3-3)

Pick the origin to be at the bottom of the hill. Positive x is to the right (in the figure) and positive y is up.

Let theta be that angle of launch as measured from the horizontal, and let ϕ be the angle the hill surface makes with the horizontal.

 $v_0 = 32 \text{ m/s}$ $\phi = 30^{\circ}$ $\theta_i = ?$ D = distance up the hill to the target = 60 m, so, $x_i = 0$ x_f = the horizontal distance to the target D cos \emptyset = 60 cos30° = 52.96m $v_{ix} = v_0 \cos \theta_0$ $v_{fx} = ?$ $a_x = 0$ (influence of only gravity) t = ? $y_i = 0 m$ $y_f = D \sin \phi = 30 m$ $v_{iy} = v_0 \sin \theta_0$ $v_{fy} = ?$ $a_y = -9.8 \text{ m/s}^2$ (influence of only gravity) $v_f = v_i + v_{iv}t + \frac{1}{2}a_vt^2$ $D \sin \phi = 0 + v_0 \sin \theta_0 t + \frac{1}{2} a_v t^2$ $x_f = x_i + v_{ix}t + \frac{1}{2}a_xt^2$ $D \cos \phi = 0 + v_0 \cos \theta_0 t + 0$ Solve the x equation for t and substitute: $t = D\cos\phi/v_0\cos\theta_0$ $D \sin \phi = 0 + v_0 \sin \theta_0 [L \cos \phi / v_0 \cos \theta_0] + \frac{1}{2} a_v [D \cos \phi / v_0 \cos \theta_0]^2$ Simplify by dividing by Lcosø: $\tan \phi = \tan \theta_0 + [a_v D \cos \phi / 2 v_0^2] [\cos \theta_0]^{-2}$ Use a trig identity: $1 + \tan^2 \theta_0 = [\cos \theta_0]^{-2}$ $\tan\phi = \tan\theta_0 + \left[\frac{a_y D \cos\phi}{2v_0^2}\right] \left[1 + \tan^2\theta_0\right]$ $[a_y D\cos \phi/2v_o^2] \tan^2 \theta_o + \tan \theta_o + [a_y D\cos \phi/2v_o^2] - \tan \phi = 0$ This is a quadratic equation. Let $A = a_y D \cos \theta / 2v_0^2$ and $C = [a_y D \cos \theta / 2v_0^2] - \tan \theta$ Atan² θ_{o} + tan θ_{o} + C = 0 tan θ_{o} = [-1 ± [1² - 4AC]^{1/2}/2A Since we want the object to move to the +x direction, the angles we find should be between -90° and +90°.

OK let's check this out for three cases:

Let the ground be level, or $\phi = 0$. Then $A = a_y D \cos \phi / 2v_o^2 = -9.8*60*1/2*32^2 = -0.287$ $C = [a_y D \cos \phi / 2v_o^2] - \tan \phi = -0.287 - 0 = -0.287$ So, $\tan \theta_o = [-1 \pm [1^2 - 4AC]^{1/2}/2A = [-1 \pm [1^2 - 4(-0.287)(-0.287)]^{1/2}/2(-0.287) = 0.316$ or 3.169 These correspond to angles of 17.5° and 72.59°, which are, as we saw for the Range equation, complementary.

For an upward incline of $\phi = 30^{\circ}$: $A = a_y D \cos \phi / 2v_o^2 = -9.8*60*0.866/2*32^2 = -0.249$ $C = [a_y D \cos \phi / 2v_o^2] - \tan \phi = -0.249 - 0.577 = -0.826$ So, $\tan \theta_o = [-1 \pm [1^2 - 4AC]^{1/2}/2A = [-1 \pm [1^2 - 4(-0.249)(-0.826)]^{1/2}/2(-0.249) = 2.854$ or 1.163 These correspond to angles of 49.3° and 70.7° . Note that these are not complements, since the terrain was not flat.

For a downward incline of $\phi = -30^{\circ}$: $A = a_y D \cos \phi / 2 v_o^2 = -9.8 * 60 * 0.866 / 2 * 32^2 = -0.249$ $C = [a_y D \cos \phi / 2 v_o^2] - \tan \phi = -0.249 + 0.577 = 0.328$ So, $\tan \theta_o = [-1 \pm [1^2 - 4AC]^{1/2} / 2A = [-1 \pm [1^2 - 4(-0.249)(0.328)]^{1/2} / 2(-0.249) = -0.305$ or 4.321 These correspond to angles of -17.0° and 77.0° . Note that these are not complements, since the terrain was not flat.