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Section 1 - A Peek Outside of the Newtonian Box 

“Philosophers play with the word, like a child with a doll. It does not mean that everything in life 
is relative.”  

 
― Albert Einstein1  

 

Introduction 

When we started this discussion in Semester One, a point was made that physics is always an 
approximation to reality, and we specifically restricted ourselves to the Newtonian regime of 
objects not too large or small and moving fairly slowly with respect to the speed of light.  In this 
last section, we will take a peek outside of the ‘Newtonian box’ and look at some of the 
implications of special relativity.  Historically, special relativity was developed to answer some 
nagging questions regarding electro-magnetism, which you may discuss in a more advanced E&M 
course.  Special relativity concerns ‘ordinary sized objects’ moving at high speeds. 2   The 
relationships we are about to derive match experimental observations much better than our 
Newtonian approximations do, but remember that these relativistic relationships should always 
agree with Newtonian physics when velocities tend toward zero.  This last notion is called the 
correspondence principle, and we will require it to hold for quantum mechanics, as well. 

Now, much of the subsequent discussion requires a passing acquaintance with the properties of 
light.  For the purposes of this discussion, light can be thought of as an electro-magnetic wave, in 
some ways similar to sound.  The speed of light in vacuum was measured quite accurately by the 
1840s and found to be approximately 3×108 m/s, a velocity now referred to with the symbol, c.  In 
the 1860s, a synthesis of the laws of electro-magnetism resulted in the prediction of the existence 
of electro-magnetic waves with a speed in vacuum matching that of the known speed of light, and 
the 1880s experiments with artificially generated EM waves showed that they have the same 
properties of light.  Eventually, we jump to the conclusion that light is an electro-magnetic wave.  
As we know, mechanical waves must travel through a medium, but light can travel through vacuum 
(as from the distant stars to the earth, or through an evacuated bell jar), so clearly no material 
medium is necessary for the propagation of light waves.  Apparently, these notions are difficult to 
dispel, so an æther was proposed as the medium in which light waves propagate.  We won’t discuss 
the experiment that indicated the non-existence of the æther; we’ll simply assume it doesn’t exist, 
since no such super-natural material is required by the equations that predict EM waves.   

We will make two important assumptions, though, often called the postulates of special relativity: 
the speed of light is the same for all inertial frames of reference (one in which the ‘observer’ is not 
accelerating), and the laws of physics are the same for all such frames.  The second of these 

                                                           
1 Like all quotes on the internet, subject to verification. 
2 We consider objects roughly between the size of the atom to that of a star. The boundaries are a bit fuzzy. 
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postulates we have been assuming to be implicitly true throughout these notes.  However, note that 
the second postulate says the rules are the same, but not that the results of measurements need be 
the same for different observers. 

Relative motion 

Let’s start by considering two ‘observers,’ A and B, each traveling along the x-axis with constant 
velocity.  Since neither experiences any acceleration, each is in an inertial frame and thinks that 
he is at rest, while the other is moving with speed v.  Making use of the notation of Section 3 from 
semester one, we can write that 

vሬ⃑ ,  =  − vሬ⃑ ,   . 

Simultaneity 

Before we discuss what does happen to moving objects, let’s discuss a few things that don’t 
happen.  Let’s suppose we have two events that occur at the same time at the same place. An 
example might be two lamps placed next to one another that flash briefly.  Since the light pulse 
from each lamp travels right next to the pulse from the other lamp, the two pulses will be seen at 
the same time by any observer regardless of his motion.  Other observers will agree that the two 
flashes happened at the same instant, although they may not all agree on when that instant was. 

Now, consider what happens if the two flashes did not occur at the same place at the same time. 

EXAMPLE 1-1 

A standard example is to consider two observers, A 
and B. Let’s say A is standing at the center of a 
moving flatcar of length L which is moving to the 
right at some speed, v, while B is standing track-side.  
Suppose that two lightning bolts hit the left end of the 
car at the same time.  The diagram indicates that, as 
the light moves to the right from the location of the 
strikes, first B, then A, will see both flashes together.  They will agree that the two strikes 
occurred simultaneously, although they may not agree on when. 
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On the other hand, suppose that there is a lightning strike at each end of the car, at what we 
will for the moment call the same moment.  A and B 
will disagree on which strike occurred first.  B will of 
course say that the strikes occurred at the same time, 
because light from each must travel the same distance 
(in B’s case, L/2).  However, A is moving so as to meet 
the light from the right end strike and running away 
from the light from the left end strike; A will say that 
the right hand strike occurred first. 

Length Contraction I 

It is traditional to make use of a meter stick as a convenient object to be observed.  Let’s suppose 
that A considers himself to be stationary, and he holds his meter stick perpendicular to the constant 
motion of B.  B considers himself to be stationary and holds his meter stick perpendicular to the 
constant motion he sees A performing. 

It’s indisputably true that one of 
three things will happen as the 
sticks pass each other, A will 
measure the length of B’s stick to be 
either shorter than a meter, equal to 
a meter, or longer than a meter.  The 
same will be true of B measuring 
A’s stick.  Now, let’s make use of a 
concrete example. 3   Suppose that, 
as the sticks pass one another, A 
sees the 100 cm end of B’s stick to be located at his 95 cm mark, and the zero end of B’s stick to 
be located at his 5 cm mark. That is, A thinks that B’s stick has shrunk in length.  But, B must 
agree with A that the 100 cm mark of B’s stick passed the 95 cm mark of A’s stick, since the two 
marks were in the same location at the same time.   The same is true of course for the other end; B 
must agree that his 0 cm end passed A’s 5 cm mark.  However, since B correctly maintains that 
his stick is 100 cm long and at rest, he would conclude that A’s stick lengthened.  This violates the 
second postulate, in that A says such a moving stick shortens and B says such a stick lengthens; 
the laws of physics would need to be different for A and for B.  We conclude then that sticks in 
this situation remain one meter long for all observers.4 

Time Dilation 

                                                           
3 Mermin, N. David, Space and Time in Special Relativity, McGraw-Hill, New York (1968) pp27-32. 
4 Of course, this assumes that our postulates are valid.  As we make more predictions based on the postulates that turn 
out to be correct, we gain confidence that they are indeed valid. 
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DERIVATION 1-1 

Consider the classic light-clock scenario.  A rod of length Lo has a pulsed light source at one 
end and a mirror at the other.  Periodically, a very short light pulse is emitted by the left end, 
reflected at the right end, and detected at the left end.  Detection of the returned pulse trips a 
counter and the process is repeated.   

For now, let’s let the clock be stationary 
with respect to Observer A.  What is the time 
interval ΔtA between the ticks of the clock?  
The pulse is emitted and travels distance Lo 
at speed c to the mirror, is reflected, and 
travels distance Lo again to reach the 
detector.  So,  

Δt =  


ୡ
+



ୡ
=  

ଶ

ୡ
 . 

Now, according to Observer B, who thinks 
himself to be stationary, the clock is moving 
with speed v (specifically for this derivation, 
the length is perpendicular to the direction of 
motion).  The pulse is emitted, reflected, 
detected, and counted, as above.  However, the distance traveled by the pulse is no longer 2Lo.  
If ΔtB is the time interval for the clock to tick once as seen by B, then the clock has moved a 
distance v ΔtB in that interval.  Assuming per Postulate One that the speed of light is the same 
for both A and B, the time to make the trip shown in the figure will be 

Δt =  2
ට

మା ቀ୴
Δ౪ా

మ ቁ
మ

ୡ
 . 

Solving this for the time interval results in 

Δt =  
2L୭

c
 

1

ට1 − ቀ
୴
ୡ

ቁ
ଶ

=
Δt

ට1 − ቀ
୴
ୡ

ቁ
ଶ

 > Δt 

Figure 2 - A stationary light clock. 
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Note that this interval is longer than the interval as 
measured by Observer A! Observer B would say 
that the clock is running slowly when compared 
with his own, identical clock. 

So, if an object undergoes some process whose 
duration as measured by an observer at rest relative 
to the object is Δto (often referred to as the proper 
time 5 ), the duration Δt as measured by another 
observer who sees the object moving at velocity v 
relative to himself will be6  

Δt =  γ Δt୭ .    

The term v/c is often replaced with the symbol beta 
(β) and (1 – (v/c)2)-1/2 is often replaced with the 
symbol gamma (γ).   

Since this argument will work for either observer 
being stationary while the other is moving, we 
obtain the mind-boggling result that each thinks his own clock keeps good time and that the other’s 
clock runs slowly.   

Now, this may convince you that these special light clocks run slowly, but what about wrist 
watches or chemical reactions or biological processes.  Well, since we can correlate the ‘ticking‘ 
of the light clock to the ‘ticking’ of any other type of clock, these other processes will run slowly 
as well.  As B whizzes past a ‘stationary’ A, A will observe B to age more slowly, his chemical 
reactions to take longer, and so on. 

EXERCISE 1-1 

Do the algebra to solve for ΔtB above. 

HOMEWORK 1-1 

The HMCSS Clark passes by Planet X-372 at 0.99c.  As they pass, Buzz Cutter, marooned on 
the planet, sets off a rescue beacon that lasts for 0.1 seconds.  How long does the crew of the 
Clark measure the beacon pulse to be? 

Length Contraction II 

                                                           
5 ‘Proper’ in the sense of the French ‘ses propres mains’ as opposed to ‘ses mains propres.’  
6 Be careful.  Other texts may invert the sense of the time intervals described here, resulting in a reversed formula. 
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Well, we’ve asserted that the speed of light for each of our observers is the same.  It stands to 
reason that if time intervals can be measured to be different, then distances may also be different.  
Again, we’ll make use of the light clock, this time oriented parallel to the velocity of Observer B. 

DERIVATION 1-2 

Nothing has changed for Observer A; he 
is still at rest with respect to his clock, 
and once again we know that  

∆t =  


ୡ
+



ୡ
=  

ଶ

ୡ
 , 

where Lo is the proper length of the rod, 
or the length when measured by an 
observer at rest relative to the clock.  
Now, let’s at least consider the 
possibility that the length as seen by B (= 
L) is not the same as seen by A (= Lo). Let ΔtB1 be the time necessary for the light to leave the 
source and strike the mirror; since the mirror moved distance v ΔtB1 during this process, the 
total distance traveled is L + vΔtB1 and the time required is  

∆tଵ =  
ା୴∆୲ాభ

ୡ
   →    ∆tଵ =



ୡି୴
. 

On the return trip, the distance is shorter since the detector moves to meet the returning light 
pulse: 

∆tଶ =  
ି୴∆୲ామ

ୡ
   →    ∆tଶ =



ୡା୴
. 

The total time is then 

∆t = ∆tଵ + ∆tଶ =  
L

c − v
+

L

c + v
=

2cL

cଶ − vଶ
 . 

We know from the time dilation discussion above that this time interval equals γ ΔtA, so 

∆t =
2cL

cଶ − vଶ
=  γ∆t = γ

2L୭

c
 

L

1 − ൫୴
ୡ
൯

ଶ =  γL୭ 

γଶL =  γL୭ 
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L =  γିଵL୭   .    

So, Observer B sees A’s rod shortened from its proper length Lo by factor γ.  However, if we just 
exchange the frames of reference in the argument above, we see that A will see B’s rod shortened 
by the same factor!  Again, rather mind-boggling. 

Before we look at an example, we should check that these results are consistent with what we have 
done in the previous sections of these notes.  In both cases, if the velocities are very small compared 
to the speed of light, each of these results simplifies back to what we expected in the Newtonian 
world; the length of an object appears the same in any frame as do the time intervals. 

EXAMPLE 1-2 

Suppose B contends that he is holding a stick of length Lo at an angle of 45o from the x axis.  
As B moves past A along the x-axis at 0.3c, what will A say is the length of the stick and the 
angle from the x-axis? 

From B’s viewpoint, the projection of the stick along the y-axis will be Lo/√2 = 0.707Lo, and 
the same for the x-axis.  From the discussion above, we know that A will see the perpendicular 
projection of the stick to be the same as what B sees (LyA = 0.707Lo), but the projection along 
the x-axis will be contracted by factor γ-1 = 0.954, or LxA = 0.954 Lo/√2 = 0.675Lo.  The length 
of the stick can be found with the Pythagorean theorem: 

L =  ටL୷
ଶ +  L୶

ଶ =  ඥ(0.707L୭)ଶ + (0.675L୭)ଶ = 0.977 L୭.  

The angle observed as the stick passes by can be determined with the arc tangent: 

θ = arctan ൬
L୷

L୶
൰ = arctan ൬

0.707L୭

0.675L୭
൰ =  46.3 . 

EXAMPLE 1-3 

Here’s an experiment that tests both time dilation and length contraction, depending on how 
it’s solved.7  Muons are sub-atomic particles somewhat similar to electrons; however, unlike 
electrons, they decay or break down into several other particles fairly soon after their creation.  
Sophisticated statistics allow us to define a decay lifetime of 2.2 microseconds when the 
particle is at rest in a laboratory.  To simplify the question, we’ll just assume that every muon 
lasts exactly 2.2 μsec, even though many last less time and many last longer.  Muons are created 
high in the earth’s atmosphere (~ 10 km above the earth’s surface) by cosmic rays and 
subsequently travel at a speed close to c (we’ll assume 0.999c). 
 

                                                           
7 Time Dilation: an Experiment with mu Mesons. Cambridge: Educational Services, Inc., 1962.  Currently available 
at https://www.youtube.com/watch?v=3CeQXsIiGp8. 
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a) How far could a muon travel from its creation point towards the surface of the earth before 
decaying? 
 

If the muon traveled at 0.999c, it could cover d = vto = 0.999 (3108)(2.210-6) = 659 m. 
 

Well, 660 m is a lot less than 10,000 m.  We would expect the number of muons arriving at 
the earth’s surface to be zero.  In reality, quite a few of the muons survive the trip to the surface.  
However, remember that the internal clock that determines when a muon decays is running 
slowly as seen from an observer on earth.   

 
b) What is the decay time as seen by such an observer? 

 
t = to[1-v2/c2]-1/2 = 2.2[1-(0.999c)2/c2]-1/2 = 49.2 μs in the frame of an observer on earth. 
 

c) How far would these muons travel at 0.999c in 49.2 μsec? 
 

d’ = vt = 0.999 (3108)(49.210-6) = 14,700 m 
 

This is certainly greater than 10,000 m, so an observer on earth would expect to see a fair 
number of muons arrive at the surface.  The problem now is that the earth-bound observer and 
one riding along with the muons must agree on how many muons survive the trip (all of them 
vs none of then, in our simplification). Luckily, length contraction removes the paradox.  From 
the muon’s point of view, it’s stationary with a lifetime of 2.2 μsec, and the earth’s surface is 
rushing up towards it at 0.999c.   

 
d) How much time does it take for the earth’s surface to arrive at the creation point of the 

muons?? 
 
L = Lo[1 - v2/c2]1/2 = 104[1 - 0.9992]1/2 = 447 m  

t = L/v = 447/(0.9993108) = 1.4910-6 sec = 1.49 μsec. 
 

This is considerably less than 2.2 μsec, so quite a few muons will still exist when the surface 
arrives.  

 

HOMEWORK 1-2 

The proper half-life of the π+ particle is 2×10-8 seconds.  How quickly would such a particle 
need to move to be able to traverse a distance of 25 meters in a laboratory? 

HOMEWORK 1-3 
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Astrid is a colonist on an interstellar spaceship.  If she left earth on her twentieth birthday and 
traveled the 12 light years to Tau Ceti at 0.99c, what age will she be when she arrives?  Assume 
that her ship accelerates and decelerates quickly enough to ignore that effect. 

Non-Simultaneity and the Order of Events 

If both time intervals and distances 
depend on the motion of the observed and 
the observer, we might imagine that two 
observers may well disagree on when and 
where an event takes place.  We can make 
use of a Minkowsky diagram to keep track 
of the times and places events occur.  
These can get very sophisticated, so we 
will use them in a few examples to 
determine only the order in which events 
occur. 

Typically, for a one dimensional problem, 
the location x of an object is plotted along 
the abscissa, and the time (actually ct, so 
both axes are in units of distance) is 
plotted along the ordinate.  Consequently, the graph of any light ray will be a line at 45o to the 
axes, since x = xo ±ct.  The graph above depicts the curves for a light ray and a stationary object.  
Note that events that occur simultaneously in this frame of reference will lie along a horizontal 
line parallel to the x axis.  Events that occur in the same position will lie along a line parallel to 
the ct axis. 
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If we want to see this from a different inertial frame moving at speed v with respect to ourselves, 
we tilt the axes by an angle theta equal to the arctangent of (v/c).  Why?  Consider an observer B 
that passes our origin at speed v when our time = 0.  In our frame, his position would be  

x = xi + vt = 0 + (v/c) ct, 

ct = (c/v) x + 0.   

So, the slope of his path as seen by us 
on this graph would be c/v = tan φ, 

and since  and φ are complementary, 

tan  = v/c.  This red line is of course 
the x’ = 0 line, or more importantly, 
the ct’ axis, for the observer B in the 
moving frame, since he thinks 
himself to be stationary.  Then, since 
the line representing the motion of 
light must bisect the two axes for B as 
it does for us, the x’ axis will be tilted 
by angle theta as well.   

To sum up, if A is the observer in the 
unprimed frame and B in the primed frame: 

1) Any object stationary for A will trace out a line parallel to the ct axis. 
2) Any object stationary for B will trace out a line parallel to the ct’ axis. 
3) Any events that occur simultaneously for A will lie along a line parallel to the x axis. 
4) Any events that occur simultaneously for B will lie along a line parallel to the x’ axis. 

EXAMPLE 1-4 

Let’s make use of a Minkowsky diagram to help explain length contraction. How is it possible 
that each observer will see the other’s meter stick as shorter than his own?  Surely, at some 
point, the sticks lay next to each other and can be compared?  The key is to realize that events 
happen in different orders for each of the observers. Let’s contend that A is at rest and holds 
his meter stick parallel to the velocity of B, who is moving at 0.44c as seen by A and who holds 
his own stick parallel to his motion.  B, of course, believes himself to be stationary.  The length 
contraction relationship developed above says that A will measure B’s stick to be 0.9 meters 
long, and that B will measure A’s stick to be 0.9 m long.   

The figure on the next page is drawn to scale.  The heavy black lines are A’s x and ct axes and 
the light, dotted, black line is the light line.  The vertical red lines are the two ends of A’s meter 

Figure V-1-6 
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stick, each at a constant value of position x.  Events that occur simultaneously for A will lie on 
a line parallel to the x-axis. 

The blue lines represent the two ends of B’s meter stick as seen by A.  Notice that the length 
of B’s stick has been adjusted to 0.9 times the length of A’s stick.  As time progresses, B’s 
stick moves to the right as seen by A. 

The events (black dots) labeled (1), (2), (3), and (4) are: 

(1) The right end of B’s stick passes the left end of A’s stick. 
(2) The left end of B’s stick passes the left end of A’s stick. 
(3) The right end of B’s stick passes the right end of A’s stick. 
(4) The left end of B’s stick passes the right end of A’s stick. 

We know that this order of events is correct for A by looking at the dotted black lines from the 
bottom to the top (increasing time).  The order of events (2) then (3) is consistent with B’s 
stick being shorter than A’s as seen by A. 

However, if we examine the sequence of events as seen by B, the order is different.  Remember 
that simultaneous events as seen by B will lie along a line parallel to the x’ axis; these are the 
green dotted lines. 

(1) The left end of A’s stick passes the right end of B’s stick. 
(3) The right end of A’s stick passes the right end of B’s stick. 
(2) The left end of A’s stick passes the left end of B’s stick. 
(4) The right end of A’s stick passes the left end of B’s stick. 

Here, the sequence of events (3) then (2) means that B will see A’s stick as being shorter. Once 
the two right ends align, some additional time must pass before the left ends of the two sticks 
align, and in that time, A’s stick’s right end will have moved to the left. 
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HOMEWORK 1-5 

 Here’s a well-known problem.  Suppose we have a shed that is 4 meters long with a door 
at each end.  We’d like to put a 5 meter long ladder in the shed and have both doors shut.  
How?  Well, if we were to have Eb run the ladder through the shed at a high velocity, 
length contraction would shorted the ladder enough, from our frame of reference, so that 
its length would be less than 4m.  We see:  

1) Door One opens and the ladder enters the shed. 
2) Once the ladder is completely in the shed, Door One closes.  Both doors are now shut. 
3) Door Two opens and the ladder exits. 
4) Once the ladder completely exits the shed, Door Two closes.  

All well and good, except that, from the Eb’s reference frame, the ladder is still 5m long 
and the shed’s length has instead contracted by a factor of 0.6, and so appears to be 2.4 
meters long!  Explain qualitatively how this is actually consistent with what we saw. 

Doppler Effect 

DERIVATION 1-3 

We derived the Doppler effect for sound in semester one: 

𝑓 =  
vୱ୭୳୬ୢ ± v୭ୠୱୣ୰୴ୣ୰

vୱ୭୳୬ୢ ∓ vୱ୭୳୰ୡୣ
 𝑓 

where fo is the frequency emitted by a source in its proper frame, f is the frequency heard by 
the ‘observer,’ the upper signs are used for ‘approaching’ objects and the lower for ‘receding’ 
ones.8  You may remember an example in which we tried to use relative velocities to simplify 
the case of both a moving source and observer, but correspondingly had to change the speed 
of sound to include a ‘wind’ term.   Since there is no analog to the air for light (no ‘æther 
wind’), this correction is unnecessary and we can use the simplified form of assuming that the 
observer is at rest, the relative velocity v between the objects becomes vsource, and the speed of 
the wave becomes c: 

𝑓 =  
ୡ

ୡ∓୴ೞೠೝ
 𝑓. 

However, remember that whatever clock that determines the frequency fo emitted by the source 
runs slowly as seen by the observer due to the time dilation effect, so that the frequency is 
reduced by a factor (1 – v2/c2)1/2, so that  

                                                           
8 These terms were previously defined very specifically in Section 11. 
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𝑓 =  
c

c ∓ v
 ൭ቆ1 −

vଶ

cଶ
ቇ

ଵ/ଶ

𝑓൱ =  
1

1 ∓
v
 c

 ቆቀ1 −
v

c
ቁ

ଵ/ଶ

ቀ1 +
v

c
ቁ

ଵ/ଶ

𝑓ቇ 

𝑓 =  
ቀ1 ±

v
c

ቁ
ଵ/ଶ

ቀ1 ∓
v
c

ቁ
ଵ/ଶ

 𝑓 =  ൬
1 ± β

1 ∓ β
൰

ଵ/ଶ

𝑓 ,   

where, once again, the upper signs are used for ‘approaching’ objects and the lower for 
‘receding’ ones. 

EXAMPLE 1-6 

Distant galaxies often emit frequencies of light that are clearly identifiable as due to a specific 
element, such as for example calcium.  In the laboratory, the wavelength of one such emission 
is 393 nanometers.  However, in light from a distant galaxy, the observed wavelength is 572 
nm.   

What is the radial speed of this galaxy relative to the earth? 

First, we assume that the light emitted by the galaxy has a wavelength λo of 393nm in its proper 
frame of reference.9  Secondly, we might safely assume from the information given that the 
galaxy is receding from the earth.  Recalling that f λ = v = c for light waves, the relationship 
can be rewritten as 

c

λ
=  ൬

1 − β

1 + β
൰

ଵ/ଶ c

λ୭
. 

Squaring and cross multiplying results in  

λ୭
ଶ(1 + β) =  λଶ(1 − β). 

Re-arranging to solve for beta, 

β =
λଶ − λ୭

ଶ

λଶ + λ୭
ଶ

=  
572ଶ − 393ଶ

572ଶ + 393ଶ
= 0.36.     

So, the galaxy is traveling at 36% of the speed of light, or 1.08×108 m/s, relative to the earth. 

Relative Velocities 

                                                           
9 We assume that each calcium atom follows the same laws of physics as does every other calcium atom in the universe 
(Postulate One) so that the emission wavelength is the same in each atom’s proper frame of reference.   
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Let’s consider three observers, A, B, and C, each moving along the x-axis.10  From Semester One, 
we would possibly have written  

vሬ⃑ େ, =  vሬ⃑ େ, + vሬ⃑ ,   . 

Suppose though that these velocities are quite high, e.g., let A be a planet at rest (P), B a space 
ship heading away from the planet (S), and C be a missile (M) launched from the ship directly 
away from the planet, with vS,P = 0.6c and vM,S = 0.8c.  Would the velocity of the missile relative 
to the planet really then be 1.4c?   

DERIVATION 1-4 

Let’s let the missile emit a series of radio pulses of frequency fo in its proper frame.  This radio 
wave will travel back toward the planet and be intercepted by the ship, who will measure a 
frequency given by the Doppler effect of 

𝑓ெ,ௌ =  ൬
ଵି

౬,
ౙ

ଵା
౬,

ౙ
 
൰

ଵ/ଶ

𝑓. 

Now, let’s let the ship emit its own radio pulse towards the planet every time it receives one 
from the missile, that is, at the frequency fM,S given above.  These pulses will arrive at the 
planet with frequency 

𝑓ௌ, =  ൬
ଵି

౬,ౌ
ౙ

ଵା
౬,ౌ

ౙ
 
൰

ଵ/ଶ

𝑓ெ,ௌ =  ൬
ଵି

౬,ౌ
ౙ

ଵା
౬,ౌ

ౙ
 
൰

ଵ/ଶ

൬
ଵି

౬,
ౙ

ଵା
౬,

ౙ
 
൰

ଵ/ଶ

𝑓. 

Of course, the planet will also receive pulses directly from the missile with a frequency given 
by 

𝑓ெ, =  ൬
ଵି

౬,ౌ
ౙ

ଵା
౬,ౌ

ౙ
 
൰

ଵ/ଶ

𝑓. 

Since each pulse arriving at the planet directly from the missile corresponds exactly with a 
pulse emitted by the ship, it must be true that  

𝑓ெ, =  𝑓ௌ, 

and so, 

                                                           
10 Mermin, N. David, Space and Time in Special Relativity, McGraw-Hill, New York (1968) pp27-32. 
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൬
ଵି

౬,ౌ
ౙ

ଵା
౬,ౌ

ౙ
 
൰

ଵ/ଶ

=  ൬
ଵି

౬,ౌ
ౙ

ଵା
౬,ౌ

ౙ
 
൰

ଵ/ଶ

൬
ଵି

౬,
ౙ

ଵା
౬,

ౙ
 
൰

ଵ/ଶ

,  

or, after squaring and substituting in betas, 

൬
ଵିಊ,ౌ

ଵାಊ,ౌ 
൰ =  ൬

ଵିಊ,ౌ

ଵାஒ,ౌ
൰ ൬

ଵିಊ,

ଵାಊ, 
൰. 

Now, solve for vM,P by multiplying both sides by the left hand denominator, distributing, 
collecting the βM,P terms, and multiplying numerator and denominator by (1 + βS,P)(1 + βM,S): 

β, =  
൫1 + βୗ,൯൫1 + β,ୗ൯ −  ൫1 − βୗ,൯൫1 − β,ୗ൯

൫1 + βୗ,൯൫1 + β,ୗ൯ +  ൫1 − βୗ,൯൫1 − β,ୗ൯
 

Multiply out the products in the numerator and denominator and simplify: 

β, =  
ஒ,ା ஒ,ౌ

ଵାஒ, ஒ,ౌ
. 

Then, convert back to velocities by multiplying each side by c: 

v, =  
୴,ା ୴,ౌ

ଵା
౬,  ౬,ౌ

ౙమ

   

which is not quite what we might have expected from Section 3!  In the example given above, 
the velocity of the missile as seen from the planet would be 0.95c, still less than the speed of 
light!   

Let’s look at a couple of extreme cases.  If the velocities are very low, then the denominator of the 
equation above is about 1 and the result reduces to what we would expect from Newtonian 
mechanics.  At the other extreme, let’s suppose that the space ship is traveling at a speed so close 
to the speed of light as makes no numerical difference and launches the missile at a velocity relative 
to itself also close to the speed of light.  Then, the speed of the missile relative to the Planet is still 
ever so slightly below c.  This suggests that no material object can attain a velocity equal to that 
of light, regardless of the observer’s reference frame.  We’ll discuss this later in more detail. 

EXAMPLE 1-7 

Suppose a spaceship (S) is moving at 0.999c toward Planet P. The ship fires a SuperGalacto-
Corp. Mark V torpedo (T) at 0.998c relative to itself, directly at Planet P. With what speed will 
the torpedo approach Planet P? 

We already have the relationship: 
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v, =  
v,ୗ +  vୗ,

1 +
v,ୗ  vୗ,

cଶ

=
0.998c + 0.999c

1 +
0.998c  0.999c

cଶ

=  0.999999c .  

EXERCISE 1-2 

Using the formula directly above, let vT,S = c – ε and vS,P = c – ί, where epsilon and iota are 
infinitesimally small numbers.  Prove mathematically that, no matter how close to c these 
velocities get, vT,P will always be less than c. 

HOMEWORK 1-4 

Consider three spaceships.  A is chasing B, which is chasing C.  Each ship uses the Schockner 
drive that emits light of wavelength 200 nm.  A sees B’s emission at 180 nm, while B sees C’s 
emission at 165 nm. 

A) What is the velocity of B as measured by A? 
B) What is the velocity of C as measured by B? 
C) What is the velocity of C relative to A? 
D) What wavelength will A see C’s emission to be? 

Momentum 

In Semester One, we defined the momentum pሬ⃑  of a particle as the product of the particle’s mass 
and its velocity.  We saw that if momentum is conserved in one frame of reference, then it is also 
conserved in other frames.  Does that relationship still hold at high speeds?   

Consider the very special case of a totally inelastic head-on collision of two particles (A and B) 
with equal proper masses mo and equal speeds u (i.e., we see them from the point of view of the 
center of mass, CM).11  Here, u represents a specific, if unknown, speed.   

vሬ⃑ ,େ୧ =  u;  vሬ⃑ ,େ୧ =  −u;   vሬ⃑ େ = 0 

(pሬ⃑ )୧ = m୭vሬ⃑ ୧ +  m୭vሬ⃑ ୧ = m୭(u) +  m୭(−u) = 0. 

Then, by conservation of momentum,  

(pሬ⃑ ) = m୭vሬ⃑ , +  m୭vሬ⃑  = 0,   

and since, for an inelastic collision, vሬ⃑ Af = vሬ⃑ Bf, both final velocities are zero.  That’s actually pretty 
trivial; just about any reasonable vector function we could think up would exhibit conservation for 
this scenario. 

                                                           
11 Adapted from an argument in Serway, R.A, C.J. Moses, and C.A. Moyer, Modern Physics 3rd Edition, Thomson, 
Belmont, (2005) pp41-43.  There are several typographical errors in the solution to Example 2.6. 
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Now, let’s switch to a frame of reference in which mass B is initially at rest.  Then, using relativistic 
relative velocity relationships: 

vሬ⃑ ୧
ᇱ = 0     vሬ⃑ େ

ᇱ =  −vሬ⃑ ୧ = u      vሬ⃑ ୧
ᇱ =

୴ి
ᇲ ା୴ఽ

ଵା
౬ి

ᇲ   ౬ఽ
ౙమ

=  
ଶ୳

ଵା
౫మ

ౙమ

 . 

In this case, ‘sticking together’ means that each mass has a final velocity equal to that of the center 
of mass in the frame in which B was initially at rest: 

vሬ⃑ 
ᇱ =  vሬ⃑ 

ᇱ =  vሬ⃑ େ
ᇱ = u. 

That is, we see the combined objects move away together at speed u.  Now, let’s tally up the 
momentum before and after to see if it is conserved: 

(pሬ⃑ )୧
ᇱ = m୭vሬ⃑ ୧

ᇱ +  m୭vሬ⃑ ୧
ᇱ = m୭ ቌ

2u

1 +
uଶ

cଶ

ቍ +  m୭(0) =
2m୭u

1 +
uଶ

cଶ

 

(pሬ⃑ )
ᇱ = m୭vሬ⃑ 

ᇱ + m୭vሬ⃑ 
ᇱ = 2m୭vሬ⃑ େ

ᇱ = 2m୭u. 

So, the quantity movሬ⃑  is not conserved in the relativistic regime.   

Well, momentum is a very useful concept, so perhaps we can do what we’ve done before and 
refine the definition of momentum so that we get conservation of momentum in the relativistic 
regime, but still get the results expected from Semester One for low speeds.  Let’s guess that, since 
lengths and time intervals are modified by the factor γ, the momentum should also be modified by 
the same factor.  Let’s try  

pሬ⃑ =  γm୭vሬ⃑ =  
m୭vሬ⃑

ට1 −
vଶ

cଶ

     

and see what happens.  For small, v, we can expand the denominator (See Note One at the end of 
the Section.) to obtain 

pሬ⃑ =   
m୭vሬ⃑

ට1 −
vଶ

cଶ

≈  m୭vሬ⃑  ൬1 +
1

2
ቀ

v

c
ቁ

ଶ

+
3

8
ቀ

v

c
ቁ

ସ

+
15

48
ቀ

v

c
ቁ



+ ⋯ ൰ . 

Now, it’s not enough to show that pሬ⃑ →0 as vሬ⃑ →0.  We need to show that pሬ⃑ →movሬ⃑  as vሬ⃑ →0.  Indeed, 
since (v/c)n+2 < (v/c)n, we can see that as v heads toward zero, all of the terms beyond the first 
become negligible compared to the first and we are left with the familiar Newtonian pሬ⃑  = movሬ⃑ .  
Next, let’s look at very high velocities.  Let’s re-arrange the equation above and solve for v: 
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v =  
pc

ඥm୭
ଶcଶ +  pଶ

 . 

This expression approaches c as the momentum increases towards infinity, consistent with our 
previous notion of a natural speed limit; you can give the object as much momentum as you like, 
but the speed will always be less than c.  So, the correspondence principle is satisfied.  Now, 
passing these two tests does not mean that our guess is correct, only that it is consistent with some 
of our expectations.  Let’s go with it for now. 

Now, this definition for momentum is usually interpreted in one of two ways.  In the first, the mass 
remains constant (mo is called the rest mass, or in our terminology, the proper mass) and the 
definition of momentum changes from p = mov to p = γmov, as above.  In the second, the formula 
remains p = mv, but the mass is redefined as m = γmo, that is, the inertial mass m is considered to 
increase as the object speeds up.  Generally, we will stick with the former; however, the latter 
notion can be useful.  

It would be nice if our 
guess about momentum 
were to be supported by 
experiment.  The figure 
shows the specific 
momentum (p/moc) of 
high speed electrons as 
a function of beta.  The 
blue curve is calculated 
using the function we 
guessed, the yellow 
line is a competing 
relationship from the 
early 20th century, 12 
and the red line was calculated using Newtonian momentum. 13  We can see that our guessed 
function for momentum is almost certainty correct. 

Let’s return to the idea of conservation of momentum.  Although it results in a mess, let’s use our 
new notion of momentum in the example from above, keeping in mind that we must use the 

                                                           
12 Abraham, M., ‘Prinzipien der Dynamik des Elektrons,’ Annalen der Physik 10: 105-179 (1903). 
13 These experiments were conducted between 1901 and 1905 by Walter Kaufmann using an apparatus that was much 
more complicated than necessary. Kaufmann was actually trying to disprove the relativistic behavior in favour of 
Abraham’s relationship, but the data were inconclusive. In 1906, Planck gave a presentation re-examining some of 
Kaufmann’s data and claimed that it was not possible to rule out either picture.  That analysis made use of an incorrect 
value for the specific charge of the electron; I have corrected that error and the results are shown in the graph.  Planck, 
M., ‘Die Kaufmannschen Messungen der Ablenkbarkeit der β-Strahlen in ihrer Bedeutung für die Dynamik der 
Elektronen,’ Physikalische Zeitschrift, 7: 753–761 (1906). 

0

0.5

1

1.5

2

2.5

3

0.5 0.6 0.7 0.8 0.9 1

p/
m

oc

v/c

Relativistic Momentum



20 
 

relativistic relative velocity expressions.  In the reference frame in which B is initially at rest, we 
have 

 

(p)୧
ᇱ =

m୭v୧
ᇱ

ඨ1 −
v୧

ᇱ ଶ

cଶ

+  
m୭v୧

ᇱ

ඨ1 −
v୧

ᇱ ଶ

cଶ

=

m୭
2u

1 +
uଶ

cଶ

ඪ

1 −

ቌ
2u

1 +
uଶ

cଶ

ቍ

ଶ

cଶ

+  m୭(0)

=
2m୭u

൬1 +
uଶ

cଶ൰
ඩ

1 −
4uଶ

cଶ
1

൬1 +
uଶ

cଶ൰
ଶ

=
2m୭u

ඨ൬1 +
uଶ

cଶ൰
ଶ

− 4
uଶ

cଶ

=
2m୭u

ට1 + 2
uଶ

cଶ +
uସ

cସ − 4
uଶ

cଶ

=  
2m୭u

ට1 − 2
uଶ

cଶ +
uସ

cସ

=
2m୭u

1 −
uଶ

cଶ

 . 

The final total momentum is a bit easier: 

(p)
ᇱ = γm୭v

ᇱ +  γm୭v
ᇱ = 2γେm୭vେ

ᇱ =
2m୭u

ට1 −
uଶ

cଶ

 . 

Hmm. Not the same.  Well, that’s a big disappointment after so much calculation.  Somehow, 
though, I think this idea may be salvageable.  Let’s put it aside for a while. 

Energy  

Next, let’s consider the kinetic energy of an object moving at high velocity.  Once again, let’s 
make a guess as to the form of the kinetic energy in the relativistic regime, by returning to the 
notion that a moving object can be thought to have a larger mass than the same object at rest: 

m = γm୭ =
m୭

ට1 −
vଶ

cଶ

 . 

So, our guess might as well be that 

K =  
ଵ

ଶ
(γm୭)vଶ. 

Let’s check it out at low velocities with an expansion. 
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K =   
ଵ
ଶ
m୭vଶ

ට1 −
vଶ

cଶ

  ≈  
ଵ

ଶ
m୭vଶ  ൬1 +

1

2
ቀ

v

c
ቁ

ଶ

+
3

8
ቀ

v

c
ቁ

ସ

+
15

48
ቀ

v

c
ቁ



+ ⋯ ൰. 

So, as v approaches zero, K approaches 1/2mov2.  So far, so good.  What happens at high velocities?  
Solve the proposed relationship above for v2: 

𝑣ସ + 
ସమ


మమ

𝑣ଶ −  
ସమ


మ = 0. 

This quadratic equation has one physical solution (i.e., v2  0) : 

𝑣ଶ =  
−2𝐾ଶ

𝑚
ଶ𝑐ଶ

+ ඨ
4𝐾ସ

𝑚
ସ𝑐ସ

+
4𝐾ଶ

𝑚
ଶ

 

for which, as expected, v goes to c as the kinetic energy increases to infinity (See NOTE 2 at the 
end of the Section.).  So, this is a possibility.  However, if we make actual measurements of K vs 
v, we find that there is poor agreement (see the figure). 

So, we need to look at things from scratch and use the Work-Energy theorem.  Let’s restrict 
ourselves to a situation where the force F is always in the direction of motion of the object (i.e., a 
one dimensional problem), and let’s require the object to start from rest (why not?).  Also, let’s 
assume that our guess of the function for momentum is correct; I think there’s enough experimental 
evidence for that, even if we still have a few problems. Remembering the impulse-momentum 
relationship: 

𝐅 =  
d𝐩

dt
=

d

dt
(γm୭𝐯) =

d

dt
 ൭m୭𝐯 ቆ1 −

vଶ

cଶ
ቇ

ିଵ/ଶ

൱  

𝐅 =  m୭

d𝐯

dt
ቆ1 −

vଶ

cଶ
ቇ

ିଵ/ଶ

+  m୭𝐯 ቆ1 −
vଶ

cଶ
ቇ

ି
ଷ
ଶ

ቀ
ିଵ

ଶ
ቁ ൬

−2v

cଶ
൰

d𝐯

dt
 . 

Cleaning up the mess, and realizing that v and dv/dt are in the same direction in our example, we 
obtain 

𝐅 =  ቆ1 −
vଶ

cଶ
ቇ

ିଷ/ଶ

m୭

d𝐯

dt
=  ቆ1 −

vଶ

cଶ
ቇ

ିଷ/ଶ

m୭𝐚 =  γଷm୭ 𝐚 .  (Eq. V − 1 − 6) 

So, Newton’s Second Law is no longer F = ma!  More on this later. 

The Work-Energy Theorem (for one dimension) states that 
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𝑊 =  න 𝐹(𝑥)𝑑𝑥 =  ∆𝐾 .
௫

௫

 

Substituting the penultimate expression above for the force results in 

W =  ∫ ቀ1 −
୴మ

ୡమ
ቁ

ିଷ/ଶ

m୭
ୢ୴

ୢ୲
 dx =  ∫ ቀ1 −

୴మ

ୡమ
ቁ

ିଷ/ଶ

m୭
ୢ୶

ୢ୲
 dv =  ∫ ቀ1 −

୴మ

ୡమ
ቁ

ିଷ/ଶ

m୭v dv =
୴



୶

୶

୶

୶

 ቀ1 −
୴మ

ୡమ
ቁ

ିଵ/ଶ

m୭cଶ |
୴ =  γ(v) m୭cଶ − γ(0)m୭cଶ = (γ − 1)m୭cଶ =  ΔK.  

Since we set Ki = 0, we obtain the general result that 

K =  (γ − 1)m୭cଶ ,   

which is quite different than our guess.  Let’s test the extremes of this function to see if it jibes 
with our requirements.  Let’s expand gamma as we did before: 

K ≈  ൬ 1 +
1

2
ቀ

v

c
ቁ

ଶ

+
3

8
ቀ

v

c
ቁ

ସ

+
15

48
ቀ

v

c
ቁ



+ ⋯ − 1൰ m୭cଶ  

K ≈  ൬ 
1

2
ቀ

v

c
ቁ

ଶ

+
3

8
ቀ

v

c
ቁ

ସ

+
15

48
ቀ

v

c
ቁ



+ ⋯ ൰ m୭cଶ  

K ≈  
1

2
m୭vଶ +

3

8
m୭cଶ ቆ

vସ

cସ
ቇ +

15

48
m୭cଶ ቆ

v

c
ቇ + ⋯  

We can see that as v becomes much smaller than c, K → 1/2mv2, as expected. 

Let’s look at the other extreme.  Solve for v as a function of K: 

v = c
ඩ

1 −
1

൬1 +
K

m୭cଶ൰
ଶ 

And so we see that as K → ∞, v →c, as expected. 

We would also like to see if experimental data support this relationship.  See the figure. 
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Here, the blue curve is drawn using the function calculated above, the violet curve is our ‘bad’ 

guess 1/2  mo v2, and the green curve is the Newtonian K = ½ mo v2.  These particular data points 
are interesting in that the experiment was filmed.14 Recommended viewing. 

Before we move on, let’s look at another special case of Newton’s second law, one where the force 
is perpendicular to the velocity.  As discussed in Physics I, no work in done if the force and velocity 
are perpendicular.  We would then expect the kinetic energy, and therefor both the speed and 
gamma, to remain constant.  Repeating our calculation above, we obtain 

𝐅 =  
d𝐩

dt
=

d

dt
(γm୭𝐯) = γm୭

d𝐯

dt
=  γm୭𝐚   .  

Note that this is different than when the force and velocity are parallel.  In fact, we can make 
another extraordinary statement. Unlike in Newtonian mechanics, the direction of a force on an 
object and the resulting acceleration do not have to be in the same direction.   

                                                           
14  The Ultimate Speed. Cambridge: Educational Services, Inc., 1962.  Currently available at: 
https://www.youtube.com/watch?v=B0BOpiMQXQA. 
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EXAMPLE 1-8 

Consider an object of mass mo moving in the +x direction at speed 0.5c.  Let’s apply a force F 
in the x-y plane at an angle θF = 30o from the x-axis.  What is the direction θa of the resulting 
acceleration? 

tan θ =  
F୷

F୶
=  

γma୷

γଷm୭a୶
=  γିଶ

a୷

a୶
= (1 −  βଶ)tanθୟ 

We can see that for low speeds (β→0), the direction angles become the same, as we expect 
from Newtonian physics.  However, to continue, 

tanθୟ =  
1

1 −  0.5ଶ
tan(30) = 0.77          θୟ = 37.6. 

HOMEWORK 1-5 

Consider a 1 kg mass.  Calculate how much work must be done to accelerate the mass from  

A) 0.1c to 0.12c using relativistic relationships. 
B) 0.1c to 0.12c using newtonian relationships. 
C) 0.95c to 0.97c using relativistic relationships. 
D) 0.95c to 0.97c using newtonian relationships. 

Return to Momentum 

Now, let’s take another crack at the problem we had earlier with the inelastic collision.  We found 
that the total initial momentum was   

2𝑚𝑢

1 −
𝑢ଶ

𝑐ଶ

 , 

while the final total was  

2𝑚𝑢

ට1 −
𝑢ଶ

𝑐ଶ

 . 

We can perhaps salvage our notion about momentum if we assume a really wild thing: suppose 
that there is more mass in the final state than in the initial state.  Let Mo (> 2mo) be the mass of the 
combined objects after the collision.   What would we need to make Mo be in order for momentum 
to be conserved?  We would have to require that 
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𝑀 =
2𝑚

ට1 −
𝑢ଶ

𝑐ଶ

    

and not Mo = 2mo in order to make our initial and final momentums equal.  Then, 

𝑝 =
ଶ௨

ଵି
ೠమ

మ

 and 𝑝 =  
ெ௨

ටଵି
ೠమ

మ

=  ⎝

⎜
⎛ మ

ඨభష
ೠమ

మ
⎠

⎟
⎞

௨

ටଵି
ೠమ

మ

=
ଶ௨

ଵି
ೠమ

మ

 .  

The amount of mass created as a result of the collision would then be  

∆𝑚 = 𝑀 − 2𝑚 =
2𝑚

ට1 −
𝑢ଶ

𝑐ଶ

− 2𝑚 =  (𝛾(𝑢) − 1)2𝑚 . 

This extra mass has to come from somewhere.  What do we have less of after the collision than we 
had before the collision?  Well, we know from Semester One that we have less kinetic energy after 
an inelastic collision.  Let’s find out how much is lost in our example (again, in the frame in which 
Object B is initially at rest and using relativistic relative velocities). 

𝐾𝐸 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

1

ඪ

1 −

ቌ
2𝑢

1 +
𝑢ଶ

𝑐ଶ

ቍ

ଶ

𝑐ଶ

− 1

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑚𝑐ଶ + 0 = ቌ
ቀ

𝑢
𝑐

ቁ
ଶ

1 − ቀ
𝑢
𝑐

ቁ
ଶቍ 2𝑚𝑐ଶ 

𝐾𝐸 =

⎝

⎛
1

ට1 −
𝑢ଶ

𝑐ଶ

− 1

⎠

⎞ 𝑀𝑐ଶ =

⎝

⎛
1

ට1 −
𝑢ଶ

𝑐ଶ

− 1

⎠

⎞

⎝

⎛
2𝑚

ට1 −
𝑢ଶ

𝑐ଶ⎠

⎞ 𝑐ଶ

=

⎝

⎛
1

1 − ቀ
𝑢
𝑐

ቁ
ଶ −

1

ට1 − ቀ
𝑢
𝑐

ቁ
ଶ

⎠

⎞ 2𝑚𝑐ଶ 
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∆KE =  KE − KE୧ =  

⎝

⎛
1

1 − ቀ
u
c

ቁ
ଶ −

1

ට1 − ቀ
u
c

ቁ
ଶ

⎠

⎞ 2m୭cଶ − ቌ
ቀ

u
c

ቁ
ଶ

1 − ቀ
u
c

ቁ
ଶቍ 2m୭cଶ

=

⎝

⎛
1 − ቀ

u
c

ቁ
ଶ

1 − ቀ
u
c

ቁ
ଶ −

1

ට1 − ቀ
u
c

ቁ
ଶ

⎠

⎞ 2m୭cଶ = −(γ(u) − 1)2m୭cଶ = −(∆m୭)cଶ. 

So, the lost kinetic energy is equal to the extra mass after the collision, times c-squared.  The 
kinetic energy was converted into the additional mass seen after the collision!   

Let’s go back to the original scenario, where we are at the masses’ center of mass.  In that case, all 
of the kinetic energy is lost, since the two masses come to rest, and presumably converted to the 
additional rest mass.    This is seen easily to be true in our initial frame of reference as well: 

∆𝐾 =  𝐾 −  𝐾 = 0 − 2(𝛾(𝑢) − 1)𝑚𝑐ଶ = −(∆𝑚)𝑐ଶ, 

same as for when we are in B’s initial frame of reference.  

One of the best examples of the 
conversion of energy to mass, 
or actually vice versa, is the 
alpha-decay of radioactive 
nuclei.  The basic idea is that a 
large nucleus of atomic mass A 
is composed of Z protons and 
A-Z neutrons.  Occasionally, 
an alpha particle (two protons 
and two neutrons) will break 
away from the nucleus at high 
speed.  The masses of the 
remaining daughter nucleus 
and that of the alpha particle add up to less than that of the original nucleus.  This missing mass 
Δm is converted into the kinetic energies of the alpha particle and the daughter nucleus.  The 
figure15 displays the missing mass times c2 against the final kinetic energy for ten nuclei16 (chosen 

                                                           
15 Kinetic energies were calculated from information in Enge, H., Introduction to Nuclear Physics, Addison-Wesley 
Publishing Company, Reading (1966) pp528-568.  Masses of nuclei were taken from Audia, G., A.H. Wapstrab, and 
C. Thibault, ‘The AME2003 Atomic Mass Evaluation,’ Nuclear Physics A 729 (2003) pp337–676. 
16 The unit of energy here is the mega-electron-volt (MeV), which you should have encountered in Semester Two.  
One MeV = 1.6×10-13 Joules. 
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semi-randomly to cover the range of all alpha decays).  A line of slope 1 is included for 
comparison.  Clearly, experiment confirms the conversion of mass into energy. 

Now, this notion in turn suggests that we could not only convert part of the mass of an object into 
energy, but also in principle turn the object completely into energy, or conversely, that there is a 
rest energy associated with an object due entirely to the fact that it has mass: 

E୭ =  m୭cଶ   . 

Now, our formula for kinetic energy makes more sense.  The total energy of an object (excluding 
any potential energy) is the sum of its rest energy and its kinetic energy: 

E = E୭ + K =  m୭cଶ + (γ − 1)m୭cଶ , 

E = γm୭cଶ . 

This result also vindicates our guess regarding the functional form of the momentum; we have a 
nice, consistent set of definitions for relativistic momentum, energy, and mass, each of which 
agrees with its Newtonian approximation. 

HOMEWORK 1-5 

When a particle of matter and a corresponding particle of anti-matter interact, they both 
disappear (annihilate) and produce high energy electro-magnetic waves.  If a proton and an 
anti-proton slowly drift into each other, how much energy will be released?  How many such 
collisions would be necessary to power a 100 watt bulb for an hour, assuming 100% 
conversion? 

Lastly, we would like a relationship between the energy and the momentum, along the lines of the 
Newtonian relationship 

KEୣ୵୲ =  
pୣ୵୲

ଶ

2m୭
 . 

Let’s start with the relationships we know, 

E =  γm୭cଶ   and   p = γm୭v. 

Square both sides of the energy relationship.  Multiply the momentum relationship by c, then 
square it. 

𝐸ଶ = 𝛾ଶ𝑚
ଶ𝑐ସ   and   𝑐ଶ𝑝ଶ = 𝛾ଶ𝑚

ଶ𝑐ସ
𝑣ଶ

𝑐ଶ
. 

Subtract the two equations to obtain 
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Eଶ − cଶpଶ = γଶm୭
ଶcସ − γଶm୭

ଶcସ
vଶ

cଶ
= γଶ ቆ1 −

vଶ

cଶ
ቇ m୭

ଶcସ = γଶγିଶm୭
ଶcସ = m୭

ଶcସ = E୭
ଶ 

Eଶ = E୭
ଶ + cଶpଶ. 

This is itself is an interesting result, in that the rest energy Eo of an object is of course independent 
of the frame of reference in which the object is observed, so that the quantity E2- c2p2 is the same 
for an object in any inertial frame of reference: 

Eଶ − cଶpଶ = Eᇱଶ − cଶpᇱଶ . 

Conclusion 

So, in this section, we have developed relationships for objects moving at high speed.  It’s true that 
several of the arguments were based on a special case, however, the results agreed with 
experimental results well enough that we may takes them as more generally correct. 
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NOTE 1 – We’ll be making use of particular Taylor expansion quite a bit in this section: 

(1 + 𝑥) = 1 + 𝑎𝑥 +
(ିଵ)

ଶ
𝑥ଶ +

(ିଵ)(ିଶ)


𝑥ଷ + ⋯ . 

In this case, we will expand gamma: 

𝛾 = ൬1 + ቀ
𝑣

𝑐
ቁ

ଶ

൰
ି 

ଵ
ଶ

= 1 +
1

2
ቀ

𝑣

𝑐
ቁ

ଶ

+
3

8
ቀ

𝑣

𝑐
ቁ

ସ

+
15

48
ቀ

𝑣

𝑐
ቁ



+ ⋯ 

 

NOTE 2 

𝑣ଶ =  
−2𝐾ଶ

𝑚
ଶ𝑐ଶ

+ ඨ
4𝐾ସ

𝑚
ସ𝑐ସ

+
4𝐾ଶ

𝑚
ଶ

 

Rewrite this using  = v/c and ε = K/moc2. 

 ଶ =  −2𝜀ଶ + ඥ4𝜀ସ + 4𝜀ଶ 

 ଶ =  −2𝜀ଶ + 2𝜀ଶට1 +
ଵ

ఌమ 

We can expand the root for large epsilon to get 

 ଶ ≈  −2𝜀ଶ + 2𝜀ଶ ቀ1 +
ଵ

ଶఌమቁ = 1 .  

Now, as ε →∞ infinity, we can see that  →1, as expected. 

EXERCISE 1-1 Solution 

Following the example and the hint, let vS,P and vT,S be slightly below the speed of light by different 
amounts, e.g., vT,S = c – ε and vS,P = c – ί.  Then,  

v, =  
v,ୗ +  vୗ,

1 +
v,ୗ  vୗ,

cଶ

=
(c − ε) + (c − ί)

1 +
(c − ε) (c − ί)

cଶ

= cଶ
2c − ε − ί

cଶ + (c − ε) (c − ί)
= c

2cଶ − cε − cί

2cଶ − cε − cί + εί

< c   . 
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