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Section 8 - The Action and Some Possibly Interesting Examples 

 

Let’s look at a period of transition between the classical picture we know and where we’re going.  
The topics discussed in this section are often referred to as the ‘old’ quantum mechanics and are a 
blend of classical ideas with some of the new quantum notions.   

The Wilson-Sommerfeld Quantization Rule 

For systems that move through a cycle, the action is quantized.  We haven’t discussed the action, 
but it comes from classical mechanics; you’ll probably see it next year in your intermediate physics 
course.  Being quantized means that only certain values of a quantity are allowed.  For now: 

ර p୶ 𝑑x = nh,    n a positive integer, 

is an example.  

EXAMPLE 8-1 

Consider a particle of mass m in a one dimensional box from x = 0 to x = a.1  The walls are 
very hard, so the particle (assumed to be non-relativistic) bounces back and forth elastically 
with energy, E, and momentum, pሬ⃑ .  These remain constant (except for pሬ⃑ ’s direction) because 
there is no potential energy for 0 ≤ x ≤ a; the energy is then all kinetic (E = K).  The 
momentum’s magnitude can be written as  

𝐾 =  
𝑝௫

ଶ

2𝑚
   →     𝑝௫ =  √2𝑚𝐾 =  √2𝑚𝐸 . 

The integral then becomes 

න √2mE 𝑑x
ୟ

଴

+  න − √2mE 𝑑x
଴

ୟ

= nh. 

2 න √2mE 𝑑x
ୟ

଴

= 2a√2mE = nh. 

Solving for the energy, E, 

E୬ =  nଶ
hଶ

8maଶ
 ,    n = 1, 2, 3, …. 

We see that only certain energies are allowed to the particle.   

We can also see that these energies correspond to those allowed by requiring the De Broglie wave 
for this particle to form a standing wave with a node at each turning point. We already know that, 
for such a transverse wave on a string of length a,  

                                                           
1 Here, x = 0 and x = a are the turning points for the particle, i.e. where it reverses direction. 
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a =  
nλ

2
 , 

and 

λୢ୆ =  
h

p
=

h

√2mK
=

h

√2mE
 , 

and, so, 

a =  
nh

2√2mE
     →      E୬ =  nଶ

hଶ

8maଶ
  . 

We’ll do this problem several more times and see that this is indeed the 
correct relationship. 

EXAMPLE 8-2 

Let’s keep the hard wall at x = 0, 
but tilt the floor upward for x > 0 
so that the particle has potential 
energy U(x) = Fx (F > 0) in that 
region.  This corresponds to a 

constant force, F, in the negative x-direction, 
perhaps the particle’s weight.  Now, we have that E 
= K + U, or 

K = E − U = E − Fx    →     p =  ඥ2m(E − Fx). 

Notice that, as expected, the momentum is not constant during the trip.  The particle bounces 
off the hard wall at x = 0, but the maximum position xm in the +x direction depends on its 
energy.  The right-hand turning point is found by setting K = 0, E = F xm, so xm = E/F and our 
integral becomes 

න ඥ2m(E − Fx) 𝑑x
୉/୊

଴

+  න − ඥ2m(E − Fx) 𝑑x
଴

୉/୊

= nh 

2 න ඥ2m(E − Fx) 𝑑x
୉/୊

଴

= nh 

By letting u = 2m(E – Fx) and du = -2mF dx,  

−
1

mF
න u

ଵ
ଶ 𝑑u

଴

√ଶ୫୉

= nh   , 

we obtain 
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2 (2mE)ଷ/ଶ

3mF
= nh    →     E୬ =  nଶ/ଷ ቆ

9hଶFଶ

32m
ቇ

ଵ/ଷ

. 

We will revisit this problem later as well. 

EXERCISE 8-1 

Do the math to verify the result of Example 8-2. 

EXAMPLE 8-3 

This is one of the most important systems in physics: the simple harmonic oscillator.  We know 
from Semester One that the potential function in one dimension is U(x) = 1/2Cx2.  Then, 

K = E − U(x) = E −  
ଵ

ଶ
Cxଶ  and p =  √2mK =  ට2m ቀE − 

ଵ

ଶ
Cxଶቁ  . 

The turning points for a particle of energy E (i.e., when K = 0) will be 

E =  
1

2
Cx୫

ଶ      →      x୫ = ± ඨ
2E

C
  . 

The action integral is then 

න ට2m ቀE −  
ଵ

ଶ
Cxଶቁ 

ାටଶ୉
େ

ିටଶ୉
େ

𝑑x + න −ට2m ቀE −  
ଵ

ଶ
Cxଶቁ 

ିටଶ୉
େ

ାටଶ୉
େ

𝑑x = nh 

Re-arranging a bit, 

4 න ට2m ቀE −  
ଵ

ଶ
Cxଶቁ 

ାටଶ୉
େ

଴

𝑑x = nh . 

Some factoring, 

4√2mE න ඨ1 −  
Cxଶ

2E
 

ାටଶ୉
େ

଴

𝑑x = nh , 

and let sinθ =  ට
େ

ଶ୉
x , dx = ට

ଶ୉

େ
 cosθ 𝑑θ to get 

8ට
m

C
E න ඥ1 −  sinଶθ 

గ
ଶ

଴

cos θ 𝑑x = nh , 

8ට
m

C
E න cosଶθ

గ
ଶ

଴

𝑑x = nh . 
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It is ‘well-known’ that the integral equals 
గ

ସ
 (think about r.m.s. values in Semester Two),2 and 

so 

8ට
m

C
E ቀ

𝜋

4
ቁ = nh , 

or finally,  

E୬ =  
nh

2π
ඨ

C

m
= n ℏ ω୭ , 

where ωo is the classical oscillation frequency of a SHO with mass m and ‘spring constant’ C.  
Note that the allowed energy levels are even spaced. 

Note that this jibes exactly with Planck’s 
notion that the oscillators on the inside 
surface of the black body cavity could have 
energies that are integer multiples of the 
corresponding wave energies, and matches 
Einstein’s notion of being able to have any 
integer number of photons of energy hf in 
any given state. 

Now, any potential energy curve with a stable equilibrium 
point can be to some degree be approximated by a 
parabolic function, i.e. treated as a SHO (see the figure).  
So, consider a diatomic molecule comprising two atoms 
of mass M connected with a spring-like bond of constant 
C.  Let’s look at some data for N2.3 

 

 

 

 

 

                                                           
2 The average of cos2 over a full 2π cycle is ½.  This also is true for a quarter cycle.  The area under such a curve is 
the average value times the interval, or ½ × π/2. 
3 Bayram, S. B., and M. V. Freamat, “Vibrational spectra of N2: An advanced undergraduate laboratory in atomic 
and molecular spectroscopy,” Am. J. Phys. 80 8 (2012) p664. 
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Transition Emitted 
Wavelength 
(nm) 

Photon energy = - ΔE (eV) Difference between 
adjacent levels (eV) 

C3πu 0 → B3πg 0 337 3.6888 - 
C3πu 0 → B3πg 1 358 3.4724 0.2164 
C3πu 0 → B3πg 2 381 3.2628 0.2096 
C3πu 0 → B3πg 3 406 3.0619 0.2009 
C3πu 0 → B3πg 4 435 2.8578 0.2041 

 

And so, we see that adjacent vibrational energy levels are indeed evenly spaced. 

HOMEWORK 8-1 

Consider a ‘classical’ mass on a spring system.  If the mass is 2 kg and the spring constant is 
60 N/m, what is the spacing between adjacent energy levels?  If the amplitude of oscillation is 
0.3m, what per centage higher is the next energy level? 

While we’re talking about diatomic molecules, it’s also possible for such objects to rotate, in which 
case we would expect the angular momentum to follow the Wilson-Sommerfeld quantization rule.  
What quantity takes the place of linear momentum in rotation?  What takes the place of position 
in rotation? 

EXAMPLE 8-4 

ර L 𝑑θ = nh . 

In the absence of external torques, L will be constant, and  

L ර 𝑑θ = L 2π = nh     →      L =  
nh

2π
 . 

Be aware, we’re talking about rotation about one axis.  The angular momentum about an 
additional, perpendicular axis would also be quantized, in a more complicated way.  The 
energy of such an object is then 

E୬ =
1

2
I ωଶ =  

Lଶ

2I
=  nଶ

hଶ

8πଶI
 . 

In a later Section, we will return to some of these examples and treat them more carefully. 

HOMEWORK 8-2 

Consider the moon orbiting the earth.  Let’s assume that the earth exerts no torque on the moon 
(not quite true!).  Find the value for n for the moon’s orbit. 

With the results of this problem, we can see that the reason we don’t observe any quantum effects 
in everyday life is that the gaps between permitted energy levels are so small, any transition 
appears to be continuous, or classical in nature.  For example, a quick calculation shows that n for 



102 
 

a turning LP with an energy of 0.02 joules is about 5×1031.  The next higher allowed energy level 
would then be about 4×10-32 Joules more. 

Summary 

We’ve used the ‘old’ quantum mechanics, based on the Wilson-Sommerfeld quantization rule for 
cyclic processes, to take a first look at several important system.  In a later section, we’ll use the 
Schrödinger picture to examine several of these systems more carefully. 
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