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Section 4 - h 

 

“Die Wahrheit triumphiert nie, ihre Gegner sterben nur aus.” 

- Attributed to Max Planck 

 

The purpose of this section of notes is to introduce you to a new fundamental value on the scale of 
importance of G and c, Planck’s constant (symbol, h).  Historically, the need for Planck’s constant 
stems from the theory of objects called black bodies.  A black body by definition absorbs 100% of 
the radiation incident upon it.  Once the object achieves thermal equilibrium, it must also emit 
radiation, and does so with a characteristic spectrum.  Most objects behave approximately as black 
bodies, although for everyday objects, the vast majority of the radiation is released in the far 
infrared part of the spectrum.  Two examples you may be familiar with are the photosphere of the 
sun, with its peak in the yellow, and perhaps the embers of a wood fire, with its output in the near 
IR.  We’re going to examine two failures in explaining black body radiation, and one exciting 
success, and learn some additional thermo-dynamics along the way. 

Model of a Black Body Radiator 

Consider as an example a hollow metal cube with interior dimensions L×L×L.  The cube has a 
small hole connecting its interior to the outside universe.  If light (or other EM radiation) were to 
enter the hole, it would presumably bounce around inside with very little chance of exiting, i.e., 
the interior would absorb pretty much 100% of the energy that enters.  This is our model for a 
black body.   

Let’s consider the waves bouncing around inside.  In PHYS I, we wrote the equation for a one 
dimensional mechanical wave as  

Y(x, t) = A cos(kx −  2π𝑓t +  φ). 

where k = 2π/λ.  Let’s turn this into a three dimensional wave by making k a vector, such that: 

kሬ⃑ ∙ r⃑  =  k୶x + k୷y +  k୸z, 

k =  ටk୶
ଶ +  k୷

ଶ + k୸
ଶ    and     r =  ඥxଶ +  yଶ + zଶ. 

Switching this over to an EM wave, we obtain 

Eሬሬ⃑ (r⃑, t) =  Eሬሬ⃑ ୭ cos൫k୶x +  k୷y + k୸z − 2π𝑓t +  φ൯ =  Eሬሬ⃑ ୭cos ൫kሬ⃑ ∙ r⃑  − 2π𝑓t +  φ൯ . 

Now, since the inside surface of the cube is conducting, we know that the transverse electric fields 
of the EM wave there must be zero.  That is, a node must exist at each surface.  This is the same 
situation as when we talked about standing waves on a string, fixed at both ends.  In that situation, 
we found that L = nλ/2 or k = nπ/L, with n a positive integer.  In three dimensions, this requirement 
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should be met in each of the directions, although we’re really talking about the projections of the 
wavelength in each direction: 

k୶ =  
n୶π

L
 ;   k୷ =  

n୷π

L
 ;   k୸ =  

n୸π

L
  

k = ටk୶
ଶ +  k୷

ଶ + k୸
ଶ =  

π

L
ටn୶

ଶ + n୷
ଶ + n୸

ଶ =  
2π

λ
= 2π

𝑓

c
  . 

So, the frequencies f allowed in the cavity as standing waves are given by 

𝑓 =  
c

2L
ටn୶

ଶ +  n୷
ଶ +  n୸

ଶ  . 

Now, let’s let 

n =  ටn୶
ଶ +  n୷

ଶ +  n୸
ଶ . 

𝑓୬ୀ 

nc

2L
 . 

Well, this should be no surprise; it looks just like the frequencies allowed as standing waves on 
our string.  The difference is that there are different restrictions on the values n can take.1  These 
frequencies again are the ones allowed to exist in the interior of the cube.  Now, since we have a 
small hole in the cube, we would expect these frequencies to leak out of the opening and become 
our blackbody radiation.  

Now comes the tough part.  We want to count how many standing wave modes have a frequency 
within some narrow range from f to f + df.  We’ll use a trick often used in Physics.  Consider a 
three dimensional axis system, but instead of x, y, and z, use nx, ny, and nz.  Let’s put a point at 
every possible combination of positive integer values of nx, ny, and nz; each such point represents 
two distinct modes of standing wave (there are two possible independent polarizations for each set 
of n values) and each corresponds to a specific 1×1×1 cube.  Now, n has some actual meaning; it’s 
the ‘distance’ from the origin to some spot (nx, ny, nz) in our ‘n-space,’ much like r is the distance 
to (x, y, z) in real space. Consider some volume in this n-space; if the volume is much, much larger 
than the volume of our unit cube, then the number of points enclosed should be equal to the volume, 
and the number of standing wave modes should be double the volume. 

How many modes have the same n value?  We remember that the volume of one-eighth of a thin 
spherical shell of radius r and thickness dr centered on the origin in real space is 

𝑑V =
1

8
× 4πrଶ𝑑r . 

We count one-eighth because we only want to include the positive values of the ns.  Analogously, 
then, the number of modes with a frequency between f and f + df will be 

                                                           
1 For example, in one dimension, n = 1, 2, 3, 4, … .  In this case, n = 1, 1.41, 1.73, 2, 2.23, 2.45, 2.83, 3, 3.16, … . 
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𝑑𝑁 = 2 ×
1

8
× 4𝜋 𝑛ଶ𝑑𝑛 =  𝜋 ൬

2𝐿𝑓

𝑐
൰

ଶ

൬
2𝐿

𝑐
 𝑑𝑓൰ =  

8𝜋𝐿ଷ

𝑐ଷ
 𝑓ଶ 𝑑𝑓 ,  

since 

n =
2L𝑓௡ 

c
 and n =

2L

c
  𝑑𝑓୬ .  

The extra factor of two is because each mode has two polarizations.  We’ll make use of this result 
in each of the three discussions to come.   

HOMEWORK 4-1 

Calculate the number of possible standing wave frequencies between 4.3×10+14 Hz and 
7.5×10+14 Hz (the visible light region for humans) in a 1m×1m×1m cavity. 

Rayleigh-Jeans Law 

Once again, let us review a bit of thermo-dynamics.  We examined the behavior of a gas in a closed 
container and concluded that the average kinetic energy of translation of the particles in the gas 
was 3/2 kBT, where T is the absolute temperature and kB is Boltzmann’s constant.  We then made 
use of the equipartition of energy theorem to assert that energy is also distributed, on average, 
evenly among all modes of motion of the particle.  For example, if a diatomic molecule can 
translate, rotate, and vibrate, then  

3/2 kBT K translation in 3 dimensions 
2/2 kBT K rotation around two short axes 
1/2 kBT K vibration 
1/2 kBT U vibration 
7/2 kBT Total 

 

The Rayleigh-Jeans approach is to assume that the EM waves in the cube act like oscillators, if not 
the waves themselves, then the electrons at the inside surface of our enclosure.  Then, according 
to the equipartition of energy theorem, each mode possesses an average energy of kBT (half 
potential and half kinetic). 

Then, the density of the energy ρ(f, T) (in Joules per m3 per Hz) in the interior of the cube due to 
modes with frequencies between f and df will be 

ρ(𝑓, T) =  
(number of modes per frequency interval)(average energy of those modes)

volume

=  
 
dN
df

 E୅୚୉

Lଷ
=

൬
8πLଷ

cଷ  𝑓ଶ ൰ (k୆T)

Lଷ
=  

8πk୆T

cଷ
 𝑓ଶ . 

Hmm.  That looks dangerous.  The higher the frequency, the more energy at that frequency, so lots 
of X-rays and gamma-rays.  Let’s compare this result to reality; we’re not being cooked by high 
energy EM waves from our surroundings, so maybe not such a good model.   
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The Boltzmann Distribution 

Let’s review a bit of the material from the end of our discussion on thermodynamics.  Historically, 
or if you prefer, macroscopically, entropy S was defined by this relationship: 

∆S =  න
δQ

T
     or better,   δQ = T dS, 

where T is the absolute temperature at which thermal energy transfer Q occurs.  We know now 
that S is related to the number of microstates g corresponding to a given macrostate: S = kB ln(g).  
As such, it is a measure of how likely a given macrostate is: g = exp(S/kB).   

For example, we might have a box containing four indistinguishable particles.  There is only one 
way (microstate) in which all four particles can be in the right side of the box (macrostate), but 
four ways (microstates) in which one could be in the left half with three in the right half 
(macrostate).  Continuing: 

NLeft NRight g = (NTotal)!/(NLeft! NRight)! S = kB ln g 
0 4 1 0 
1 3 4 1.914 x 10-23 J/K 
2 2 6 2.47 x 10-23  J/K 
3 1 4 1.914 x 10-23 J/K 
4 0 1 0 

 

Notice that the highest entropy corresponds to the situation which we might intuitively believe 
would be the most likely case: two balls in each side.  It’s sometimes said that systems evolve to 
the state in which entropy is maximized, but that’s really just saying that systems are most likely 
to be found in the states that are most probable. 

Macrostates might also be defined by how energy is distributed in the system.  We previously did 
an example of two objects placed side by side, one with ten ‘flippers’ and the other with twenty.  
We placed nine units of energy in the smaller block (each flipper can have one unit of energy, or 
none). We can define the temperature of each object as the average energy per flipper.  Let’s allow 
the objects to share energy, and look at the microstates associated with each macrostate. 

Macrostate Number of microstates (g) S 
T1 = 0.9; T2 = 0 10 3.18 x 10-23 J/K 
T1 = 0.8; T2 = 0.05 900 9.39 x 10-23 J/K 
T1 = 0.7; T2 = 0.1 22,800 13.86 x 10-23 J/K 
T1 = 0.6; T2 = 0.15 239,400 17.10 x 10-23 J/K 
T1 = 0.5; T2 = 0.2 1,220,940 19.35 x 10-23 J/K 
T1 = 0.4; T2 = 0.25 3,255,840 20.71 x 10-23 J/K 
T1 = 0.3; T2 = 0.3 4,651,200 21.20 x 10-23 J/K 
T1 = 0.2; T2 = 0.35 3,488,400 20.80 x 10-23 J/K 
T1 = 0.1; T2 = 0.4 1,259,700 19.40 x 10-23 J/K 
T1 = 0.0; T2 = 0.45 167,960 16.62 x 10-23 J/K 
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As we can see, the most likely state, and therefore the one with the highest entropy, is the one in 
which the two objects have reached thermal equilibrium, as expected.  The more states, the 
narrower the range of likely states.   

Let’s see if we can twist this around to be useful in another context.2  Consider a small object in 
thermal equilibrium with a reservoir, both at temperature, T.  The number of microstates (g) 
associated with a particular macrostate of the reservoir is proportional to the probability P of that 
macrostate.  Solving the microscopic definition of S for g, we obtain 

𝑃 = 𝐶 𝑔 = 𝐶 𝑒ௌ/௞ಳ   

with C being some unknown constant.  Next, let’s look at the First Law of Thermodynamics:3 

𝛿𝑄 = P 𝑑𝑉 +  𝑑𝑈 . 

Substituting the macroscopic definition of entropy and assuming that dV is zero (as for solids, 
gases in a rigid container, et c.) gives us 

𝑇 𝑑𝑆 = 𝑑𝑈     𝑑𝑆 =  
1

𝑇
𝑑𝑈 .  

Now, when some energy is transferred from the reservoir to our object, we write that dU = - dE, 
where E is the energy of the object: 

 𝑑𝑆 =  −
1

𝑇
𝑑𝐸 .  

and integration gives us 

𝑆 −  𝑆௢ =  −
1

𝑇
(𝐸 −  𝐸௢)    →     𝑆 = 𝐵௢ −  

1

𝑇
 𝐸 , 

with Bo some constant that depends on the initial state.  If we always compare to this state, we’ll 
see that our dependence on it eventually drops out. 

Substituting back into the probability expression, 

𝑃 = 𝐶 𝑒ௌ/௞ಳ = 𝐶 𝑒(஻೚ିா/்)/௞ಳ =  ൫𝐶 𝑒஻೚/௞ಳ൯ 𝑒ିா/௞ಳ் =  𝐷 𝑒ିா/௞್் . 

The probability of being in any state m is the sum of the probabilities of being in each state, and 
should equal 1. 

1 =  ෍ 𝑃௠

௠

=  ෍ 𝐷 𝑒ିா೘/௞ಳ்

௠

= 𝐷 ෍  𝑒ିா೘/௞ಳ்

௠

 . 

                                                           
2 This section on the Boltzmann distribution is based closely on a discussion in Schroeder, Daniel V., “An 
Introduction to Thermal Physics,” Addison-Wesley, San Francisco (2000) pp222 – 225. This in turn is similar to a 
discussion published by Planck. 
3 Don’t confuse P the pressure and P the probability. 
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Then, doubling back, the probability of a particular state j is given by  

𝑃൫𝐸௝൯ =
𝐷 𝑒ିாೕ/௞ಳ்

1 
=  

𝐷 𝑒ିாೕ/௞ಳ்

𝐷 ∑  𝑒ିா೘/௞ಳ்
௠  

=  
 𝑒ିாೕ/௞ಳ்

∑  𝑒ିா೘/௞ಳ்
௠  

 . 

This relationship is known as the Boltzmann distribution.  Hence, the probability of being in a state 
with a particular energy Ej decreases as the value of Ej increases. 

EXAMPLE 4-1 

Suppose we have a system with three energy levels: 1 eV, 2 eV, and 3 eV.  What is the 
probability that the system is each of the states when the temperature is 105 K?  You may find 
this alternate value for the Boltzmann constant useful:  kB = 8.62x10-5 eV/K. 

First, kBT = (8.62x10-5)(105) = 8.62 eV.  Then for each state, the Boltzmann factor is: 

Level 1: 𝑒ିாభ/௞ಳ் =  𝑒ିଵ ଼.଺ଶ⁄ = 0.890   ; 

Level 2: 𝑒ିாమ/௞ಳ் =  𝑒ିଶ ଼.଺ଶ⁄ = 0.793   ; 

Level 3: 𝑒ିாయ/௞ಳ் =  𝑒ିଷ ଼.଺ଶ⁄ = 0.706   . 

𝑃(𝐸ଵ) =  
 𝑒ିாభ/௞ಳ்

∑  𝑒ିா೘/௞ಳ்
௠  

=  
0.890

0.890 + 0.793 + 0.706
=  0.373  . 

𝑃(𝐸ଶ) =  
 𝑒ିாమ/௞ಳ்

∑  𝑒ିா೘/௞ಳ்
௠  

=  
0.793

0.890 + 0.793 + 0.706
=  0.332  . 

𝑃(𝐸ଷ) =  
 𝑒ିாయ/௞ಳ்

∑  𝑒ିா೘/௞ಳ்
௠  

=  
0.706

0.890 + 0.793 + 0.706
=  0.295  . 

HOMEWORK 4-2 

Repeat the calculation of Example 4-1 for a temperature of 100K. 

DISCUSSION 4-X 

What happens to the probabilities of each state when the temperature goes toward infinity?  
What about when the temperature heads toward zero? 

HOMEWORK 4-3 

Suppose we have a system with two energy levels.  There are two states at the lower energy (0 
eV), and eight at the higher (10.2 eV).  Find the probability that the system is in one of the 
higher energy states if the temperature is 600K.  Count each state as a separate term.  Note: 
We’re going to make use of this result later in the course. 

Wien’s Distribution 

Whereas the Rayleigh-Jeans model assumes that all energy states are equally likely, the Wien 
model adds in the Boltzmann factor to account for the probabilities (the higher the energy of the 
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state, the less likely that the state is ‘occupied’).  Now, what is the energy of a wave of frequency 
f ?  The Wien formula assumes that the energy carries by a wave is proportional to the frequency: 
E = ηf.  This is very non-obvious, but in the end, actually correct!  The energy density expression 
then becomes 

𝜌(𝑓, 𝑇) =  

𝑑𝑁
𝑑𝑓

 𝐸 𝑃(𝐸)

𝐿ଷ
= 𝐷 

8𝜋

𝑐ଷ
 𝑓ଶ(𝜂𝑓) 𝑒ିఎ௙/௞ಳ் = 𝐷 

8𝜋𝜂

𝑐ଷ
 𝑓ଷ 𝑒ିఎ௙/௞ಳ்  . 

The problem is, we don’t have a value for eta, but in a while, we’ll try to fit this function to some 
actual data.  This does however fix the problem of being roasted; as the frequency increases, the 
probability of that frequency being emitted by the black body decreased rapidly due to the 
exponential term. 

In contrast to the Rayleigh-Jeans relationship, which we’ll see is a good fit at low frequencies but 
ridiculously incorrect for high frequencies, we will see that the Wien relationship is a good fit at 
high frequencies, but merely poor at low frequencies. 

Planck’s Distribution 

Planck originally worked out an empirical relationship that fit the observed data points quite well, 
but spent ten years trying to justify the assumptions made.  Eventually, he formulated what we 
now call Planck’s Postulate.  The oscillators in the cavity, whether we consider the EM waves 
themselves or the electrons on the inside edge of the cavity in the metal, have restrictions on the 
energy they may possess.  Classically, the energy of an oscillator depends most directly on the 
amplitude of oscillation and the spring constant and can take on any value; the frequency of 
oscillation is not relevant.  Planck asserted, somewhat similarly to Wien, that the oscillators are 
allowed energies only of this form: 

𝐸௠ = 𝑗ℎ𝑓,     𝑗 = 0, 1, 2, 3, … 

with h a constant (similar to eta in the Wien approximation).    Note the difference: Wien asserted 
the energy has one possible value ηf, while Planck allows integer multiple possible values, jhf.  In 
Section 5, we’ll explain how this is possible. 

Remember the Boltzmann function.  The probability of having a particular energy Ej = jhf at a 
given frequency f will be 

𝑃൫𝐸௝൯ =
 𝑒ିாೕ/௞ಳ்

∑  𝑒ିா೘/௞ಳ்
௠  

 =
 𝑒ି௝௛௙/௞ಳ்

∑  𝑒ି௠௛௙/௞ಳ்
௠  

 . 

Let’s find the average energy in our states for a given frequency.4   

                                                           
4 This is just like finding an average score S on an exam.  SAVE = (Σ Si Ni)/N = Σ Si (Ni/N) = Σ Si P(Ni). 
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𝐸஺௏ா = ෍ 𝐸௝  𝑃(𝑗) = 

௝

෍ 𝑗ℎ𝑓 𝑃(𝑗) =  ෍ 𝑗ℎ𝑓 
 𝑒ି௝௛௙/௞ಳ்

∑  𝑒ି௠௛௙/௞ಳ்
௠  

௝௝

=  
∑ 𝑗ℎ𝑓 𝑒ି௝௛௙/௞ಳ்

௝

∑  𝑒ି௠௛௙/௞ಳ்
௠  

=  
∑ 𝑗ℎ𝑓 𝑒ି௝௛௙ఉ

௝

∑  𝑒ି௠௛௙ఉ
௠  

 . 

In the last step, I’ve changed 1/kBT to  for convenience of calculation.5  Let’s deal with the 
denominator first.  This lower sum can be written as6  

෍  𝑒ି௠௛௙

௠

=  ෍  ൫𝑒ି௛௙൯
௠

௠

=  
1

1 −  𝑒ି ௛௙ 
  .  

The numerator is tougher.7   

෍ 𝑗ℎ𝑓 𝑒ି௝௛௙

௝

=  ෍ − 
𝑑

𝑑
 𝑒ି௝௛௙

௝

=  −
𝑑

𝑑
 ෍  𝑒ି௝௛௙ =  −

𝑑

𝑑
 ෍  ൫𝑒ି௛௙൯

௝
 .

௝௝

 

Next, we’ll make use of our infinite series again, then take the derivative: 

−
𝑑

𝑑
 ቌ෍  ൫𝑒ି௛௙൯

௝
 

௝

ቍ =  −
𝑑

𝑑
 ൬

1

1 − 𝑒ି௛௙൰ =  
ℎ𝑓 𝑒ି௛௙

(1 −  𝑒ି௛௙)ଶ
 

Let’s put numerator and denominator back together: 

𝐸஺௏ா =  
൬

ℎ𝑓 𝑒ି௛௙

(1 − 𝑒ି௛௙)ଶ൰

ቀ
1

1 − 𝑒ି ௛௙ ቁ
=  

ℎ𝑓 𝑒ି௛௙

(1 −  𝑒ି௛௙)
=

ℎ𝑓

𝑒ା௛௙ − 1
=

ℎ𝑓

𝑒௛௙/௞ಳ் − 1
 .   

                                                           
5 This is a common notation in thermodynamics.  Don’t confuse  = 1/kBT with  = v/c from relativity. 
6 This infinite series, 1 + x + x2 + x3 + … is known to equal (1-x)-1 for x<1. 
7 The derivative has no physical meaning, it is a math trick.  Eisberg, Robert and Robert Resnick, Quantum Physics 
pf Atoms, Molecules, Solids, Nuclei, and Particles,  John Wiley & Sons, New York (1947) p20. 
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Then the energy density is given, as before, by 

𝜌(𝑓, 𝑇) =

𝑑𝑁
𝑑𝑓

 𝐸஺௏ா

𝐿ଷ
=

8𝜋𝐿ଷ

𝐿ଷ𝑐ଷ
 𝑓ଶ

ℎ𝑓

𝑒௛௙/௞ಳ் − 1

=  
8𝜋ℎ

𝑐ଷ
 

𝑓ଷ

𝑒௛௙/௞ಳ் − 1
  .   (∗)  

Let’s compare this with some data.  In the first 
graph, we have data taken by Lummer and 
Pringsheim8 of a black body at 1646K.  The 
colored lines represent our three proposed 
energy distributions. Of course, we see that 
the Rayleigh-Jeans curve is nowhere near 
correct.  One might assert that the data lie 
more on the Planck curve than on the Wien 
curve, but the fit isn’t that good, and data from 
Lummer’s other temperatures are not as clear 
as even this.  So, perhaps a toss-up. 

The decisive experiments were performed by, among others, Rubens and Kurlbaum,9 who 
measured well past 6μm out to 9, 24, 32, and 51 μm.  Their experimental results are impossible to 
add to the figure, in that Lummer set a temperature and scanned the wavelength, but Rubens set a 
wavelength and scanned the temperature.10  These experiments were, nonetheless, able to 
distinguish clearly the black body behavior from the Wein’s prediction, and verify the validity of 
Planck’s.  

                                                           
8 O/ Lummer and E. Pringsheim, Verhandlung der Deutschm Phys. Ges.,I. Jahrg S.23 and 215 (1889). 
9 Rubens and Kurlbaum, ‘Anwendung der Methode der Reststrahlen zur Prüfung des Strahlungsgesetzes,’ Annalen 
der Physik 4:4 (1901) p 649. 
10 This is due to the incredibly difficult nature of measuring wavelengths in that range. 
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So, let’s pull up some more recent data to illustrate the correctness of the Planck formula.  First, 
here are data showing the cosmic microwave background radiation at about 2.7 K. In this figure, 
it is clear that the Planck distribution fits the data exceptionally well. Second, the output of the 
photosphere of our sun, with a temperature of about 5770 K.  In these cases, it is clear that the 
Planck distributon fits the data better than either of the other models. 

Let’s continue to test the Planck formula.  One characteristic of black bodies that was determined 
experimentally by Josef Stefan is that the total power output11 is proportional to the fourth power 
of the temperature.  Let’s test this for the Planck distribution.  We won’t worry about any constants, 
we just want the temperature dependence.  We’ll integrate the energy density per Hz over the 
frequency range from zero to infinity: 

P =  Cଵ න ρ(𝑓, T)

ஶ

଴

𝑑𝑓 =  Cଶ න
𝑓ଷ

e୦௙/୩ా୘ − 1

ஶ

଴

𝑑𝑓 .  

Let u = hf/kBT, so f = (kBT/h)u and df = (kBT/h) du 

P =  CଷTସ න
uଷ

e୳ − 1

ஶ

଴

𝑑u .  

Now, we don’t even need to evaluate the integral; it will just be some particular number, which 
we’ll slip into the constant: 

P = CTସ 

as required. 

 

                                                           
11 Another P!  Don’t confuse them all. 
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The figure above left shows the output of a black body at four temperatures.  As the temperature 
increases, the total energy output, as indicated by the area under the curve, increases.  

The graph also demonstrates a second property of black bodies: the wavelength of the peak output 
varies inversely with the temperature: 

𝜆ெ஺௑ = 𝐶 𝑇ିଵ. 

This was derived theoretically by Wien using thermodynamics, and can be seen in the experimental 
data shown in the figure on the right.  There, the Lummer data, the COBE data, and the solar 
spectrum peaks are plotted.  The slope of -1 indicates that the peak wavelength and the temperature 
are indeed inversely proportional.  We can even get an idea of the value of C.   

log(λ୑୅ଡ଼) = log C –  log T   →     log C = −2.526     →    C = 10ିଶ.ହଶ଺ = 0.00298 mKିଵ .  

A more careful analysis reveals that C = 0.002898 mK-1. 

 

To test the Planck distribution, we should first convert ρ(f, T) to ρ(λ, T): 

𝑓 =  
𝑐

𝜆
 ;  𝑑𝑓 =  (−)

c

𝜆ଶ
 𝑑𝜆;    

Requiring ρ(λ, T) dλ = ρ(f, T) df results in 

𝜌(𝜆, 𝑇) =  𝐶ଵ𝜆ିହ൫𝑒௛௖/௞ಳ்ఒ − 1൯
ିଵ

 . 

In general, ρ(λ, T) = ρ(f, T)/λ2.  Note that fMAX ≠ c/λMAX! 

Let z = hc/kBT for convenience.  Then, 

ρ(λ, T) =  Cଵλିହ൫e୸/஛ − 1൯
ିଵ

 . 

Set 
𝑑ρ

𝑑λ
=  −Cଵ(−5) λି଺൫e୸/஛ − 1൯

ିଵ
+  Cଵλିହ൫e୸/஛ − 1൯

ିଶ
 (−1) e୸/஛ ቀ

−z

λଶ
ቁ = 0 . 

5 =  ൫e୸/஛౉ఽ౔ − 1൯
ିଵ

 e୞/஛౉ఽ౔ ൬
z

λ୑୅ଡ଼
൰ 

Let u = z/λMAX and this becomes 

5 =  (𝑒௨ − 1)ିଵ 𝑒௨ 𝑢   .   (∗∗)   

Now, once again, we do not need to solve this for u, we only need to convince ourselves that there 
is a particular solution value, uo.  Then, 

𝑢௢ =  
𝑧

𝜆ெ஺௑
 =   

ℎ𝑐

𝜆ெ஺௑𝑘஻𝑇
 →    𝜆ெ஺௑ =  𝐶 𝑇ିଵ ,   (∗∗∗) 

as expected. 
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HOMEWORK 4-4 

Solve for uo (**) using a numerical method, for example, using Excel.  Then, find the constant 
C in the equation above (***).  Compare with the accepted value of 0.002898 mK-1. 

HOMEWORK 4-5 

Consider two stars that are the same size, but A has a surface temperature of 3000 K and B has 
a surface temperature of 50,000 K.  What is the ratio of the total power output of the stars? 

HOMEWORK 4-6 

What is the peak wavelength of each spectrum of the stars in the previous question? 

Additional Notes 

We have examined three functions proposed to explain the output spectrum of black body 
radiation.  Please don’t think that these three were the only such proposals.  A review article by 
Day and Orstand12 lists a number of such functions.  To follow up, we’ll take a quick look at these 
others as well. 

Let’s see if they pass the two tests.  PTOTAL for each model is found by setting up an integration 
similar to the one above.  The displacement relationships are found by differentiating, as above. 

MODEL ρ(f, T) PTOTAL Pass/Fail λMAX Pass/Fail 
Planck C1 f 3 (exp(C2 f/T) – 1)-1 C T 4 Pass ~ T -1 Pass 
Wien C1 f 3 exp(-C2 f/T) C T 4 Pass ~ T -1 Pass 

Michelson C1  T 3/2 f 4 exp(-C2 f 2/T) C T 4 Pass ~ T Fail 
Thiesen C1 T 1/2  f 3.5 exp(-C2 f /T)     
Rayleigh C1 T  f 2 exp(-C2f/T) C T 4 Pass ~ T -1 Pass 

Rayleigh-Jeans C1 T f 2 Infinite Fail Zero Fail 
Weber C1 exp(αT) exp(-C2 f 2/T2)  C eαT Fail ~ T -1 Pass 
Jahnke C1 T f 2 exp(-C2 f 1.25/T1.25) ~ C T 5 Fail ~ T -1 Pass 

 

So, if we had the inclination, it might be worthwhile to compare the Thiesen and Rayleigh 
distributions to observed data.  However, Day and Van Orstand mention that these are generally 
just attempts to fit the data; the Jeans, Wien, and Planck functions do have some physics behind 
them. 

HOMEWORK 4-7 

Thiesen proposed a spectrum function ρ(f, T) = C1 T 1/2  f 3.5 exp(-C2 f /T).  Apply the two tests 
for PTOTAL and λMAX.  Does this function pass both tests? 

Summary 

                                                           
12 Day, Arthur L., and C. E. Van Orstand, ‘The Black Body and the Measurement of Extreme Temperatures,’ The 
Astrophysical Journal XIX:1 (1904) pp 1 – 40. 
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We have introduced the notion that some quantities are quantized, that is, they can take on only 
certain values, not any value as is usual in classical physics, and that this is a necessary condition 
to explain some phenomena.  Secondly, we have introduced Planck’s constant, sometimes referred 
to as the quantum of action; the accepted value today is 6.626 × 10-34 Joule seconds.  In a later 
section, we’ll discuss the justification of Planck’s assertion regarding oscillators. 

 

 


