1-5) From above: $\mathbf{A} = 4\mathbf{i} + 3\mathbf{j}$ $\mathbf{B} = 5\mathbf{i} - 2\mathbf{j}$ Use matrix method:

i	j	k	i	j
4	3	0	4	3
5	-2	0	5	-2

Multiply diagonally, positive down and to the right and negative down and to the left:

A x **B** = 3*0*i + 0*5*j + 4*(-2)*k - 4*0*j - 0*(-2)*i - 3*5*k = (-8 - 15)k = -23k, *i.e.*, into the page.

Now, since **A** and **B** are in the x-y plane, it's fairly easy to use the <u>other</u> definition of the cross product as well:

 $|\mathbf{A}| = (4^2 + 3^2)^{1/2} = 5$ and $|\mathbf{B}| = (5^2 + (-2)^2)^{1/2} = 5.39$ $\theta_A = \arctan(3/4) = 36.9^\circ$ and $\theta_B = \arctan(-2/5) = -21.8^\circ$ (Don't forget to check the quadrant!)

So, the angle between **A** and **B** is then 58.7° .

 $|\mathbf{A} \times \mathbf{B}| = |\mathbf{A}| |\mathbf{B}| \sin \theta_{A,B} = 5*5.39*\sin(58.7^{\circ}) = \frac{23.0}{23.0}$ and the RHR (with **A** in QI and **B** in QIIII) gives us that the cross product points in the -z direction.

So, it checks!