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Section 2 – How Big is an Atom? 

  

“Never trust atoms; they make up everything.” 

- Some 7th Grader, somewhere 

 

During the rest of this course, we will often refer to atoms.  The notion of the atom has been around 
for millennia, although a real understanding began only as recently as the nineteenth century with 
Dalton.  Today, we define an atom as the smallest indivisible piece of a chemical element (hence 
the name, a-tomos = not sliceable).  One of the recurring discussions we’ll have will be how to 
determine the size of the atom.  In this short section, we’ll review some approximations. 

The Oil Drop Experiment 

You may have done this experiment in middle school.  The surface of a pan of water is dusted with 
a fine powder.  A very small drop of oil of known volume Vo is dropped into the water and the oil 
spreads out over the surface of the water (oil and water don’t mix).    

The powder allows us to see the 
outline of the oil slick, usually a 
roughly circular shape, and measure 
its diameter, D.  The oil itself forms 
a roughly cylindrical volume.  
Assuming that the volume of oil 
remains constant, we can easily 
calculate the thickness d of the film: 

V୭ =  π ൬
D

2
൰

ଶ

d →   d =  
V୭

π ቀ
D
2

ቁ
ଶ . 

The atoms of the oil can’t be any larger than the value for d. 

EXAMPLE 2-1 

Suppose we do this experiment and find the initial diameter d of the spherical oil drop to be 
0.5 mm. After dropping the oil, we measure the diameter of the oil slick D to be 140 mm.  What 
is the upper limit on the size of the atoms in the oil? 

The initial volume of the oil is  

V୭ =  
4π ൬

dୈ୰୭୮

2
൰

ଷ

3
=

4π(0.5 × 10ିଷ/2)ଷ

3
 = 6.54 × 10ିଵଵmଷ. 

The thickness of the oil slick is then 
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d =  
V୭

π ቀ
Dୗ୪୧ୡ୩

2
ቁ

ଶ =
6.54 × 10ିଵଵ

π(0.14/2)ଶ
= 4 × 10ିଽ m. 

Hence, an ‘atom of oil’ must be smaller than about 410-9 m (40 Å) in diameter.1,2 

Avogadro’s Number  

There are a number of methods for determining Avogadro’s number.  This 
is one, although we will not evaluate it explicitly.  Consider an electrolysis 
cell with two different metals.  When a potential difference is applied 
across the electrodes in the proper polarity, Metal A ions will leave the 
electrode and be deposited onto the Metal B electrode.  These ions each 
carry an integer number3 of fundamental electric charges (e)4 and thereby 
complete the circuit.  The current and time are monitored, and at the end 
on the experiment, the amount of Metal A deposited on the Metal B 
electrode is measured.  If we know the value of e and the bulk density of 
Metal A, we can determine the volume of one atom: 

                              
Volume

atom
=  

Volume

kg
 ×  (#kg transferred) ×

valence × fundamental charge

atom

×
1

charge transferred
 ×

charge transferred

current × time
, 

or, more succinctly, 

Volume

atom
=  

valence × e

bulk density
  

mass trasferred

current × time
  . 

EXAMPLE 2-2 

The figure shows results from an 
experiment by Craig et al.5  Silver was 
deposited on a platinum electrode; the 
mass deposited was measured for 
several samples for different lengths 
of time.  We see that the mass 
transferred per unit of charge is quite 
consistently 1.133x10-6 kg/coulomb.  

                                                           
1 One Ångstrom (Å) is 10-10 m. 
2 You are probably aware that ‘oil’ is actually a molecule, and so comprises a number of atoms. 
3 This number is the valence number for the atom. 
4 We believe this for reasons better discussed in a Chemistry class. 
5 Craig, D. Norman, James I. Hoffmann, Catherine A. Law, and Walter J. Hamer, ‘Determination of the Value of the 
Faraday with a Silver-perchlorate Acid Coulometer, Journal of Research 64A p381. 
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The bulk density of silver is 10,490 kg/m3 and the valence is thought to be +1.  Then, the 
average volume per atom would be 

volume

atom
=  

1 × (1.6 × 10ିଵଽ C)

10490 kg/mଷ
× 1.133 ×  10ିkg/C =  1.73 × 10ିଶଽmଷ . 

If we assume the atoms are spheres, then the diameter is given approximately6 by 

d =  ඨ
6 V

π

య

= ඨ
6 ቀ1.73 × 10−29

ቁ

π

య

=  3.21 × 10ିଵ cm ≃ 3.2 Å .   

HOMEWORK 2-1 

Suppose we know from other means that the diameter of a copper atom is 2.6Å.  Having the 
FCC structure, the atoms themselves occupy only 0.74 of the available volume.7  An 
electrolysis experiment with copper sulfate (CuSO4) reveals that 0.295 grams of copper is 
deposited per hour at a constant current of 0.25 amps.  What is the valence of copper?  The 
bulk density of copper is 8920 kg/m3. 

We can return to Example 2-2 knowing that silver also has an FCC structure to get a better 
estimate.  Then, 

d =  ඨ
6 (0.74)V

π

య

= ඨ
6(0.74) ቀ1.73 × 10−29

ቁ

π

య

=  2.90 × 10ିଵ  cm ≃ 2.9 Å   ,   

which agrees well with the currently accepted value. 

EXAMPLE 2-3 

Find the packing factor of the FCC structure.  Let L be the length of the 
edge of the cube.  We’ll assume that the atoms are hard spheres that touch 
each other.  FCC has an eighth of an atom at each corner and a half atom 
at the center of each face.  A slice along one of the cube faces would look 
like the diagram on the right.  A diagonal along the face would then be 
four sphere radiuses: 

                                                           
6 Why approximately?  We’re assuming here that the atoms are like stacked cubes of volume 1.73x10-29 m3; a sphere 
of the same volume would actually have a diameter bigger than the length of such a cube. The atoms are perhaps better 
represented by spheres sitting in those stacked boxes, in contact with their neighbors, and as such, there are some 
spaces between the spheres that are empty.  How much is empty depends on the crystal structure of the material.  There 
are fourteen different crystal structures, three of which are cubic.  A simple cubic structure (SC) has an atom at each 
corner of the cube, or rather, an eighth of an atom at each corner, since each atom is shared among eight cubes.  The 
body centered cubic structure (BCC) has an atom at each corner and one in the center of the cube, and the face centered 
cubic structure (FCC) has an atom at each corner and one at the center of each face.   
7 This number is called the atomic packing factor.  If we pack together a bunch of spheres, there will be some space 
left between them.  So, for example, in a 1 m3 block of copper, the atoms themselves occupy only 0.74 m3. 
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√2𝐿 = 4𝑅     →     𝑅 =  
𝐿

2√2
   . 

Altogether, there are eight eighth spheres (corners) and six half spheres (faces) for a total of 
four spheres contained in the cube.  Then, the packing factor is the ratio of sphere volume to 
cube volume: 

PFେେ =  
4 ቀ

4π
3

Rଷቁ

Lଷ
=  

16π

3

൬
L

2√2
൰

ଷ

Lଷ
=  

16π

3(16√2)
= 0.74  

EXERCISE 2-1 

Find the packing factor of the BCC structure.   

HOMEWORK 2-2 

Find the packing factor for the simple cubic structure.  Again, assume the atoms are hard 
spheres that touch.  HINT: a slice along one of the cube faces would look 
like this: 

 

 

The Van der Walls Equation 

Another method used to determine the size of the atom comes from chemistry.  Recall that the 
ideal gas law is 

PV = nRT, 

with P the absolute gas pressure, V the volume of the container, and T the absolute temperature.  
The amount of gas is measured in moles, n.  R, the universal gas constant, is actually just NA kB.  
This relationship is valid when the density of the gas is fairly low.  However, at much higher 
densities, some corrections are necessary.  The Van der Waals equation modifies the pressure and 
volume terms.8  Of lesser interest to us now is the pressure term.  There is a weak, usually attractive 
force between the molecules due to an electric dipole interaction.  This causes the gas to be slightly 
denser in its interior than at the container’s surface, where the pressure is measured; so, the gas’s 
pressure is actually a bit higher than the measured value. 

P → P + a ቀ
n

V
ቁ

ଶ

. 

                                                           
8 There are of course even more complex models of gas behavior, such as the Beattie-Bridgeman equation, the 
Benedict-Rubin-Webb equation, and the Strobridge equation. 
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This postulated correction is proportional to the square of the density, n/V, of the gas.9  The term 
is squared because each particle (the number of which is proportional to n/V) must interact with 
all of the other particles (almost exactly proportional to n/V), giving us a number of interactions 
proportional to (n/V)2. 

The volume correction is more pertinent to this discussion.  In our ideal gas equation discussion, 
we assumed that the particles were point masses and did not interact with each other.  Essentially, 
the entire volume V was available to each of the particles in our container.  However, as more 
particles are put in the container, less space is available to the other particles to move about.  This 
effectively reduces the volume of the container available to each particle by NVo (= nNAVo), where 
Vo is the volume of one gas particle.  So, we now have 

൬P + a ቀ
n

V
ቁ

ଶ

൰ (V − n N V୭) = nRT.   

Now, we look at the PV diagram of a very dense gas, fit the parameters a and Vo, and the 
approximate volume of the particle pops out.  The diameter of such a particle, if assumed to be 
spherical, is then, as above, 

d =  ඨ
6V୭

π

య

 .    

EXAMPLE 2-4 

The figure shows the P-V diagram for 
N2 at 130K.10,11  This temperature 
was chosen because it’s the lowest 
temperature for which N2 remains a 
gas across this range of pressures for 
which data were available.  The red 
line is a best fit curve using the Van 
der Waals relationship: 

a = 0.122 Pa m2/mole2  

Vo = 5.4810-29 m3.   

If we divide the volume equally between the two nitrogen atoms, the diameter from the 
equation above is then approximately 3.710-10 m or ~ 4 Å.  This of course doesn’t take into 
account any volume associated with the separation of the atoms. 

                                                           
9 If there are N particles, each must interact with each of the remaining N-1 particles so that there are N(N-1) 
interactions.  For large N, this is darn close to N2. 
10 National Bureau of Standards Cryogenic Engineering Laboratory, Boulder, Colorado.  The graph is reproduced in 
Van Wylen, Gordon J., and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, John Wiley and Sons, 
New York (1978) p392.  Note that nitrogen is diatomic. 
11 Although the horizontal axis is labeled ‘specific volume,’ it is the volume per mole of gas. 
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The table below lists the fitting parameters and approximate diameters for a variety of gases.12  
I’ve chosen the noble gases because they comprise only one atom.  

Gas a (m6 Pa/mole2) Vo (m3) Diameter (Å) 
Helium 0.003412 3.935x10-29 4.2 
Neon 0.02107 2.837x10-29 3.8 
Argon 0.1345 5.345x10-29 4.7 

Krypton 0.2318 6.605x10-29 5.0 
Xenon 0.4194 8.476x10-29 5.5 

 

We can do this a bit more mathematically if we notice that, for the lowest possible temperature for 
which the gas remains a gas, TC, there is an inflection point (where the first and second derivatives 
are zero) in the PV curve.  Then, rewriting the Van der Waals equation as 

P = nRT(V − n N V୭)ିଵ −  anଶVିଶ   ,   

we note that, at that critical point, 

𝑃 = nRTେ(Vେ − n N V୭)ିଵ −  anଶVେ
ିଶ   ,   

dP

dV
ฬ

େ
=  −nRTେ(Vେ − n N V୭)ିଶ +  2anଶVେ

ିଷ = 0     , 

and 

dଶP

dVଶ
ቤ

େ

=  +2nRTେ(Vେ − n N V୭)ିଷ − 6anଶVେ
ିସ = 0   .  

                                                           
12 CRC Handbook of Chemistry and Physics, 71st edition p 6-47. 
 



37 
 

Solving these last two equations, we 
find that  

 V୭ =  
1

3N
൬

V

n
൰

େ
    . 

Let’s check this with our nitrogen 
data.  The critical specific volume is 
about 0.01 liters/mole; after 
converting units, the volume per 
molecule is then 5.5×10-30 m3.  If we 
divide this volume between the two 
atoms, we obtain a diameter of about 
1.8 Å. 

EXERCISE 2-2 

Do the math that results in the 
relationship above for Vo. 

HOMEWORK 2-3 

Regard the graph13 of the critical 
isotherm (blue) for CO2.  Calculate the approximate diameter of a carbon or oxygen atom 
(assume that they are about the same size) from the relationship above for Vo.   

X-Rays 

X-rays, highly energetic electro-magnetic waves, can be generated in a number of ways.  Typically, 
in a mid-sized laboratory, X-rays are produced by accelerating electrons through an electric 
potential difference V into a metal target, which produces radiation in two distinct ways (see the 
figure to the right).  The first type of radiation is called Brehmsstrahlung, or ‘braking radiation,’ 
and is due to the fact that 
accelerating charges emit 
radiation.  The electrons 
give up their kinetic energy 
as X-rays as they hit the 
target and come to a stop.  
The broad distribution of 
emitted wavelengths is due 
to the fact that not all 
electrons arrive at the target 
with the same velocity, or 
they lose energy in some 

                                                           
13 A. Michels, B. Blaisse and C. Michels, ‘The Isotherms of CO2 in the Neighbourhood of the Critical Point and 
Round the Coexistence Line,’ Proc. R. Soc. Lond. A 160 pp358-375. 
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other way.  The sharp cut off at the short wavelength (high energy) end of the spectrum is of course 
because even the fastest electrons can emit only the energy they possess as kinetic energy. This in 
turn depends on the acceleration voltage of the tube (V1, V2, and V3 in the figure).  

The characteristic line wavelengths depend on the specific metal being used as the target.  In much 
the same way that gases emit characteristic spectra when excited, so too do metals.14  We’ll discuss 
the reasons for this later.  We can determine the wavelengths λ of these X-ray lines by observing 
the diffraction pattern created as they pass through, for example, a pair of very narrow slits; values 
for the wavelength range from about 2 Å to 0.2 Å, generally smaller with increasing atomic 
number.  

Adding a filter to the emitted X-rays can remove, to some degree, parts of the emission spectrum.  
For example, a nickel filter will remove most of the radiation just above the Ka line of a copper 
target tube. 

We can make use of the characteristic wavelength X–rays to probe crystals.  Crystals are thought 
to have atoms arranged in lattice-like structures with regular spacing between adjacent atoms. If 
so, we might expect to observe diffraction effects as we did for visible light.  Let’s consider a 
simple cubic structure, one with an identical atom at each corner of many cubes of side L.  The 
value of L would then be an upper limit on the diameter of the atoms.  The figure shows a schematic 
cross section of the arrangement.  The method we will use to determine the conditions for 
constructive interference is similar to that of Huygens we used for reflection.  The X-rays are 
scattered off each atom, essentially in all directions, but only in some directions will there be 
constructive interference and therefor a strong outgoing wave. 

Consider two adjacent atoms on the 
surface of a crystal, separated by 
distance L.  The incoming X-ray is 
incident15 at angle θ1 and the strong 
outgoing ray (constructive 
interference) is at angle θ2.  Since the 
two points at each end of each of the 
blue lines are in phase, we should 
consider the distances marked d1 and 
d2.  In order for constructive interference to occur, the difference in the lengths of the paths of the 
two rays |d1 – d2| must be an integer number of wavelengths, n: 

|dଵ − dଶ| = nλ , 

where 

dଵ = L cos θଵ   and     dଶ = L cos θଶ . 

                                                           
14 We will see later that the Kα line is a 2→1 transition while the Kβ line is a 3→1 transition.  The Lα line is the 
3→2 transition.  We’ll discuss what a transition is later. 
15 Note that the angles are measured from the surface to the direction of the beam, not from the normal, as was done 
with light waves. 
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So,  

L(cos θଵ −  cos θଶ) = nλ,     n = 0, ±1, ±2, …   .  

 

For the case of n = 0, the two angles are equal. 

At the same, since X-rays are expected to 
penetrate into the material, so there must also be 
constructive interference from the waves 
scattered by atoms in adjacent lower layers.  

Let’s consider only the special case of θ1 = θ2 = 
θ.  Then, d1 = L sinθ and d2 = L sinθ.  For 
constructive interference, we require d1 + d2 to 
be an integer number, m, of wavelengths so that  

L(sin θ  + sin θ) = mλ,     m = 1, 2, 3, …   .     

This renders the second required condition as  

2L sin θ  = mλ    m = 1, 2, 3, …   when n = 0 .  

This is referred to as Bragg diffraction.  Often, X-ray 
measurements are performed on a swing-arm goniometer.16  
This device maintains the sample in an orientation such that 
the incoming and detection angles are equal, i.e., it detects 
only the n = 0 diffraction peaks.  So, let’s not worry about 
other possibilities.  Due to the construction of the 
diffractometer, data are recorded in terms of 2θ, rather than 
θ.   

EXAMPLE 2-5 

It would be nice to be able to present sample data for a single crystal 
of an element in the simple cubic structure.  Unfortunately, the only 
such element is polonium, which is highly radioactive and has a 
propensity to turn rapidly into lead.  Needless to say, such data would 

be difficult to 
obtain.  

Instead, we’ll look at a slightly 
more complicated structure.  From 
Laue pattern diffraction,17 we 
know that niobium forms a body-

                                                           
16 There are other methods, of course. 
17 Laue patterns are extremely difficult to analyze; we’ll leave this for your X-ray diffraction course in graduate 
school. 
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centered cubic (BCC) structure.  This arrangement comprises a cube of side length L with 
an atom at each corner and another at the center of the cube.  Alternatively, we can imagine 
two parallel layers of atoms a distance L/2 apart, but with one layer offset at 45o to the 
other.  Niobium (100) shows a strong first order (m = 1) diffraction of Cu Kα X-rays (1.541 
Å) at 2θ = 55.5o.18  The length of the side of a cubic cell of niobium is then 

2 ൬
L

2
൰  sinθ = mλ , 

L =  
mλ

sinθ
=  

(1)(1.541)

sin (27.75୭)
 = 3.31 Å  . 

Consequently, the center-to-center distance between nearest neighbors is halfway across 
the diagonal of the cube, 0.531/23.31 Å ≃ 3 Å apart.19  We can be pretty confident that 
niobium atoms have a diameter no larger than this value.  Other metals give similar results. 

HOMEWORK 2-4 

Let’s consider polonium.  A Po crystal in the (100) orientation has planes 
separated by 3.34Å.  If the WKα line (0.021 nm) is incident on this face, 
at what angles should there be (Bragg) diffracted rays?  Find only the four 
smallest angles. 

Thermal Conductivity of Gases 

Let’s consider a gas of N particles contained in a volume Vo with temperature T.  From our 
previous discussion of the kinetic theory of gases, the particles are zipping around, bouncing off 
the walls of the container and each other, with an r.m.s. speed given by 

K =  
ଵ

ଶ
mv୰୫ୱ

ଶ =  
ଷ

ଶ
kT .  

                                                           
18 Pan,T.J., Y.Chen, B.Zhang, J.Hu, and C.Li, 'Corrosion behavior of niobium coated 304 stainless steel in acid 
solution,' Applied Surface Science 369 p320. 
19 This is the distance across the 3-dimensional diagonal using the Pythagorean theorem. 
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You may remember that the Boltzmann’s constant kB = R/NA.  
We’d like to estimate the mean free path of a particle, l, that is, 
how far does it travel, on average, between collisions?20  Let’s 
assume that the particle is a sphere of diameter d.  As one such 
moves through space from one collision to the next, it sweeps 
out a cylindrical volume of lπ(d/2)2.  Now, we’re going to use 
a bit of a trick.  In order for our particle to collide with another 
particle, their centers must come to within two radiuses (= d) of 
each other.  So, we’re going to make the moving particle have 
an effective radius of d and make all the other particles into 
stationary points.21  So, the volume swept out by the moving 
particle will be  

V = l πdଶ , 

which in turn we should expect to be roughly equal to the particle’s ‘share’ of the overall volume, 
Vo/N: 

V୭

N
= l πdଶ .  

Next, we need to estimate the mean free path.  There are a number of ways to do this; we’ll make 
use of the thermal conductivity of the gas.22 

Let’s make our container a rectangular box of length L and cross 
sectional area A.  The left side is held at a temperature TH and the 
right at TC.  The other sides are insulated.  You may remember that 
the rate of thermal energy transfer from one end to the other is given 
by 

H =  
δQ

dt
=  

σA

L
 |ΔT| , (∗)   

                                                           
20 Obviously, some will travel long distances and some short; we’ll assume that they all travel the average distance. 
21 This derivation makes use of many approximations, but in the end, our answer will be of the correct order of 
magnitude. 
22 The following discussion is based loosely on that in Tipler, Paul A., Foundations of Modern Physics, Worth 
Publishers, New York (1969) pp 86-90. 

Figure V-2-8 
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where 𝜎 is the thermal conductivity of the gas.23  How 
is energy transported from one end to the other?  The 
particles on the left side are ‘hotter,’ and so possess 
more kinetic energy and of course move more quickly 
than the ‘cooler’ particles on the right.  Some of the 
more energetic left-hand particles move to the right, 
carrying energy, and an equal number of right hand 
particles move to the left, but they carry less energy, 
so there is a net transfer of energy to the right, i.e., 
from hot to cold.24 

Let’s look at this in more detail.  We’ll pick a location 
xo along the x axis and place an imaginary boundary there for the particles to pass across.  The 
particles that will cross from the left without any additional collisions should come from a layer 
of width Δx (= l, the mean free path) adjacent to and to the left of the boundary, and the particles 
that will move to the left come from a layer of width Δx adjacent to the boundary on the other side.  
We might expect about half of the particles in each layer will cross the boundary, since for each 
layer, about half will be traveling to the right and half to the left.25  So, the number of particles 
crossing the boundary in each direction should be one half times the density of particles times the 
volume containing the particles, or about 

1

2
 ൬

N

V୭
൰ (A 𝑙) . 

The kinetic energy carried by all of these particles will be:26 

N A 𝑙

2V୭
  K(x୭ −  𝑙) . 

to the right and 

N A 𝑙

2V୭
  K(x୭ +  𝑙)  

to the left.  Since l is expected to be a small number, we can expand these expressions about xo: 

 

N A 𝑙

2V୭
K(x୭ +  Δx)  ≃

N A 𝑙

2V୭
ቈK(x୭) +

dK

dx
ฬ

୶

Δx + ⋯     

                                                           
23 This is analogous to Ohm’s relationship for electricity: 𝐼 =  

ఙ


 Δ𝑉. 

24 Remember, everything discussed here is ‘on average.’ 
25 The fraction should be even less that one half, since the particles are also moving in the y and z directions. 
26 Here, K(xo – l) means that the kinetic energy as a function of where along the x-axis we’re looking.  It’s not K 
times (xo – l). 
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to obtain, when Δx = l, 

 

N A 𝑙

2V୭
ቈK(x୭) −

dK

dx
ฬ

୶

𝑙      and   
N A 𝑙

2V୭
ቈK(x୭) +

dK

dx
ฬ

୶

𝑙   , 

 

respectively.  The net transfer of energy across our boundary at xo will be the difference of these 
expressions: 

−2 
N A 𝑙

2V୭
 
dK

dx
ฬ

୶

𝑙 =   
N A 𝑙ଶ

V୭
 ቤ

dK

dx
ฬ

୶

ቤ  . 

Then, we have that 

dK

dx
=  

dK

dT

dT

dx
=  

ଷ

ଶ
k

dT

dx
 , 

so that the energy transferred is  

3N A 𝑙ଶ k

2V୭
 ቤ

dT

dx
ฬ

୶

ቤ  . 

The time required for such an exchange to take place is the travel time for the gas particles to move 
the distance l from their last collision to the boundary, or t = l/vrms, so that the rate of energy transfer 
will be 

 

H =  

3N A 𝑙ଶ k

2V୭
 ฬ

dT
dx

ቚ
୶

ฬ  

𝑙
v୰୫ୱ

= ൬
3

2
൬

N

V୭
൰  𝑙 v୰୫ୱk൰ A ቤ

dT

dx
ฬ

୶

ቤ 

Comparing this result term by term with the equation above (*) and assuming that the temperature 
gradient is constant (i.e., dT/dx = ΔT/L) indicates that the thermal conductivity 𝜎 of the gas should 
be  

σ =  
3

2
൬

N

V୭
 𝑙൰ k v୰୫ୱ =  

3

2
 ൬

1

πdଶ
൰ kඨ

3kT

m
  . 

So,  

d =  ቆ
27

4πଶ

k
ଷ

σଶ

T

m
ቇ

ଵ/ସ

  . 

Finally, let’s calculate the sizes of some atoms: 
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Gas Thermal Conductivity at 300K 
(W/mK)27 

Diameter 
(Å) 

Helium 0.157 2.4 
Neon 0.050 2.8 
Argon 0.026 3.3 

Krypton 0.012 4.0 
Xenon 0.0055 5.3 

 

HOMEWORK 2-5 

Use these results and work backward to find the mean free path lengths l of helium and xenon 
at 300K.  Assume a pressure of one atm. 

 

The Wrap-up 

We’ve looked at a number of methods for determining an upper limit to the size of the atom, which 
appears to on the order of several Ångstroms.  What we didn’t do is show evidence that atoms 
actually exist.  This is usually credited to investigations of what we now call Brownian motion, by 
Lucretius, Ingerhousz, Brown, Einstein, and Perrin.  Although Einstein’s explanation of Brownian 
motion is perhaps a bit too advanced for this class, it also leads to an estimate of the size of atoms.  
Otherwise, we’ll leave this to your Chemistry instructors. 

In subsequent sections of these notes, we’ll return to the determination of the size of the atom. 

 

Exercise 2-1 Soln 

BCC has an eighth sphere at each corner of the cube and one at the center, for a total of two spheres.  The 
diagonal across the cube,√3L, would be four radiuses.  So, 

√3L = 4R     →     R =  
√3L

4
   . 

 

PFେେ =  
2 ൬

4π
3

R3
൰

L3
=  

8π

3

ቆ
√3L

4 ቇ

3

L3
=  

8π3√3

3(64)
= 0.68     . 

Exercise 2-2 Soln 

                                                           
27 Lide, David R., Handbook of Chemistry and Physics 71st ed., CRC Press Boca Raton (1990) p6-148. 
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Re-arrange the first and second derivatives evaluated at the critical point: 

nRTେ(Vେ − n N V୭)ିଶ =  2anଶVେ
ିଷ 

and 

2nRTେ(Vେ − n N V୭)ିଷ = 6anଶVେ
ିସ   .  

Divide the first equation by the second: 

nRTେ(Vେ − n N V୭)ିଶ

2nRTେ(Vେ − n N V୭)ିଷ
=  

2anଶVେ
ିଷ

6anଶVେ
ିସ    , 

Vେ − n N V୭

2
=  

Vେ

3
    , 

n N V୭ =
Vେ

3
   , 

V୭ =
1

3N
൬

Vେ

n
൰   . 
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