6-4)

Let x be the distance of the asteroid from the center of the earth. We're given that $F_G = Cx^{-2}$ and that when $x = R_E$, $F_G = gm$. Here, g is specifically the strength of the gravitational field <u>at the earth's surface</u>.

So at the surface of the earth, $F_G(R_E) = gm = CR_E^{-2} \rightarrow C = gmR_E^2$, so $F(x) = gm R_E^2 x^{-2}$. Work done by the gravitational force on an object of mass m is then

$$W_G = \int_{x_i}^{x_f} \boldsymbol{F}_G(x) \cdot d\boldsymbol{x} \, .$$

Now since $d\mathbf{x}$ points outward and \mathbf{F}_{G} points inward, there is a $\cos(180^{\circ})$ in the dot product.

$$W_G = -\int_{x_i}^{x_f} F_G(x) \, dx$$

We'll start the asteroid out infinitely far from the earth:

$$W_G = \Delta K = -\int_{\infty}^{R_E} gm R_E^2 x^{-2} dx .$$
$$K_f = K_i - gm R_E^2 \int_{\infty}^{R_E} x^{-2} dx .$$
$$K_f = K_i - gm R_E^2 [-x^{-1}]_{\infty}^{R_E}]$$
$$K_f = K_i + gm R_E^2 \left[\frac{1}{R_E} - \frac{1}{\infty} \right] = K_i + gm R_E$$

b & c)

The minimum KE will be when $K_i = 0$,

$$K_{fMIN} = gmR_E = 10 \times 20,000 \times 6,400,000 = \frac{1.3 \times 10^{12} J_{eff}}{1.3 \times 10^{12} J_{eff}}$$

or about 1/50th the energy of the Hiroshima explosion.

a)

$$K_{f MIN} = \frac{1}{2} m v_{f MIN}^2 = g m R_E.$$
$$v_{f MIN} = \sqrt{\frac{2K_{f MIN}}{m}} = \sqrt{\frac{2 \times 1.3 \times 10^{12}}{20,000}} = \frac{11,314}{s}.$$

This is actually the reverse of the concept of *escape velocity*. How quickly would something have to be launched from the surface of the earth to escape from the earth's gravitational well?

 $v_{\text{ESCAPE}} = 11.3 \text{ km/s}.$