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Section 9 - The Bohr Model of Hydrogen 

 

“How could something so wrong [be] so right …?” 

- The Casanovas 

The Bohr Atom 

Explaining the emission lines of the 
hydrogen atom was one of the big 
successes of early quantum mechanics.  
Four such well-defined wavelengths are 
in the visible range of the spectrum (now 
known as part of the Balmer series and 
shown in the graph at right), but as 
spectroscopy advanced, more lines were 
discovered in the UV and IR.  To a very 
good approximation, the emitted 
wavelengths follow this formula: 

1

λ
=  Rୌ ቆ

1

n୤
ଶ −  

1

n୧
ଶቇ     n୤ and n୧ are positive integers with n୧ > n୤,  

where RH is a constant we will eventually determine theoretically, and the ‘f’ and ‘i’ will be 
explained.  For the Balmer series, nf = 2, and the value of RH can be determined experimentally 
from the slope of the graph, 1.097×107 m-1. 

The different series are defined by the value of nf, with the corresponding nis running from nf  +1 
to infinity. 

Series Name nf Range of ni  
Lyman 1 2, 3, 4, 5, 6, …, ∞ All of these lines are in the UV. 
Balmer 2 3, 4, 5, 6, 7, …, ∞ Only 3, 4, 5 & 6 are visible to human eyes.  

The rest are in the UV. 
Paschen 3 4, 5, 6, 7, 8, …, ∞ All of these lines are in the IR. 
Bracket 4 5, 6, 7, 8, 9, …, ∞ All of these lines are in the IR. 
Pfund 5 6, 7, 8, 9, 10, …, ∞ All of these lines are in the IR. 

Humphries 6 7, 8, 9, 10, 11, …, ∞ All of these lines are in the IR. 
No names for 

7 up 
7 8, 9, 10, 11, 12, …, ∞ All of these lines are in the IR. 

 

The model we will use here is Bohr’s planetary model.  The electron orbits the central proton due 
to the central coulomb force in much the same way that a planet orbits the sun.  We will of course 
make a few assumptions. 
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DERIVATION 9-1 

1) We’ll assume that the nucleus is fixed in space1 and that the electron’s orbit is circular.2   
2) The only interaction between nucleus and electron is the Coulomb force. 
3) Classically, an electron accelerated in a circular path should emit electro-magnetic waves, thus 

losing energy.  The electron should therefor spiral down into the nucleus, quite rapidly.  We’ll 
assert that this doesn’t happen. 

4) We’ll assume that the angular momentum is conserved and quantized. 

Let’s get the action integral out of the way, since it’s again very simple: 

ර L 𝑑θ = nh , 

and just like the rotator above, L is conserved (the coulomb force is a central force, so the 
torque is zero and dL/dt = 0), so 

L ර 𝑑θ = nh     →     L =  
nh

2π
= nℏ. 

Consider Coulomb’s law; here, Q is the charge of the proton and q is the absolute value of the 
charge of the electron (both equal e, the elementary charge). 

𝐹ா =  
𝑘௘𝑄|𝑞|

𝑟ଶ
=

𝑘௘eଶ

𝑟ଶ
 . 

So, first we have that the potential energy U(r) is given by 

U =   
kୣQq

r
 =  −

kୣeଶ

r
. 

We have two expressions for the kinetic energy.  The first comes from Newton’s second law, 
treating the kinetic energy as due to translation:  

F୉ =  
kୣeଶ

rଶ
= maେ =  m

vଶ

r
=  

2K

r
 → K =  

kୣeଶ

2r
  . 

The second comes from treating the electron’s kinetic energy as due to rotation about the 
nucleus: 

K =  
1

2
Iωଶ =  

Lଶ

2I
=

Lଶ

2(mrଶ)
  . 

These two expressions should be equivalent, so  

                                                           
1 This is equivalent to making the nucleus have infinite mass.  For the gravitational two body problem, we expect both 
objects to orbit their common center of mass.  Same here.  We’ll discuss corrections to the Bohr model later in this 
section. 
2 Remember that elliptical orbits would also be allowed for a central 1/r2 force. 
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Lଶ

2(mrଶ)
=  

kୣeଶ

2r
     →      r୬ =  

Lଶ

kୣeଶm
=  

nଶℏଶ

kୣeଶm
 . 

That is, only certain radius orbits will be allowed, and these of course correspond to particular 
electron energies: 

E = U + K =  − 
kୣeଶ

r
+  

kୣeଶ

2r
=  − 

kୣeଶ

2r
 . 

E୬ =  −
kୣeଶ

2r୬
=  −

kୣeଶ

2 ൬
nଶℏଶ

kୣeଶm
൰

= −
1

nଶ

kୣ
ଶeସm

2ℏଶ
 . 

The lowest energy level for an electron in hydrogen will be when n = 1, so E1 ≈ -13.6 eV; the rest 
follow the relationship En = -13.6 eV/n2.  The smallest radius (the Bohr radius, symbol ao) will 
then be 0.53Å, roughly the same order for the size of an atom as determined by our other attempts!  
The other orbital radiuses follow the relationship rn =  n2 ao.  

EXERCISE 9-1 

Show that we can arrive at the expression for allowed radiuses using the De Broglie notion.  
Like the square well above (Example 8-1), we might expect that the wave around the 
circumference of the electron’s orbit must form a standing wave, lest it experience destructive 
interference.  Constructive interference will occur if the circumference is a (positive) integer 
number of De Broglie wavelengths: 

So, how to explain the emission lines? Classically, a charge orbiting a proton will lose energy 
through electro-magnetic radiation and spiral down into the nucleus quite quickly.  Here we 
assume that the electron maintains its energy and orbit without emitting radiation. It must emit, 
that is shed, energy, if the electron drops from one allowed energy level to a lower one; this bit 
actually works out to be a fairly good match with observation.   

Suppose that the electron emits a photon of energy E = hf when it drops from one level to another; 
that energy should equal the difference in the energy levels within the atom. 

E୔ୌ୓୘୓୒ = h𝑓 =  −ΔE୉୐୉େ୘ୖ୓୒ =  −(E୤ −  E୧) , 

hc

λ
=  −

1

n୧
ଶ

kୣ
ଶeସm

2ℏଶ
−  −

1

n୤
ଶ

kୣ
ଶeସm

2ℏଶ
 , 

1

λ
=  ቆ

kୣ
ଶeସmୣ

4πcℏଷ
ቇ ቆ

1

n୤
ଶ −  

1

n୧
ଶቇ .  

This is the same formula found empirically for the emission lines of hydrogen.  The collection of 
constants equals 1.097×107 m-1, and is known as the Rydberg constant, RH.  Note that this value 
agrees fairly well with that we obtained from the observation above.   

HOMEWORK 9-1 
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Find the wavelength of light emitted by a hydrogen atom when its electron moves from the n 
= 4 orbit to the n = 1 orbit.  The light is emitted as a photon; how much energy does this photon 
carry away? 

Corrections to the Bohr Model 

The Bohr model is quite 
successful, but 
spectroscopy in the early 
twentieth century was 
already a mature art, and 
there are some small 
discrepancies between the 
predicted emission 
wavelengths and the 
observed wavelengths.  
We made some 
assumptions in the 
derivation above that in 
fact lead to disagreement 
between the theory and experiment.  One such was that the proton at the center of the atom is 
stationary, or if you prefer, has infinite mass.  This is obviously not the case.  Luckily, we can 
observe this effect, since there are three ‘common’ types of hydrogen, each with a different mass.  
Protium (H) has one proton at the center of the atom, deuterium (D)3 has just about twice the mass 
of protium, and tritium (T) three times the mass.  Chemically, they are identical.  The graph shows 
the measured Hα emission lines (n=3 to n=2) of H, D, and T.  Extrapolation back to ‘infinite mass’ 
at the left edge of the graph predicts an agreement with the Bohr model.   

Rather than simply acknowledge a problem with the Bohr model, it would be nice to find a 
modification to the model that accounts for this effect.  You may have discussed the reduced mass 
in Semester One, perhaps in terms of orbital motion.  Mathematically, we can make the central 
mass act as if it were infinite if we reduce the orbiting mass by a factor MC/(MC +MO).  The 
emission wavelengths for hydrogen then change to 

1

λ
=  ቆ

kୣ
ଶeସmୣm୔

4πcℏଷ(mୣ + m୔)
ቇ ቆ

1

n୤
ଶ −  

1

n୧
ଶቇ .  

 

Balmer 
line 

Measured Wavelength 
(in vacuum) 

Bohr Model 
(infinite mass) 

Bohr Model 
(reduced mass) 

Disagreement 

Hα 656.458 nm 656.112 nm 656.470 nm 0.0017 % 
Hβ 486.268 nm 486.009 nm 486.274 nm 0.0013 % 

                                                           
3 This was in fact how deuterium was discovered, through the observation of a set of faint ‘ghost lines’ of slightly 
shorter wavelengths than those of hydrogen.  
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Hγ 434.166 nm 433.937 nm 434.173 nm 0.0017 % 
Hδ 410.285 nm 410.070 nm 410.294 nm 0.0021 % 

 

The table lists data for the four visible hydrogen emission lines; similar information could be 
developed for other lines as well, but these four should make the point sufficiently.  The first 
column lists the actual measured wavelengths of the emission lines as seen in vacuum. The next 
column is the predicted wavelengths assuming that the central proton is infinitely massive, an 
assumption that we’ve already shown to be a source of error.  The third column makes use of the 
reduced mass approach to take into account that the nucleus wiggles around as the electron ‘orbits’ 
it.  The final column compares the wavelengths predicted using the reduced mass to the actual 
measured wavelengths.  Note that there is still a difference and that it is about the same size and 
in the same direction for all four lines (the photons carry away more energy than predicted).  One 
might think that there is another correction that should be made.  What other effects should we 
think about? 

HOMEWORK 9-2 

Find the speed of the electron in the n = 2 orbit.  Remember that in the Bohr atom derivation, 
K = -E.  How does this compare with c?  Was a non-relativistic calculation O.K? 

HOMEWORK 9-3 

Estimate (roughly as an order of magnitude) the correction necessary to the Bohr model when 
relativistic effects are considered.  Remember from Section One that the relativistic kinetic 
energy of a ‘slow’ object is 

K ≈  ൬ 
1

2
ቀ

v

c
ቁ

ଶ

+
3

8
ቀ

v

c
ቁ

ସ

+ ⋯ ൰ m୭cଶ  

and from the Bohr derivation that E = -K.  You might, for example, divide the first expansion 
term by the Newtonian expression: 

Shift in Energy due to relativity ≈  

3
8

ቀ
v
c

ቁ
ସ

m୭cଶ

1
2

ቀ
v
c

ቁ
ଶ

m୭cଶ

≈ ቀ
v

c
ቁ

ଶ

 . 

If the velocity is v << c, then the emitted wavelengths should show a fractional shift of about 
the same order of magnitude.  Compare your result here to the information in the table above.  
Does relativity explain the residual difference in the Bohr model (reduced mass) and the actual 
emitted wavelengths? 

Other Atoms: Highly Ionized Atoms and Hydrogen-like Metals 

Strictly speaking, this result is valid for one electron orbiting one proton, but we can extend its 
usefulness a bit for some special cases.  For example, one electron only orbiting any nucleus with 
Z protons can be described just as well by substituting the charge Q = Ze of that nucleus.  
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E୬ =  − 
1

nଶ

kୣ
ଶZଶeସm

2ℏଶ
 

So, He+1 (or really any Z +(Z-1)) should follow the same general behavior.   

HOMEWORK 9-X 

Find the wavelength emitted by the electron in He+1 as it transitions from the n=4 state to the 
n = 3 state. 

Somewhat less so, atoms of elements from Column I with a single outlying electron should behave 
similarly, if we consider Gauss’s law.  For example, the two inner electrons of lithium, together 
with the three protons in the nucleus inside of a Gaussian surface, look very much like a single 
proton to the outermost electron.  The inner electrons form a roughly spherical shape that combines 
with, or ‘screens,’ the positive nucleus. We might expect the energies of the outermost electrons 
of Column I atoms to be about the same. 

Element Ionization Energy 
(eV) 

H 13.12 
Li 5.20 
Na 4.96 
K 4.18 
Rb 4.03 
Cs 3.76 

 

 

Strangely enough, these energies are about the same, except for our prototype, hydrogen.  The 
hydrogen is now thought to be a single proton and so spherically symmetric, but we would expect 
the outside electron to affect through repulsion the charge distribution on the inner electrons in the 
other elements, so the Gaussian sphere model mentioned above is probably not applicable.  
However, whatever shielding does occur seems to work the same way for each of the heavier 
atoms.  

Other Atoms (of any Type) 

For other, larger atoms, the number of electrons inside the ‘Gaussian surface’ will change as the 
electron changes orbit.  A reasonably useful fitting function for this situation is 

1

𝜆
=

𝑅

𝑍ଶ
ቆ

𝑍௙
ଶ

𝑛௙
ଶ −

𝑍௜
ଶ

𝑛௜
ଶቇ . 

The two Zs in the numerators reflect the charge ‘seen’ by the electron when in each of its orbits, 
that is, the number of protons  minus the number of electrons in orbits inferior to that of the electron 
of interest. 
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Here’s a question.  How do we know Z for a particular element?  The elements were initially 
defined by how their electrons interact with those of other atoms, but electrons can be gained or 
lost.  It’s the number of protons that determines the identity of an element.  Let’s consider some 
experiments conducted by Moseley, and see if we can make sense of them.  The experiment 
measured the wavelengths of the X-Ray Kα and Lα lines4 for a number of different elements.  
Moseley used a different fitting form than the one mentioned above and asserted that5 

1

𝜆௄ఈ
 ~ (𝑍 − 1)ଶ      

1

𝜆௅ఈ
 ~ (𝑍 − 7.4)ଶ  

are reasonably good fits.  We know now that the Kα line is the result of an n = 2 to n = 1 electron 
transition, while the Lα is the n = 3 to n = 2 transition.  One possible simplified explanation for 
these results follows.  We would expect that prior to the Kα transition, there is one electron in the 
n = 1 orbit, plus an empty place for another one from n = 2 to fall into.  The single n = 1 electron 
cancels out the effect of one of the protons, leaving the central charge as Z-1.  Similarly for the Lα 
line, although we might naïvely expect nine electrons to be available for screening; somewhere 
between 7 and 8 electrons provide a degree of screening of the nucleus, slightly changing the 
energy levels and therefor the emission line wavelengths. 

1

𝜆௄ఈ
= 𝑅ு (𝑍 − 1)ଶ  ൬

1

1ଶ
− 

1

2ଶ
൰              

1

𝜆௅ఈ
= 𝑅ு (𝑍 − 7.4)ଶ  ൬

1

2ଶ
−  

1

3ଶ
൰  . 

However, if we take more recent data for lithium through uranium (bluer points),6 it is clear neither 

fit (red curves) is particularly good for high Z nuclei.  One problem with this analysis is that the 
kinetic energies of the electrons will increase as Z increases, necessitating the use of relativistic 
expressions.  In a class like this one, we use the rule that relativity is necessary when v > 0.1c.  
Let’s do a rough calculation for n = 1: 

                                                           
4 We talked about Kα and Kβ lines several sections back. 
5 Moseley, H.G.J., “The high frequency spectra of the elements,” Phil. Mag. (1913) p1024. 
6 Bearden, J. A., Rev. Mod. Phys. 39, (1967) p78. 
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β = 0.1     γ =  
1

ඥ1 −  βଶ
= 1.005     K୬ୀଵ = (γ − 1)m୭cଶ = 0.005m୭cଶ =  2500 eV.     

K୬ୀଵ~ Zଶ13.6 eV    and so, Z < 14.    

We should expect that the fit will begin to diverge from reality for elements heavier than silicon.  
So, it’s no surprise there is some disagreement between the simple Bohr model and reality here for 
even moderately high values of Z.7  

HOMEWORK 9-4 

The Lα line of some metal is 1.39121 Å.  Identify the metal. 

FYI, here is an alternate and reasonably useful fitting function for this situation: 

1

𝜆
=

𝑅

𝑍ଶ
ቆ

𝑍௙
ଶ

𝑛௙
ଶ −

𝑍௜
ଶ

𝑛௜
ଶቇ . 

The two Zs in the numerators reflect the charge ‘seen’ by the electron when in each of its orbits.  
However, the values of Zf and Zi must be adjusted for each element and for each energy level with 
each type of element. 

Here is another 
interesting result 
from Moseley’s 
data.  Once we 
identify the 
hydrogen nucleus as 
a proton, we would 
expect the mass of 
the nucleus in 
proton masses to be 
equal to its charge in 
fundamental units, 
e.  However, this is 
not the case; indeed, 
the masses of most 
nuclei are a bit more 
than double what we expect.  So, what is this extra mass?  Stay tuned! 

Summary 

We’ve used the ‘old’ quantum mechanics, based on the Wilson-Sommerfeld quantization rule for 
cyclic processes, to take a first look at several important system.  In a later section, we’ll use the 
Schrödinger picture to examine this system more carefully. 

                                                           
7 This doesn’t detract from Moseley’s accomplishment, ordering the elements correctly by Z value. 
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