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Section 3 - The Structure of the Atom 

 

“Fruits, each in its season, are the cheapest, most elegant and wholesome dessert you can offer 
your family or friends, at luncheon or tea. Pastry and plum-pudding should be prohibited by law, 
from the beginning of June until the end of September.” 

Marion Harland, Breakfast, Luncheon, and Tea 
 

We’ve taken a shot at determining how big atoms are (2-5 Å) using a number of different methods.  
Now, let’s try to determine the structure of the atom.  By this point, we can be fairly sure that 
atoms include electrons and some type of positive charge in their makeup, but the distribution of 
these parts is unclear.  Let’s consider two models (among the many presented at the time), the 
predictions they make, and how these compare with reality. 

The Thomson Model 

The Thomson model originated with William Thomson (Lord Kelvin) and was developed by J.J. 
Thomson.  Often known as the plum pudding model, it postulates that atoms include electrons and 
positive charges (not yet identified as protons!) but are over-all electrically neutral.  Like raisins 
in a plum pudding, the electrons are spread throughout a positively charged goopy sphere with a 
diameter of several Ångstroms.  Unlike a raisin, an electron can move through the positively 
charged atom, subject to the electrostatic force it experiences.  Let’s take a look at that motion in 
a bit more detail. 

Consider a sphere of radius R and charge +Q.  Now, let’s add in enough 
electrons to make the atom have a net charge of +1e, that is, we’re short one 
electron from having the atom be electrically neutral.  Furthermore, let’s 
assume that these electrons move around inside the atom and are roughly 
evenly spread throughout the sphere so that the overall positive charge 
possesses a uniform density. Now, we’ll add in the last electron, but keep 
track of it separately from the others.  The electron is located a distance r 
from the center of the sphere; as such, it experiences an electric force towards the center of the 
sphere.  According to Gauss’s Law, not all of the positive charge is considered to act on the 
electron; rather, only the charge contained within a gaussian sphere of radius r will contribute to 
the force.  

F(r) =  
kୣQ୉୬ୡ୪୭ୱୣୢq୉୪ୣୡ୲୰୭୬

rଶ
 inward. 

That is, this is a restoring force, always trying to bring the electron 
back to its equilibrium point at the center of the atom.  If the charges 
(other than our electron) are distributed uniformly, we can write a 
proportion: 
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Q୉୬ୡ୪୭ୱୣୢ

1e
=  

ସ஠
ଷ

୰య

రಘ
య

౎య
    →      Q୉୬ୡ୪୭ୱୣୢ = +e 

rଷ

Rଷ
   →     F(r) =  

kୣeଶ

Rଷ
 r . 

The force is proportional to the electron’s distance from the equilibrium point at the center.  We’ve 
seen similar restoring forces, namely the spring force, F = (-) kx.  Any classical object moving 
under such a force will exhibit simple harmonic motion with a well-defined frequency,  

ω୭ =  ඨ
k

m
 . 

Applying this concept to the electron, it should also oscillate within the atom with a frequency 

ω୭ =  ඩ
kୣeଶ

Rଷ

mୣ୪ୣୡ୲୰୭୬
≈ 3 × 10ଵହ

rad

sec
  . 

This value is independent of the amplitude of oscillation within the atom (as with all classical 
oscillators), and fairly independent of the size of the atom (~R-3/2).  Classically, oscillating charges 
emit light with the same frequency as that of the oscillation, which means that all atoms of an 
element should emit one frequency, and the frequencies emitted by all types of atoms1 should be 
of about the same value (λ = 2πc/ωo ≈ 600 nm).  Of course, this contradicts the spectroscopic 
observations made of the elements, each of which has very distinct sets of multiple emission lines, 
as for example, you saw in Semester Two with mercury.  So, one strike against the Thomson 
model. 

HOMEWORK 3-1 

In the last Section, we estimated the diameter of a helium atom to be 2.4 Å and that of a xenon 
atom to be 5.2 Å.  Calculate the single wavelength expected to be emitted from each, using the 
model described above. 

The Rutherford Model 

This model may seem more familiar to you; it’s taught to most elementary school children.  In this 
picture, the positive charge is concentrated in a small region at the center of the atom (the nucleus), 
while the negative electrons form a ‘cloud’ surrounding the nucleus.  Since electrons have a mass 
thousands of times smaller than the atoms themselves, the nucleus must be, relatively speaking, 
the bulk of the atom.  In such a structure, the atom would not at first glance be expected to emit 
any particular frequency of light.  Strike One here too. 

The Geiger-Marsden Experiment 

                                                           
1 Strictly speaking, this works for atoms with larger amounts of charge, large enough for the screening argument to 
work. 
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Secondly, let’s consider the Geiger-Marsden experiment, which was designed to validate the 
Thomson model.  A stream of alpha particles (charge = +2e) from radio-active decay2 is aimed at 
a thin gold foil.3  Gold was used for two reasons: it is malleable and so can be made into a very 
thin sheet, and gold atoms are fairly massive compared to alpha particles.  Being charged, alpha 
particles could be deflected by the electric interaction with the charges in the atom, although most 
alphas would probably not be deflected.   

The experimental setup is shown (very 
simplified) in the figure.  Radium is placed 
at one end of an evacuated tube. Emitted 
alpha particles traverse the length of the tube, 
pass through a slit, through the foil, and 
ultimately strike a ZnS screen. The energy of 
each alpha causes the screen to fluoresce, and 
the strikes are observed with a microscope through a mica endcap.  If the Thomson model were 

correct, there should be some 
deflection of particles when the 
foil is present and none when the 
foil is absent.  Here are some 
experimental data.4  As expected, 
there is no scattering without a foil 
(blue curve), to the resolution of 
the device, but scattering occurs 
for one thin foil (orange), and 
somewhat more scattering for two 
foils (grey).  This is understood to 
be the result of multiple scatterings 
from many atoms in the foil before 
the alpha exits.  There is a range of 
scattering angles because some 

small number of particles are always deflected to, say, the left, while others experience perhaps 
equal numbers of left and right deflections and emerge at 0o. Most particles end up somewhere in 
between.   

Cooper5 presents a quick estimate of the maximum conceivable deflection of an alpha particle 
from a Thomson gold atom.  First, we’ll assume that the electrons, being very light, play no part, 
and the full charge of +79e acts on the alpha particle.  From Gauss’s law, we know that the 

                                                           
2 Alpha particles from radio-active decay generally have specific kinetic energies that are characteristic of the decaying 
element.  These values range from roughly 2.5 to 9 MeV. 
3 At this point, it was not yet known that the charge of such an atom is +79e.  However, we know that now and will 
use the fact to analyze these early data. 
4 Geiger, H., “On the Scattering of the α-Particles by Matter,” Proceedings of the Royal Society of London A. 81 
(546) (1908) pp 174–177. 
5 Add Reference 
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maximum force on the alpha from the gold atom will occur when the alpha is at the surface of the 
atom, or about 2Å from the center: 

F୫ୟ୶ =  
kୣQq

Rଶ
  . 

We’ll also let the repulsive force act at right angles to the initial direction of motion of the alpha 
particle to maximize the momentum change perpendicular to the original direction of motion.  The 
time interval over which this force is applied is the transit time of the alpha across the diameter of 
the atom, Δt = 2R/v; we’ll ignore interactions beyond this interval because the alpha will then be 
under the influence of some other gold atom.  So, making use of the impulse relationship, the 
change in momentum will be 

∆p = F ∆t =  ൬
kୣQq

Rଶ
൰ ൬

2R

v
൰  . 

The resulting deflection angle will be 

θ =  arctan ൬
∆p

p
൰ = arctan ൬

kୣQq

Rଶ

2R

v

1

mv
൰ = arctan ൬

kୣQq

RK
൰ .  

Here, K is the alpha particle’s kinetic energy.  We’ll even let the alpha particle have a low kinetic 
energy for this estimate: 

θ = arctan ቆ
(9 × 10ଽ) × (79 × 1.6 × 10ିଵଽ) × (2 × 1.6 × 10ିଵଽ)

(1.5 × 10ିଵ଴) × (8 × 10ିଵସ)
ቇ  =  0.02୭ .  

Now this is the absolutely maximum deflection from one Thomson atom, after we’ve given the 
process every possible break.  Most likely, the actual deflection would be much less.  If the alpha 
particle were to travel through a gold foil with a thickness of 200 atoms (860Å thick with a 4.1Å 
lattice constant), and all 200 deflections were in the same direction, the absolute maximum total 
deflection would be approximately 

θ୫ୟ୶ = 200 × 0.02଴ =  4୭  . 

Let’s take a closer look at the graph above.  The resolution isn’t very good, but it seems as if there 
are two maximums in the two-foil curve, one on each side of zero.  This is actually to be expected.  
We presume that the alpha particles go through multiple scatterings on their way through the foil.  
Deflections to the right or left should be equally probable, so if we have a large number of particles, 
the average deflection should be zero.  However, the most probable deflection will NOT be zero.  
Let’s see why. 

The Random Walk 

Suppose a drunk starts at the origin.  He takes steps of length L along the x-axis, but each step 
could just as easily be to the right as to the left.  Let’s represent his location after N steps as x(N).  
Over time, his average location should be of course at the origin (xAVE = 0).  What we want is his 
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root-mean-square (r.m.s.) position,6 which we would expect not to be zero, since it involves 
summing a collection of non-negative values.  Now,  

x(N + 1) = x(N) ± L  , 

since the next step could be in either direction.  Then, 

(x(N + 1))ଶ =   (x(N) ± L)ଶ = ൫x(N)൯
ଶ

 ± 2 x(N) L + Lଶ  , 

((x(N + 1))ଶ)୅୚୉ =  ቀ൫x(N)൯
ଶ

ቁ
୅୚୉

 ± 2L൫x(N)൯
୅୚୉

+ Lଶ =  ቀ൫x(N)൯
ଶ

ቁ
୅୚୉

 + Lଶ , 

since x(N)AVE = 0.  Then, 

൫x(N + 1)൯
୰୫ୱ

ଶ
=  ൫x(N)൯

୰୫ୱ

ଶ
+ Lଶ  . 

Let’s start at the origin and calculate: 

൫x(1)൯
୰୫ୱ

ଶ
=  ൫x(0)൯

୰୫ୱ

ଶ
+ Lଶ =  0 +  Lଶ  =  Lଶ 

൫x(2)൯
୰୫ୱ

ଶ
=  ൫x(1)൯

୰୫ୱ

ଶ
+ Lଶ = Lଶ + Lଶ = 2Lଶ 

൫x(3)൯
୰୫ୱ

ଶ
=  ൫x(2)൯

୰୫ୱ

ଶ
+ Lଶ = 2Lଶ + Lଶ = 3Lଶ 

or, 

൫x(N)൯
୰୫ୱ

ଶ
=  NLଶ      →     ൫x(N)൯

୰୫ୱ
=  ±√NL  . 

So, let’s say we have a large number of drunks, all starting at the origin.  After a fairly large number 
of steps, N, the farthest any of them could be from the origin would be NL, their average position 
would be zero, but the we would expect the most likely positions to be a distance N1/2L on each 
side of the origin. 

HOMEWORK 3-2 

Suppose I release an infinite number of bunnies from the origin at time t = 0.  Bunnies hop 
about a half meter once every second.  Sketch the distributions of bunnies along the x-axis for 
t = 0 seconds, t = 1 minute, and t = 10 minutes. 

As an analogy, let’s consider each subsequent deflection of an alpha particle as it passes through 
a gold foil to be similar to the steps of the random walk.  As such, we might expect the most 
probable deflection to occur at an angle that is proportional to the square root of the number of 
atoms the alpha particle passes by, and therefor to of the thickness of the foil,.  Here are some data 

                                                           
6 As with rms voltages and currents, square the values, average them, then take the square root. 
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from Geiger.7  We see a vaguely linear relationship between the deflection angle and the square 
root of the number of atoms encountered by the alphas.8 

With these data, we should be able to estimate the actual deflection from a single atom. 9   

EXAMPLE 3-1 

A film of total thickness 8.610-8 m will be about 200 3Å atoms thick (lattice constant of gold 
is about 4.1Å).  From the data, such a film causes a most probable 0.16o deflection, so that the 
deflection of one atom can be estimated to be 

θ୊୧୪୫ =  200଴.଻ଷθଵୟ୲୭୫      →     θଵୟ୲୭୫ =  
0.16୭

200଴.଻ଷ
= 0.0033଴  ≪ 0.02୭  .  

This value is much smaller than our outrageously generous estimate above (about 1/6th as 
much), and so may seem fairly reasonable.   

Well, now things aren’t looking too bad for the Thomson Model, but the interesting bits are always 
in the slight deviations from what we expect.   

That Special ‘WTF’ Moment 

Returning to the example above, we can also estimate the absolute maximum deflection from a 
thin gold sheet of thickness 8.610-8 m foil as10 

                                                           
7 Geiger, Hans, "On the Scattering of the α-Particles by Matter.” Proceedings of the Royal Society of London A. 81 
(546) (1908) pp174–177. 
8 A better fit to these data is that the angle is proportional to the 0.73 power of the thickness.  Geiger speculated that 
the slightly higher power dependence is due to the alphas slowing as they pass through the foil. 
9 Remember, in our calculation above, we made conditions for deflection as favorable as possible. 
10 Remember that this value is for one thin foil; the data in the graph are for many thin foils. 
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θ୫ୟ୶ =  200θଵୟ୲୭୫  = 200 ×  0.0033଴ = 0.7୭  .  

This is fairly consistent with the graph for one foil several pages back. 

Statistically speaking, the probability of an alpha particle departing this 
film at an angle greater than even a few degrees is virtually zero.  
However, during the experiment, approximately 0.01% of the incident 
particles were deflected backward, that is, at angles larger than 90o!  
Clearly, the repulsion experienced by the alpha particles is much larger 
than estimated above.  We can accomplish this by making the positively 
charged part of the atoms much smaller, forming a nucleus within the 
atom, and thereby allowing some small number of alpha particles to pass 
much more closely to the nucleus while still feeling the full effect of the 

charge.  How small? 

EXAMPLE 3-2 

Calculate the maximum radius of a gold atom (or at least the positive part of it) if an alpha 
particle of energy 5 MeV is stopped and returned along its original path, i.e., the deflection 
angle is 180o.  Ignore the effects of the electrons. 

The alpha starts a large distance from the atom with kinetic energy Ko and little potential 
energy.  At its closest approach, it has no kinetic energy and some potential energy.  Assuming 
no other effects, we have that 

K୭ +  U୧ =  K୤ +  U୤      →      K୭ =  
kୣQ୥୭୪ୢqୟ୪୮୦ୟ

R୑୍୒
  

R୑୍୒ =  
kୣQ୥୭୪ୢqୟ୪୮୦ୟ

K୭
=  

9 × 10ଽ × (79 × 1.6 × 10ିଵ ) × (2 × 1.6 × 10ିଵ )

5 × 10଺(1.6 × 10ିଵଽ)

= 4.6 × 10ିଵସ m  . 

This is approximately 1/10,000th the size of the atom itself.  This gives an upper limit on the 
size of the gold nucleus, since we presume that such an alpha particle did not actually collide 
with the nucleus, however, it’s not enough to be conclusive; first, this only gives an upper limit 
(the natural alpha particles have a limited range of energies), and second, there may be other 
forces at work within the atom, while we have assumed that only the coulomb force affects the 
motion of the alpha..   
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DERIVATION 3-1 

Let’s concentrate on these high-angle-scattered particles.  Assume that the atom consists of a 
very small positively charged nucleus and electrons in a ‘cloud’ buzzing around the nucleus.  
The electrons are so light compared to the alpha particle (mass ratio of ~7500) that their 
interactions have virtually no effect on the motion of the alpha (think about a bus hitting a 
Superball; the bus is undeflected!).  In addition, the gold nucleus is quite massive, so let’s 
assume that it remains motionless.  The alpha is launched with initial speed vo (and therefor 
initial kinetic energy Ko), 
but not directly toward the 
nucleus.  Its path is offset 
by a distance called the 
impact parameter, b.  This 
is the distance the particle 
would miss the center of 
the nucleus by if its path 
were not deflected.   

Let’s keep track of the 
alpha’s position with polar 
coordinates, r and φ, with 
the nucleus at the origin.  
The magnitude of the 
angular momentum of the 
alpha particle as seen from 
the nucleus is L = |rp| = 
bmvo.11  Since the 
Coulomb force is a central force, the torque on the alpha (rF) is zero and L is conserved. 

We might imagine from Semester One that the shape of the path taken by the alpha will be one 
arm of a hyperbola; an object moving under the influence of a central, attractive 1/r2 force can 
trace out one of several curves: circle, ellipse, parabola, or one arm of a hyperbola.  An object 
acted on by a central, repulsive 1/r2 force follows the other arm of the hyperbola.  As a result, 
we expect there to be an axis of symmetry to the path; let’s define that axis as the z-axis where 
φ = 0.  Note the unusual orientation used in the figure.  Then, the direction from which the 
alpha came is φ1, the angle to which it heads is φ2, and due to the symmetry of the situation, 
φ1 = - φ2.  Lastly, the angle of deflection that is actually measured in the laboratory is θ = π – 
(φ2 – φ1) = π – 2φ1. 

Use the impulse-momentum relationship: 

Δpሬ⃗ =  න Fሬ⃗ (r⃗)  𝑑t     with F(r) =  
kୣQq

rଶ
 , 

                                                           
11 When the alpha particle is far for the nucleus, L = |rp|= r(mvo) sinφ = (r sinφ) mvo = bmvo.  
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with Q = 79e and q = 2e.  Now, any force component that is not parallel to the z-axis will 
average to zero because of the symmetry, so we only need to worry about the z-component, 
F(r) cosφ.  We need one more piece before we can integrate.  Consider again the angular 
momentum of a point mass about the nucleus,  

L = Iω = mrଶ
𝑑ϕ

𝑑t
 , but L = bmv୭. 

So,  

mrଶ
𝑑ϕ

𝑑t
= mv୭b     →      

𝑑t

𝑑ϕ
=  

rଶ

bv୭
 . 

Put it all together: 

Δp୸ =  න F୸  dt = න F(r) cosϕ 𝑑t = න
kୣQq

rଶ
cosϕ 

𝑑t

𝑑ϕ
𝑑ϕ = න

kୣQq

rଶ
cosϕ 

rଶ

v୭b
dϕ 

= න
kୣQq

v୭b

மమ

மభ

cosϕ dϕ =  
kୣQq

v୭b
 sinϕ|மభ

மమ =  
kୣQq

v୭b
 [sinϕଶ − sinϕଵ]

=  
kୣQq

v୭b
 [sinϕଶ − sin(−ϕଶ)] =  

kୣQq

v୭b
 [2sinϕଶ] =  

2kୣQq

v୭b
 sin ൬

π − θ

2
൰

=
2kୣQq

v୭b
 cos ൬

θ

2
൰ . 

Now, let’s look at Δpz from a different point of view.  The Coulomb force is conservative, so 
the total energy of the alpha particle is conserved.  The alpha starts out far from the nucleus 
with Ko and no potential energy (U= keQq/r and r is very large).  It also ends far away with no 
potential energy, so Kf = Ko.  That allows us to say that the magnitudes of the momentums at 
the start and finish are also equal, even if the directions are different; indeed, pሬ⃑ f has rotated 
from the direction of pሬ⃑ i by angle θ. 

The change in pz is represented by the ‘base’ 
of the isosceles triangle (in the figure, on the 
right). Splitting this into two right triangles 
allows us to write that  

Δp୸ = 2mv୭sin ൬
θ

2
൰. 

Equating these two relationships results in  

b =  
kୣQq

mv୭
ଶ

 
cos൫஘

ଶ
൯

sin൫஘
ଶ
൯

=
kୣQq

2K୭
cot ቀ

஘

ଶ
ቁ .  

So, given the scattering angle θ of a particular alpha particle, we can determine the impact 
parameter b that caused the scattering, or of course, we can predict the scattering angle for a 
given impact parameter. 
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O.K., deep breath.   

We’re now going to use this to determine 
the probability that some random alpha 
particle will be deflected at a particular 
angle, θ.  Think of the nucleus as a bull’s 
eye, surrounded by an annulus of radius b 
and width db.  We expect the probability 
of any given alpha to approach our 
nucleus with an impact parameter 
between b and b+db, P(b)db, to be 
proportional to the area of this ring. 

P(b)𝑑b = C 2π b 𝑑b =  C 2π b(θ) 
𝑑b

𝑑θ
 𝑑θ . 

Then, from above, 

𝑑b

𝑑θ
=  

kୣQq

2K୭

𝑑 cot൫஘
ଶ
൯

𝑑θ
=   

kୣQq

4K୭
 sinିଶ ቀ

஘

ଶ
ቁ.   

P(θ) 𝑑θ = C 2π ൬
kୣQq

2K୭
cot ቀ

஘

ଶ
ቁ ൰ ൭

kୣQq

4K୭
sinିଶ ቀ

஘

ଶ
ቁ൱ 𝑑θ

=  C 2π ൬
kୣQq

2K୭
൰

ଶ cos൫஘
ଶ
൯

sin൫஘
ଶ
൯

sinିଶ ቀ
஘

ଶ
ቁ  𝑑θ . 

Use the trig identity sinθ = 2sin(θ/2)cos(θ/2). 

P(θ) 𝑑θ =  C 2π ൬
kୣQq

2K୭
൰

ଶ ቆ
sinθ

2sin൫஘
ଶ
൯

ቇ

sin൫஘
ଶ
൯

sinିଶ ቀ
஘

ଶ
ቁ  𝑑θ =

C

8
  ൬

kୣQq

2K୭
൰

ଶ

sinିସ ቀ
஘

ଶ
ቁ (2π sinθ 𝑑θ) . 

Since 2π sinθ dθ is the solid angle dΩ into which the alpha was scattered, we have that the 
probability per solid angle is proportional to  

Qଶ K୭
ିଶ sinିସ ቀ

஘

ଶ
ቁ  . 
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Here, we have three testable results:  

1. for a given initial energy Ko, 
the number of alphas observed 
at a given angle will vary as 
sin-4(θ/2).   

2. if we perform this experiment 
on different types of nuclei, 
such that Q changes, we 
should see scattering 
proportional to Q2.    

3. for a given angle, the number 
should vary as Ko

-2.   

Let’s look at some data. In the first graph, we see the number of counts for each of gold and silver 
as a function of the scattering angle.  The solid line has slope 4, showing that the scattering varies 
as sin- 4(θ/2), as predicted. 

In the second figure, we see scattering at a fixed 
angle and incident energy for different elements, 
i.e., different nuclear charges.  Our prediction was 
that the number of counts should be proportional 
to the square of the charge; this isn’t quite true, 
although a linear relationship is arguable.12 

In the last figure,13 the alpha particles were 
artificially accelerated to energies higher than 
naturally available (>9MeVs).  At lower energies, 

the data follow the expected behaviour, as seen by the line of slope -2.  That is, the amount of 
scattering is proportional to Ko

-2.  However, note that there is a point around 26 MeV where the 
data leave that line; at that distance of 
closest approach, something other 
than the coulomb force is affecting 
the trajectories of the alpha particles.  
We can imagine that either the alpha 
collides with or passes into the 
nucleus, or perhaps some other force 
becomes important.  From this, we 
should be able to find a new upper 
limit value for the radius of a gold 
atom. 

                                                           
12 A better fit is actually around Q3/2. 
13 Insert footnote. 
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First, we’ll need to know the impact parameter b for 26 MeV at 60o: 

b =
kୣQq

2K୭
cot ቀ

஘

ଶ
ቁ 

=  
9 × 10ଽ × (79 × 1.6 × 10ିଵଽ) × (2 × 1.6 × 10ିଵଽ)

2 × (26 × 10଺ × 1.6 × 10ିଵଽ)
cot ൬

60

2
൰

= 7.58 × 10ିଵହ m .  

Reviewing the properties of hyperbolas (see Semester 
One), the eccentricity of a Keplerian orbit is given by 

e =  ඨ1 +
2ELଶ

GଶMଶmଷ
  →    e =  ඨ1 +

2K୭Lଶ

m஑(kୣQq)ଶ

= 2 , 

but it’s also given (and more easily!) for hyperbolas by  

e =  
1

cos(φ୫ୟ୶)
=  

1

cos(60୭)
= 2. 

The eccentricity can also be expressed in terms of the 
semi-major axis a (half the distance between the 
vertices), the semi-minor axis b (the smallest distance 

between the asymptotes and either focus, also the impact parameter in our application), and the 
linear eccentricity c (half the distance between the focuses): 

e =  ඨ1 +  
bଶ

aଶ
    →    a =  

b

√eଶ − 1
   and e =  

c

a
     →      c = ea =  

eb

√eଶ − 1
 . 

The distance of closest approach will be c + a: 

r୫୧୬ = c + a =  
eb

√eଶ − 1
  +

b

√eଶ − 1
=  ඨ

e + 1

e − 1
 b = ඨ

2 + 1

2 − 1
 b =  1.73b = 1.31 × 10ିଵସ m.  

The currently accepted value for the radius of a gold nucleus is about half that, 710-15m.  We’ll 
show how to get that accuracy later in the course. 

Most of the alpha particles in this experiment do not come particularly ‘close’ to the nucleus.  The 
ratio of the cross sections of the atom to the nucleus is approximately 

πr୒୳ୡ୪ୣ୳ୱ
ଶ

πr୅୲୭୫
ଶ =  ቆ

10ିଵ

10ିଵ
ቇ

ଶ

=  10ି଼. 

So, the majority of such particles will be scattered in a manner similar to the Thompson model.  
However, the only mechanism that will scatter alpha particles at such large angles is to have a very 
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small, compact nucleus of charge, as in the Rutherford model.  We still have a lot of unanswered 
questions, though.  For example, what is the nucleus made of, and why do different elements 
radiate at very different frequencies? 
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