6-1) m = 0.8 kg R = 1.6m

a)

Start at the bottom of the circle.

$$W_T = \oint \boldsymbol{T} \cdot d\boldsymbol{s} = \boldsymbol{0}$$
,

since the tension is perpendicular to the path of the object at all points. The quantity ds is a small displacement of the object along the circular path.

b)

$$W_g = \oint \boldsymbol{g}m \cdot d\boldsymbol{s} = \oint gm \, ds \, \cos \theta$$
.

Let's make two changes of variable. Let $ds = R d\phi$ (arclength formula) and, since $\theta_{g,ds} = 90+\phi$, let $\cos\theta_{g,dl} = -\sin\phi$. Substituting,

The shorter way of finding W_g is to realize that it is $-\Delta U_g$. Since the change in potential energy depends only on the starting and ending positions, which are the same, $\Delta U_g = 0$ and then so does W_G .

c)

Same answer and reasoning as in (a), 0 J.

d)

Same integral as in (b), but limits are from 0 to π :

$$W_g = +gmR \cos \phi |_0^{\pi} = +gmR \left[\cos \pi - \cos 0 \right] = +gmR \left[-1 - 1 \right] = -2gmR$$

This should not be unexpected, since $\Delta U_g = gm\Delta y = +gm(2R)$.

So, Wg = -2gmR = -2*10*0.8*1.6 = 25.6 J

