 1.0013 proton masses. 

The sum of the masses of a proton and separate electron is 1.0005 proton masses, while the mass 
of a neutron, we’ve just calculated, is 1.0013 proton masses.  This indicates that the neutron is not 
a bound pair; from special relativity, we know that a stable bound state should have a mass less 
than the sum of the masses of the individual parts.6 

It appears that the neutron is a new, distinct particle.  So, let’s replace all those extra protons in the 
Aston model with N neutrons.  Now, a nucleus of charge Z and mass A contains Z protons and N 
= A - Z neutrons. 

What holds the nucleus together? 

In any nucleus more complicated than hydrogen, we have a number of positively charged protons 
repelling each other.  Why doesn’t the nucleus fly apart?  There must be some other force attracting 
them together.  What about gravity? 

EXAMPLE 14-4 

Compare the electric potential energy of two protons separated by 10-15 m to their gravitational 
potential energy. 

U୉ =  
kୣqଶ

r
=  

(9 × 10ଽ)(1.6 × 10ିଵ )ଶ

10ିଵହ
≈  10ିଵଷ J  

U୥ =  −
Gmଶ

r
=  −

(6.67 × 10ିଵଵ)(1.67 × 10ିଶ଻)ଶ

10ିଵହ
≈  −10ିସଽ J . 

Well, it’s not gravity. 

So, we need a new force.  What characteristics should it possess? 

1) The force must be fairly strong at short distances so that protons (and we assume neutrons) 
attract but negligible at distances greater than ~1.510-14 m (the Rutherford experiment 
indicates that the Coulomb force is dominant beyond this distance). 

2) The force is neither gravitational nor electrical.   
3) The force doesn’t act on electrons. 

For now, we’ll refer to this force as the nuclear force.7 

                                                           
6 On the other hand, as we’ll see in the next Section, a neutron can dissociate into a proton and an electron, plus a 
’new’ particle known as an anti-neutrino, through a process known as beta decay.  However, the current upper limit 
on the mass of the anti-neutrino is about 10-8 that of a proton, and so this doesn’t affect the binding energy argument 
given above.   
7 There are actually two.  We won’t deal directly with the other. 
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There are a number of models that have been used for the 
force’s potential, UN. These have been refined over the 
years, based on more detailed experimental results.  We 
will use a very simple function.  Combining the electric 
and nuclear potentials results in a net potential as shown 
in the figure.  Beyond a given radius, R, the nuclear force 
is essentially zero and only the Coulomb repulsion acts. 
Within R, the nuclear force must be much stronger than 
the electric force; we will assume that the two forces 
create a square well.  In addition, since we think that the 
radius of the nucleus is proportional to the cube root of 
the number of nucleons (well, for larger nuclei, anyway), 
there must be some smallest distance they can get to each other.  Of course, for proton-neutron or 
neutron-neutron pairs, the Coulomb potential would be omitted.  In the next section, we’ll see that 
the depth of this well is approximately 310-13 J. 

A ‘Modern’ Unit for Mass 

So far, we’ve been discussing masses either in terms of the proton mass or, with much less 
accuracy, with the atomic mass number, the sum of the protons and neutrons in the nucleus.    From 
this point on, we’ll have to be much more careful about these masses. 

I’m old enough to remember the atomic mass unit (amu) as the unit of mass; it was defined as one-
sixteenth the mass of an oxygen-16 nucleus.  Sixty years ago, the switch was made to the Dalton 
(symbol, Da), one-twelfth the mass of a carbon-12 nucleus.  This corresponds to neither of our 
particles’ masses. 

Mass of proton 1.007276 Da 
Mass of neutron 1.008664 Da 
Mass of electron 0.00054858 Da 

 

Many of the forthcoming calculations concern the small difference between large numbers; it will 
be important to carry as many significant figures as possible. 

Binding Energy 

The energy associated with the binding together of particles (the binding energy) can be found 
using special relativity:  the difference between the nucleus mass and the mass of the separated 
constituent parts, times c2: 

E୆ =  (Zm୔ + Nm୒− m୬୳ୡ୪ୣ୳ୱ)cଶ . 
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Since we’re going to be doing this kind of calculation many times, let’s make it easier.  The rest 
energy (moc2) of one Dalton is about 931.5 MeV.  This changes the expression above to a perhaps 
more convenient: 

E୆ =  (Z × 1.007276 + N × 1.008664 −  m୬୳ୡ୪ୣ୳ୱ) × 931.5 MeV . 

Note that with this formulation, a higher binding energy means that the parts are more tightly 
bound together. 

EXAMPLE 14-5 

Calculate the binding energy of the deuteron, given that mDeuteron = 2.013553 Da. 

E୆ = ( m୔ + m୒ −  mୈ)cଶ = (1.007276 + 1.008664 −  2.013553) 931.5 MeV

= 2.223 MeV. 

This is the energy required to separate the deuteron into a proton and a neutron.  In Chadwick’s 
experiment, a 2.62 MeV gamma ray split the deuteron, but when the experiment was repeated 
using gamma rays of energy 1.8 MeV, no dissociation was observed, as would be expected. 

HOMEWORK 14-2 

Calculate the binding energy of the triteron (one proton and two neutrons), given that mTriteron 
= 3.015501 Da. 

Estimating the Binding Energy of a Nucleus 

We will discuss aspects of three models, then see if we can combine them into a relationship that 
will predict the binding energies of nuclei.8  The first is the liquid drop model, which seems self-
explanatory.  We will find that our final result will be valid only for larger nuclei (A ≥ 20), where 
the nuclear density is fairly constant.  If the density is constant, then the volume of the nucleus 
should be proportional the A, the number of particles there.   

Let’s think about some energy considerations. 

1) Our first assumption is that all nucleons are attracted to one another with a constant force.  The 
range of this force is very short, and so only nearest neighbors interact. Then assuming that 
each nucleon interacts with the same number of nearest neighbors, the corresponding potential 
energy term should be proportional to the number of nucleons: 
 

∆Eଵ =  CଵA . 
 

2) The second term involves those nucleons at the surface of the drop.  Those particles are not 
completely surrounded with neighbors as the interior ones are, have fewer interactions, and so 
less binding energy.  The number of such nucleons should be proportional to the surface area 
of the drop.  The surface area is proportional to the radius squared (R2) and the atomic mass 

                                                           
8 Von Weizsäcker, C. F. ‘Zur Theorie der Kernmassen,’ Z. für Physik 96 pp 431–458. 
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number A is proportional to the volume, which is in turn proportional to R3, so this term is 
proportional A2/3. 

∆Eଶ =  −CଶA 
ଶ
ଷ . 

 
3) The next term accounts for the Coulomb repulsion among the protons.  As we showed in 

Semester Two, the potential energy of a uniformly charged sphere (Q, R) is  

𝑈ா =  
3𝑘௘𝑄ଶ

5𝑅
  . 

 
However, we have discrete charges, so the Q2 terms should be replaced with Z(Z-1)e2/2 to 
reflect the Z(Z-1)/2 pairs of protons  We also realize that R is proportional to A1/3. So,  
 

∆𝐸ଷ =  −𝐶ଷ 𝑍(𝑍 − 1)𝐴ି
ଵ
ଷ .  

 
4) Consider the Fermi gas model, in which each type of nucleon fills up energy levels much as 

the electrons do.9  Since 
protons and neutrons are 
distinct particles, it is 
possible to have one of 
each in a particular state 
without violating the Pauli 
exclusion principle. Let’s 
take a look at an abstract 
example.  In the figure, we 
see energy levels for a set 
of three isobars, nuclei 
with the same atomic mass 
number, A.  On the left, we 
see the situation with Z = 
N.  Note that the energy 

levels become more widely spaced as we move up through them.  Changing either a proton to 
a neutron or a neutron to a proton would increase the energy of the system, rendering it therefor 
less stable.   
 
It’s easy to see that the closer N and Z are, the lower the system energy will be for a given 
value of A.  So we need a term related to |N – Z|.  Let’s see if we can work out an expression 
for this correction. As usual, we will be making a few approximations. 
 
Let u = N – Z.  Then N = ½(A + u) and Z = ½(A – u).  We’ll assume that the difference in 
energy between the most energetic neutrons and the most energetic protons is not too big and 

                                                           
9 The Fermi gas modification to the liquid drop picture was actually necessary to prevent a number of flaws. 
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that A remains constant.  The energies of those particles are given by their respective fermi 
energies, which in turn are each proportional to the two-thirds power of the numbers of 
neutrons and protons, respectively (see NOTE).  The combined energies of these outlying 
particles is then 
 

E = N୤୒ + Z୤୔ =  Dଵ൫Nହ/ଷ + Zହ/ଷ൯ = Dଶ൫(A + u)ହ/ଷ +  (A − u)ହ/ଷ൯ ,  
 
with the Ds being constants whose values we do not care about.  Let’s expand this expression 
about u = 0, or N = Z: 
 

E(u) ≈  ൤Dଶ ൬(A + u)
ହ
ଷ +  (A − u)

ହ
ଷ൰൨

୳ୀ଴
+  ൤Dଷ ൬(A + u)

ଶ
ଷ −  (A − u)

ଶ
ଷ൰൨

୳ୀ଴
u

+  ൤Dସ ൬(A + u)ି
ଵ
ଷ + (A − u)ି

ଵ
ଷ൰൨

୳ୀ଴
uଶ + ⋯ 

Since the linear term is zero, this becomes 

 
E(u) ≈  DହAହ/ଷ +  D଺Aିଵ/ଷ uଶ + ⋯ 

 
Now, another approximation.  If N = Z (our expansion point, u = 0), then the fermi energies of 
the most energetic neutrons and of the most energetic protons should be just about the same, 
or just f.   
 

A = N + Z = (୤Dଵ
ିଵ)ଷ/ଶ + (୤Dଵ

ିଵ)ଷ/ଶ = 2(୤Dଵ
ିଵ)ଷ/ଶ      →      

୤

Aଶ/ଷ
=  D଻ . 

 
Inserting this into the result above, 
 

E(u) ≈  
Dହ

D଻

୤

A
ଶ
ଷ

 A
ହ
ଷ +  

D଺

D଻

୤

A
ଶ
ଷ

 Aି
ଵ
ଷ uଶ + ⋯ =  D଼A +  Dଽ

(N − Z)ଶ

A
+ ⋯  . 

 
The first term is proportional to A, and so we’ll include it in the bulk term above (1), which 
leaves us with   
 

∆Eସ = − Cସ

(N − Z)ଶ

A
    . 

 
5) Out last term estimates the energy differences due to paired or unpaired spins.  If both N and 

Z are even, all spins are paired up, the system is more stable, and the binding energy increases.  
One of the two odd makes the nucleus less stable, and both odd even more so.  Here is an 
example: 
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Nucleotide Z-N Binding Energy 
Zn-34 Even-Even 8.736 Mev/nucleon 
Zn-35 Even-Odd 8.724 MeV/nucleon 
Ga-34 Odd-Even 8.662 MeV/nucleon 
Ga-35 Odd-Odd 8.540 MeV/nucleon 

 
The examples are complicated by 
the fact that we can not easily 
eliminate the other effects from the 
binding energy differences.  
However, looking at all of the 
stable nuclei on the periodic table 
reveals that 58.5% are even-even, 
38.7% are either even-odd or odd-
even, while only 2.8% are odd-
odd.  Here’s a look at some small 
nuclei.  Note that He-4 (2,2), Be-8 
(4,4), C-12 (6, 6), and O-16 (8,8) 
are noticeably more stable than 
their immediate neighbors. 
 
We’ll write a simple function for this: 
 

∆Eହ = 
୒,୞

CହAିସ/ଷ ,   

 
with N, Z = +1 if Z and N are both even, -1 if both are odd, and 0 if they are mixed. 

 
So, in the end, we have that 
 

E୆ ≈ CଵA − CଶA 
ଶ
ଷ  − Cଷ Z(Z − 1)Aି

ଵ
ଷ  −  Cସ(N − Z)ଶAିଵ + 

୒,୞
CହAି

ସ
ଷ . 

 
If we fit this function to data from a large number of nuclei, we obtain values for the coëfficients:  
 
C1 = 15.75 MeV 
C2 = 17.80 MeV 
C3 = 0.710 MeV 
C4 = 23.69 MeV 
C5 = 39 MeV 
 
EXAMPLE 14-6 
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Calculate the binding energy of tellurium-126 using each method described above.  Te-126 has 
Z = 52 and A = 126, so N = 74.  The mass of the Te-126 nucleus is 125.8748 Da.10 
 
Mass difference: 

E୆ =  (Z × 1.007276 + N × 1.008664 −  m୬୳ୡ୪ୣ୳ୱ) × 931.5 MeV . 

E୆ =  (52 × 1.007276 + 74 × 1.008664 −  125.90331) × 931.5 MeV = 1066.10 MeV . 

Von Weizsäcker: 

Since Z and N are both even, N, Z = +1. 
 

E୆ ≈ 15.75(126) − 17.80(126)
ଶ
ଷ  − 0.710 (52)(52 − 1)(126)ି

ଵ
ଷ  

−  23.69(74 − 52)ଶ(126)ିଵ + (+1)39(126)ି
ସ
ଷ  = 1070.6 MeV . 

That’s less than 0.4% off. 

HOMEWORK 14-3 
 

Calculate the binding energy (in MeV) of cesium-133 both ways, as in the example above.  
The atomic mass of Ce-133 is 132.905452 Da. 

Fun Fact 14-1 

In a pinch, for nuclei larger than about neon, the binding energy per nucleon is between 8 and 
9 MeV.  More specifically, there is a peak of about 9 MeV in the region of iron (A = 56) and 
a nearly linear taper to 8 MeV to uranium. 

The Shell Model 

There is some evidence to suggest that the nucleons form shells, in much the same way as do 
electrons.  You may remember that atoms are most chemically stable when the number of electrons 
is one of the following numbers, when the outer shells are filled: 2, 10, 18, 36, 54, 86, and, 
presumably, 118.  Similarly, there is evidence that nuclei are more stable when either the number 
of protons or neutrons (or better yet, both) are: 2, 8, 20, 28, 50, 82, and 126.  These are referred to 
as magic numbers.  Here are some data.  In the first graph, the binding energy of the last neutron 
of several elements is plotted against the number of neutrons. 

𝐸஻ ௅௔௦௧ ௡௘௨௧௥௢௡ ௓,ே =  𝐸஻ ௓,ே −  𝐸஻ ௓,ேିଵ . 

                                                           
10 You need to be careful about looking up the masses of nuclei.  Often, you will find the atomic mass that includes 
the electrons.  These should be subtracted off to obtain the nuclear mass.  For example, the atomic mass of tellurium 
126 is given as125.90331, but that includes 52 electrons.  125.90331 – 52(0.00055) = 125.8748 Da for just the 
nucleus. 
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For N = 20, 28, 50, and 82, the binding energy is noticeably larger (more stable) than the nucleus 
with one more neutron.  

Although less obvious, the same holds for the last proton at the magic numbers. 

Alpha Decay 
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Let’s talk about nuclei that are 
particularly unstable, specifically 
those that undergo alpha decay. 
We’ve already discussed that an 
alpha is identical to a He-4 nucleus, 
two protons and two neutrons 
bound tightly together (two is one 
of the magic numbers for stability).  
First, we’ll discuss what is seen 
from the outside of the nucleus, 
then see if we can explain it with 
quantum mechanics.  We’ll treat the 
nucleus of atomic number Z as an 
alpha particle and a ball of charge 
(Z-2)e.  As noted above, the 
combined nuclear and electric 
forces give us a potential well U(r) 
in which the alpha particle is bound, 

but also a barrier through which it could tunnel.  The alpha particle, being in a bound state within 
the nucleus, continually bounces against the barrier.  We can say that the probability P of decay 
(or tunneling) of any one nucleus in a given time interval dt is proportional to the length of that 
interval, or 

 
𝑃 =  𝜂 𝑑𝑡. 

 
If there are some number N of nuclei at the beginning of a particular time interval dt, then the 
number of nuclei that are expected to decay by the end of the interval, -dN, is 
 

−𝑑𝑁 = 𝑁 𝑃 =  𝑁 𝜂 𝑑𝑡. 
 
Re-arranging this relationship leads to the familiar differential equation you encountered in 
Semester Two: 

𝑑𝑁

𝑑𝑡
= −𝜂 𝑁. 

 
Often, it is stated in textbooks that the rate of nuclear decay in a sample is proportional to the 
number of atoms that are present.  Although this statement is true, it sounds a bit like magic and 
obfuscates the true reason for this behavior, developed from the equations above.  The solution of 
this equation is well-known: 

𝑁(𝑡) = 𝑁௢𝑒ିఎ௧ .  
 
The decay parameter η is often described in terms of a quantity called the half-life, t1/2.  The half-
life is the amount of time after which only half of the original nuclei are expected to remain. 
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𝑁൫𝑡ଵ/ଶ൯ =  
ଵ

ଶ
𝑁௢ =  𝑁௢𝑒ିఎ௧భ/మ  

 
1

2
=  𝑒ିఎ௧భ/మ 

 

tଵ/ଶ =  
ln2

η
=

0.693

η
 

 
After an additional half-life, only half of the half, or one quarter, of the original number will remain 
un-decayed.  After each subsequent half-life has passed, half of the remaining nuclei will have 
decayed. 
 
The activity A of a sample is the rate at which nuclei decay: 
 

𝐴 =  −
ௗே

ௗ௧
=  𝜂𝑁௢𝑒ିఎ௧. 

 
Generally, this is the quantity that is actually measured. 

We’ll use the same technique we used in the last 
section on tunneling to verify that this is indeed 
the mechanism that explains alpha decay.  We’ll 
model the barrier as a series of thin rectangular 
barriers whose heights follow the Coulomb 
potential.  For convenience, we’ll let C represent 
the constants in the numerator of Coulomb’s 
formula (ke(Z-2)2e2).  Remembering that the 
transmission coefficient for all the barriers 
combined is the product of the individual 
coefficients, and that the product of exponentials 
is the exponential of the sum, we obtain11 

 

𝑇 ≈  𝑒ି ∫
ඥ଼௠(௎(௥)ି ಶ) 

ℏ
 ௗ௥ =  𝑒

ିට
଼௠
ℏమ ∫ ට஼

௥
 ି ா ௗ௫

=  𝑒
ିට

଼௠஼
ℏమ ∫ ටଵ

௥
 ି 

ா
஼

  ௗ௥
 . 

 

Let’s concentrate on the integral.  The limits should be from a to b, but b is a function of E.  If we 
set 

                                                           
11 Gamow, G., ‘Zur Quantentheorie des Atomskernes,’ Z. für Physik 51, pp 201-212. 
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U(b) =
C

b
= E  , 

we see that b = C/E, and 

න ඨ
1

r
 −  

E

C
  dr  .

େ/୉

ୟ

 

This integral isn’t too bad, although a bit tedious.  Let r = b cos2θ; this may seem strange, but 
remember that r is always less than or equal to b.  Correspondingly, dr = -2b sin θ cos θ dθ.  The 
new limits of integration are θa = arccos((a/b)1/2) and θb = 0. 

−2 න ඨ൬
1

b cosଶθ
−

1

b
൰   b sinθ cosθ dθ

଴

ୟ୰ୡୡ୭ୱ ට
ୟ
ୠ

=  −2√b න ඨ൬
1

cosଶθ
− 1൰   sinθ cosθ dθ 

=  −2√b න ඨቆ
1 −  cosଶθ 

cosଶθ
 ቇ  sinθ cosθ dθ  . 

= −2√b න  sinଶθ dθ 
଴

ୟ୰ୡୡ୭ୱ ට
ୟ
ୠ

 

=  −2√b ൥
θ

2
− 

sin 2θ

4
 |

ୟ୰ୡୡ୭ୱ ට
ୟ
ୠ

଴ ൩ 

=  +2√b 

⎣
⎢
⎢
⎢
⎡arccosට

a
b

2
−  

sin ቆ2 arccos ට
a
b

ቇ

4
 

⎦
⎥
⎥
⎥
⎤

 

At this point, we’ll make use of a trig identity and two approximations, specifically: 

sin(2 arccos(x)) = 2 xඥ1 − xଶ ≈ 2x and arccos(x) ≈  
π

2
− x, if x is small. 

2√b 

⎣
⎢
⎢
⎢
⎡ቆ

π
2

− ට
a
b

ቇ

2
−  

2ට
a
b

4
 

⎦
⎥
⎥
⎥
⎤

= √b ቆ
π

2
− 2ට

a

b
ቇ    

Since a<<b, we might even drop the very last term.  Let’s put what’s left back into the expression 
we started with, with b = C/E: 
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𝑇 ≈  𝑒𝑥𝑝 ൮−ඨ
8𝑚𝐶𝑏

ℏଶ
ቀ

𝜋

2
ቁ൲ =  𝑒𝑥𝑝 ቌ−ඨ

2𝜋ଶ𝑚𝐶ଶ

ℏଶ𝐸
ቍ  = 𝑒𝑥𝑝 ቌ−ඨ

2𝜋ଶ𝑚

ℏଶ
 
(𝑍 − 2)

ඥ𝐸஺௟௣௛௔

ቍ  

Since we assumed that the half-life of the decay is roughly inversely related to the transmittance 
factor, we would expect  

log൫𝑡ଵ/ଶ൯ ~ 
(𝑍 − 2)

ඥ𝐸஺௟௣௛௔

  . 

In the graph below, I’ve plotted a few alpha decay half-lifes over many orders of magnitude; it is 
quite clear from the linear shape of the relationship that our rough estimate agrees fairly well with 
reality.   

 

This indicates two things.  First, tunneling ‘is a thing.’  Second, alpha decay can be explained with 
wave mechanics. 

Now, let’s back up a bit.  Why is it that an alpha particle can often scoot out of a nucleus, but not 
just a proton or neutron?  As is usually the case, the solution is found by considering energy.  As 
a specific example, consider U-232.12  The chart lists the energies of a number of conceivable 
decay results relative to U-232, including possible beta decay processes. 

Process Energy (relative to U-232) 
U-232 → Th-228 + α+2 -5.42 MeV 
U-232 → Th-232 + 2β+ +0.97 MeV 
U-232 → Pa-232 + β+ +1.25 MeV 
U-232 → Np-232 + β - +2.54 MeV 
U-232 → Pa-232 + 2β - +3.64 MeV 

                                                           
12 Enge, H, Introduction to Nuclear Physics, Addison Wesley, Reading (1966) pp275-276. 
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U-232 → Pa-231 + p+ +6.13 MeV 
U-232 → U-231 + n0 +7.27 MeV 
U-232 → Th-229 + He-3 +9.77 MeV 
U-232 → Pa-229 + 3p+ +10.09 MeV 
U-232 → Pa-230 + 2p+ +10.55 MeV 

 

So, we see that only the release of an alpha particle put the system into a lower energy state.  While 
these data correspond to a very specific example, we find that nuclei with masses above 
approximately 140 Daltons will undergo alpha decay. 

Other Types of Decay 

Other types of decay are possible, and sometimes energetically preferred, such as electron 
emission, or the emission of an anti-electron (both referred to as beta decay), proton emission, and 
electron capture, where an n = 1 orbital electron is captured by the nucleus.  Most heavy nuclei 
decay through a combination of alpha and beta emission.  Since the alpha particle has charge +2 
and mass 4, there are really only four decay ‘chains’ on nuclei. 

EXAMPLE 14-7 

Consider carbon-14, which decays into nitrogen-14 with a half life of 5730 ± 30 years.13  The 
fraction of all carbon of C-14 in the earth’s atmosphere is 1 in 1012.  Since C-14 is chemically 
identical to C-12, one might presume that the fraction in living organisms is the same.  
However, once the organism dies, no more C-14 is taken in and the amount decreases due to 
the decay to nitrogen.  Carbon-12, being stable, remains.  If a corpse is found to have only 1 in 
1013 of its carbon atoms to be C-14, when did the person die? 

First, convert the half-life to the decay parameter eta: 

η =  
0.693

tଵ/ଶ
=  

0.693

5730
= 1.209 × 10ିସ yrsିଵ 

 
N(t) =  N୭eି஗୲ 

 
N

N୭
=  eି஗୲ 

 

−ηt =  ln
N

N୭
 

 

t =  −
1

η
 ln

N

N୭
= −

1

1.209 × 10ିସ
ln(0.1) =  19,039 years ago  . 

 
                                                           
13 Ahem, this is actually a beta decay process, but I wanted to make use of C-14 because it’s the one I suspect 
everyone has heard of. 
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HOMEWORK 14-4 
 

Eons ago, a rock formed from molten rock.  Any gases present at the time escaped the rock, 
but since then, K-40 has been decaying into Ar-40 with a half-life of 1.248×109 years.  The 
argon gas is then trapped in voids within the rock.  Assuming that all decayed K-40 turns into 
Ar-40, what is the ratio of K-40 to Ar-40 after 5 billion years? 

 
HOMEWORK 14-5 

 
An assumption made in the previous problem is in fact incorrect: only 11% of the K-40 atoms 
decay into Ar-40 while the rest decay into Ca-40.  What is the actual ratio of K-40 to Ar-40 
after 5 billion years? 
 
Just FYI, the Ca-40 eventually decays to Ar-40 as well, but with a half-life of 1021 years, so 
effectively, never.  When the half-lifes in a two step process are close to equal, the problem 
becomes quite a bit more difficult. 
 

HOMEWORK 14-6 
 

Naturally produced alpha particles have energies from about 2 MeV to about 10 MeV, 
characteristic of the nucleus from which each comes.14  That is, for example, the alphas emitted 
by Ra-226 always have energy 4.871 MeV, while those emitted by At-218 always have energy 
6.874 MeV.   
 
Calculate the energy of an alpha particle emitted by Pb-210.  The atomic mass of Pb-210 is 
209.9841885 Da and the atomic mass of its daughter, Hg-206, is 205.977514 Da.  Don’t forget 
that some kinetic energy is given to the mercury daughter nucleus.  The alpha is non-relativistic 
and has mass 4.001506 Da. 
 

How big is the nucleus? 

Let’s return once again to the question of the size of the nucleus.  First, some terms to know.  
We’ve discussed isotopes, two or more nuclei with the same number of protons but different 
numbers of neutrons.  Isotones are two or more nuclei with the same number of neutrons but 
different numbers of protons.  Isobars are two or more nuclei that have the same atomic mass 
numbers but different numbers of protons and neutrons.  For example, Th-235 (90 p+, 145 n0), Pa-
235 (91 p+, 144 n0), U-235 (92 p+, 143 n0), Np-235(93 p+, 142 n0), and Pu-235 (94 p+, 141 n0) are 
isobars.  We’re going to look at a particular subset of isobars known as mirror nuclei; two isobars 
are mirror nuclei if their numbers of protons and neutrons are reversed.  Two sets of examples are 
tritium H-3 (1 p+, 2n0) and He-3 (2p+, 1n0), and Mg-26 (12 p+, 14 n0) and Si-26 (14 p+, 12 n0).  We 

                                                           
14 This was an important constraint on the Geiger-Marsden experiment. 
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will be examining an even more special subset where the numbers of protons and neutrons differ 
by one. 

Consider two nuclei, both of atomic number A, with Z1 = ½ A + ½, N1 = ½ A – ½, Z2 = ½ A – ½, 
and N2 = ½ A + ½.  That is, if we magically change a proton in the first nucleus to a neutron, we 
obtain the second.  First, our assumptions: 

a) Any nucleus is spherical with its charge distributed uniformly throughout its volume. 
b) The radius of a nucleus depends only on the number of nucleons, A. 
c) The nuclear force is independent of the charge of the nucleons.  

Consider the binding energy of each nucleus.  Assumption (c) 
implies that, because each nucleus has the same number of, 
and presumably the same arrangement of, nucleons as the 
other, the first and second terms in the Von Weizsäcker 
expression will have the same value for both.   The fourth term 
is also the same; we’re just removing a proton and substituting 
a neutron with the same energy (see figure).  Term five is also 
the same, in that both nuclei are odd-even (ηN,Z = 0).  The only 
term that should be different between the two nuclei is the 
Coulomb term.  Since we can write those terms separately,  

E୆ =   U୒୳ୡ୪ୣୟ୰ +  Uେ୭୳୪ 

and the nuclear energy terms are the same value for both 
isobars, we should be able to write that  

U୒୳ୡ୪ୣୟ୰ =  E୆ଵ −  Uେ୭୳୪୭୫ୠ ଵ =  E୆ଶ −  Uେ୭୳୪୭୫ୠ ଶ . 

 However, there is a slight twist: ‘replacing’ a proton with a neutron, positron, and neutrino releases 
some energy, specifically, 

m୬cଶ − ൫m୮ + mୣା + m஝൯cଶ  , 

so that 

E୆ଵ −  Uେ୭୳୪୭୫ୠ ଵ + ൫m୬ − m୮ − mୣା − m஝൯cଶ =  E୆ଶ −  Uେ୭୳୪୭୫ୠ ଶ  

ΔUେ୭୳୪ =  Uେ୭୳୪ ଵ − Uେ୭୳୪ ଶ  =  E୆ଵ − E୆ଶ + ൫m୬ − m୮ − mୣା − m஝൯cଶ 

In Semester Two, we calculated that a sphere of radius R with a charge Q distributed uniformly 
through its volume has an electrical potential energy of 3keQ2/5R (see Note Two).  The difference 
in the electrostatic potential energies of the two nuclei will be 

Δ𝑈 =  
3𝑘௘𝑄ଵ

ଶ

5𝑅
− 

3𝑘௘𝑄ଶ
ଶ

5𝑅
=  

3𝑘௘𝑒ଶ𝑍ଵ
ଶ

5𝑅
−  

3𝑘௘𝑒ଶ𝑍ଶ
ଶ

5𝑅
=  

3𝑘௘𝑒ଶ

5𝑅
 (𝑍ଵ

ଶ −  𝑍ଶ
ଶ)

=  
3𝑘௘𝑒ଶ

5𝑅
 ቈ൬

𝐴

2
+ 

1

2
൰

ଶ

− ൬
𝐴

2
− 

1

2
൰

ଶ

 ቉ =
3𝑘௘𝑒ଶ

5𝑅
𝐴  .  
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Then, 

𝑅 =  
3𝑘௘𝑒ଶ𝐴

5൫E୆ଵ − E୆ଶ + ൫m୬ − m୮ − mୣ − m஝൯cଶ൯
   . 

Filling in some values, 

𝑅 =  
0.864

𝜀ଵ − 𝜀ଶ + 0.7867/𝐴
  , 

where ε1 and ε2 are the binding energies per nucleon in MeVs for the isobars and R is in 
femtometers. 

EXAMPLE 14-8 

Find the radius of a nucleus of atomic number 39. 

Making use of the method above, we’ll examine K-39 and Ca-39.  The binding energy per 
nucleon for the potassium is given as -8.56 MeV and -8.37 MeV for calcium. 

𝑅 =  
0.864

−8.37 − (−8.56) + 0.7867/39
=  4.11 fm. 

The graph shows the 
results of this 
calculation for many 
such mirror nuclei.  
The red line 
corresponds to A being 
proportional to R3, or to 
the volume.  The values 
suggest that the 
densities of all nuclei 
are about equal.  

HOMEWORK 14-7 

If the curve at right 
can be described by 

𝑅 = 1.16 𝐴ଵ/ଷ , 

with the radius in femtometers and A the atomic mass number, find the approximate density 
of a nucleus in kg/m3. 
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Note One 

First, compare the momentum of the gamma-ray with that of the proton: 

𝑝ఊ =  
𝐸

𝑐
=  

2.62 × 10଺ × 1.6 × 10ିଵଽ

3 × 10଼
= 1.4 × 10ିଶଵ 𝑘𝑔

𝑚

𝑠
. 

𝑝௣ =  √2𝑚𝐾 =  ඥ2 × 1.67 × 10ିଶ × 0.25 × 10଺ × 1.6 × 10ିଵ = 1.2 × 10ିଶ଴ 𝑘𝑔
𝑚

𝑠
. 

Note Two 

As a review, say that we wish to construct a sphere of charge Q and radius R with the charge 
distributed uniformly throughout the volume.  We’ll do so by bringing in small pieces of charge 
dq from r = infinity and put them in place.  Consider an intermediate step in the process, when we 
have a sphere of charge q and radius r, such that 

q
రಘ
య

୰య
=  

Q
రಘ
య

ୖయ
  →   q =  

Q

Rଷ
rଷ  . 

The electric potential at the surface of this sphere will be 

V =  
kୣq

r
  . 

If we bring in an additional charge dq from infinity and form a thin layer on the surface of our 
sphere, the potential energy of dq will be 

𝑑U = V 𝑑q =
kୣq

r
 𝑑q =  ൬

kୣ

r

Q

Rଷ
rଷ൰ ൬

Q

Rଷ
3rଶ 𝑑r൰ =  

3kୣQଶ

R଺
rସ𝑑r  . 

 

To find the final energy of the completed sphere, we’ll integrate 𝑑U from r = 0 to r = R: 

U =  න
3kୣQଶ

R଺
rସ𝑑r =

3kୣQଶ

5R
   .

ୖ

଴
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