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Section 6 – Waves and Particles Behaving Badly II 

 

“That’s funny…..”  
Attributed to Alexander Fleming 

 

The Davisson-Germer Accident 

By this point, we’ve seen that light on occasion must act like a particle, and that the photon carries 
both energy hf and momentum h/λ.  It’s probably not a surprise then that particles sometimes act 
like waves. 

Let’s consider a small particle such as an electron, moving at speed v.  Making use of the relation 
above, we might think that λ = h/p = h/mv.  This quantity is known as the object’s De Broglie 
wavelength, λdB.  If so, then we should be able to observe many of the behaviors of waves exhibited 
by particles, such as interference.  This effect was seen accidently by Davisson and Germer.  When 
De Broglie’s notion became known, they repeated the experiment very rigorously.1  Here, we’ll 
talk about just a few of their results. 

Electrons were accelerated through a potential difference, V, toward a nickel crystal,2 thereby 
giving them kinetic energy and momentum.  The De Broglie wavelength, if such a thing exists, 
can be calculated this way: 

𝜆ௗ஻ =  
௛

௣
=  
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௠௩
=  

௛

√ଶ௠௄
=  

௛

ඥଶ௠௤௏
 .  

So, what we’ll do is calculate the wavelengths of X-rays that would be diffracted by this crystal in 
the same directions as these electrons were.  The geometry is a bit different for this experiment 
than our previous discussion for X-rays, so we’ll have to work through the conditions for 
constructive interference again.  Keep in mind, though, that crystallography is very complicated 
and three dimensional. 

Suppose that the (100) plane is facing the incoming electron beam; clearly, from the figure, the 
(100) plane is not the diffracting plane, but there well may be some set of planes that will create 
constructive interference at some angle, φ. Let’s assume that set of unknown planes is tilted from 
the (100) planes by angle α.   

So, from the figure, we see a number of things.  First, the angle measured experimentally is φ.  
Second, the spacing of the ‘mystery’ planes will be reduced from the expected spacing by a factor 

                                                           
1 Davisson, C. and L. H. Germer, Phys. Rev. 30 (1927) p705. 
2 For simplicity, let’s assume for now that this was a single crystal.  
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of sin α: d = D sin α.  We suspect 
that the Bragg condition for 
constructive interference holds, 
so 2 d sinθ = mλ.  Substituting: 

2 𝐷 sin 𝛼 cos 𝜃 = 𝑚𝜆 . 

But, alpha and theta are 
complementary, so we can use a 
trig identity:  

2 sin α cos θ= sin(2α) = sin φ. 

So, 

𝐷 sin 𝜙 = 𝑚𝜆 , 

where m is some positive integer. 

Let’s look at some 
data.  First, here is 
the famous ’54 Volt’ 
curve; electrons were 
accelerated toward 
the crystal’s (111) 
face by a potential 
difference of 54 
volts.  The electron 
detector was moved 
in five-degree 
increments (the 
curves are simply to 
guide your eye) and a 
strong peak is seen at 
about 50o.  For comparison, the 65V curve is also included; the peak is less clear.  Accelerating 
potentials from about 43V to about 66V show some type of peak, however small.  By varying the 
potential and measuring the direction of maximum electron diffraction, we can calculate what 
wavelength X-rays would have been diffracted in the same direction: 

λ ଡ଼ୖୟ୷ ୉୯୳୧୴ୟ୪ୣ୬୲ =  
D sinϕ

m
. 
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What we’ll do is plot 
the wavelength of 
the X-ray that would 
have been diffracted 
in a particular 
direction against the 
theoretical De 
Broglie wavelength 
calculated from the 
speed of the 
electrons.  The graph 
(right) shows data 
for both the (100) 
and (111) planes.  
The line has slope 
one and shows where the two values would be equal. We can see that the two sets of values are 
fairly equal to one another, demonstrating that the electrons follow the rule for Bragg diffraction, 
and therefor behave as waves. 

Of course, other particles should show the same behavior, but it should become less evident the 
more massive the object.  Shull3 diffracted 0.0042 eV ‘cold’ neutrons (λDB = 4.43 Å) through single 
slits of various widths.  Since 

b sinθ୫ = mλୈ୆   , 

for the minima for light 
interference, we expect 
that (at small angles) 

𝜃 =  mλୈ୆ 𝑏ିଵ 

Will give us the locations 
of the  

Here are his results for the 
m=1 minimum.  As 
expected, the intercept is 
close to zero, and the slope 
is the wavelength of the 
neutrons in picometers (to 
within a half per cent). 

                                                           
3 C.G. Shull, Single slit Diffraction of Neutrons Phys Rev 179 Nr 3 P752 March 1969. 
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This effect has been seen in particles as large as C60.4  The authors of this particular study assert 
that these ‘buckyballs’ (with a mass over a million times that of an electron) verge on being 
classical particles.5 

DISCUSSION 6-1 

Why do we not diffract when we walk through a doorway? 

HOMEWORK 6-1 

A stream of ‘slow neutrons’ (K = 5 eV) is sent through a narrow slit of width 4µm.  What is 
the angular width (that is, from one side to the other) of the central diffraction maximum? 

HOMEWORK 6-2 

What is the angular width of the central maximum for a bullet going through a door?  Take the 
mass as 5g, the speed as 400 m/s, and the doorway width as 1.2 m. 

 

The Ramsauer Effect 

Our last example involves electrons accelerated through a container of gas atoms.  If the energy of 
the electrons is not too great, they will scatter from the atoms elastically.  Under certain special 
conditions, the probability of scattering is minimized.  We’re going to use an extremely simplified 
model to predict the conditions for minimal scattering. 

Consider xenon, an atom of which is 
approximately 4 Å in diameter with an 
electron affinity of -0.8 eV and an 
ionization energy of 12.13 eV.  We’ll 
model this as a one-dimensional problem 
with the xenon represented as a square 
potential well.  Let’s say an electron 
arrives from the left with kinetic energy 
K1.  As it arrives at the well, its kinetic 
energy will increase due to the decrease 
in potential energy, much like a 
rollercoaster speeds up as it gets closer to the earth’s surface, and the De Broglie wavelength will 
shorten.  Let’s find the electron’s De Broglie wavelength for each region: 

                                                           
4 Arndt, Markus, Olaf Nairz, Julian Vos-Andreae, Claudia Keller, Gerbrand van der Zouw, and Anton Zeilinger, 
‘Wave–particle duality of C60 molecules’, Nature 401 (1999) pp 680-682. 
5 A more recent paper is, Eibenburger, S. et al, ‘Matter-wave interference with particles selected from a molecular 
library with masses exceeding 10000 amu,’ Phys. Chem. 15 (2013) pp 14696-14700. 
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λୢ୆ ଵ =
h

pଵ
=  

h

ඥ2mୣKଵ

   and   λୢ୆ ଶ =
h

pଶ
=

h

ඥ2mୣKଶ

=
h

ඥ2mୣ(Kଵ + U୭)
    .  

In analogy with light waves traversing a discontinuity, there should be some reflection of the De 
Broglie wave at each end of the well, with the possibility of a ‘phase change.’  Since the natures 
of the two discontinuities are different, we might expect one change to be zero and the other to be 
a half cycle (equivalent to traveling distance λdB 2/2).  Let’s consider ‘no scattering’ to correspond 
to a weak reflection from a thin film; let the two reflected waves be 180o out of phase.  As with 
light, there is also the consideration that one reflected wave traveled an extra distance 2L.  So,  

λୢ୆ ଶ

2
+ 0 + 2L = ቀn +

ଵ

ଶ
ቁ λୢ୆ ଶ  . 

In this equation, n = 0 corresponds to L = 0 (no well), so consider n = 1: 

2L = λୢ୆ ଶ   →   Kଵ =  
hଶ

8mୣLଶ
−  U୭ . 

For our example, the well is 4 Å wide and 0.8 eV deep.  The kinetic energy of an incoming electron 
that would experience no reflection should then be, for n = 1, 

Kଵ =  
(6.6310ିଷସ)ଶ

8(9.1110ିଷଵ)(410ିଵ଴)ଶ
 ൬

1 eV

1.610ିଵଽ J
൰ −  0.8 eV =  1.6 eV  . 

Here are data6 from an 
experiment that demonstrate 
this effect very clearly.  The data 
end at about 12 eV because 
xenon ionizes.  The minimum of 
scattering occurs for electrons 
with an energy slightly above 1 
eV; considering the crudity of 
the model used above, this is 
really not bad agreement. While 
one may find it conceivable that 
there may be a second minimum 
beyond the right edge of the 
graph, compications too 
advanced to discuss here preclude it. 

HOMEWORK 6-3 

                                                           
6 Kukolich, S. G., ‘Demonstration of the Ramsauer-Townsend Effect in a Xenon Thyratron,’ Am J. Phys. 36, 701 
(1968). 
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For argon, the minimum of 
scattering occurs when the 
electrons have energy 0.39 
eV.  The electron affinity of 
argon is -1.0 Volt.  Estimate 
the diameter of an argon 
atom. 

Note that in this figure, the 
ordinate is inversely related 
to the probability of 
scattering.7 

 

 

The Wrap 

We’ve seen several examples of waves behaving as particles and of particles behaving as waves.  
So, are these things we’ve discussed particles or waves?  When you figure it out, let me know. 

                                                           
7 J.S. Townsend and V.A. Bailey, The motion of Electrons in Argon and in Hydrogen, Phil Mag S6 Vol 44 Nr 263 
November 1922 P 1033. 
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