6-2)

 $gm_1 = 20N gm_2 = 12N$ Constant speed -> constant velocity $\Delta x = +0.75m$ for each mass in its respective x-direction.

First, find the tension T. We'll use NII on Block Two: $gM_2 - T = M_2a_x = 0$ so, $T = gM_2 = 10*1.2 = 12$ N. For Block One, $+T - F_{fk} = M_1 a_x = 0$, so $F_{fk} = T = 12N$. F_N - $gM_1 = M_1a_y = 0$ so $F_N = gM_1 = 10*2 = 20N$ a) Work done on M₁ by its weight: $W = gM_1 \Delta x \cos\theta = (10*2)*0.75*\cos(90^\circ) = 0J$ b) Work done by tension: $W = T \Delta x \cos \theta = 12*0.75 \cos(0^{\circ}) = 9J$ c) Work done on M₁ by normal force: $W = F_N \Delta x \cos \theta = 20^{\circ} 0.75^{\circ} \cos(90^{\circ}) = 0$ d) $W = F_{fk} \Delta x \cos\theta = 12*0.75*\cos(180^\circ) = -9J$ e) Work done by the weight of M₂: $W = gM_2 \Delta x \cos\theta = (10^{*}1.2)^{*}0.75^{*}\cos(0^{\circ}) = \frac{9J}{2}$ f) Work done by the tension: $W = T \Delta x \cos\theta = 12*0.75*\cos(180^\circ) = -9J$ g) Total work = 0 + 9 + 0 + (-9) = 0 J. h) Total work = 9 + (-9) = 0 J. Since the change in KE is zero, this is to be expected.