6-6)

 $m = 2kg, k = 400 N/m, x_{SPRINGi} = -0.27m, \theta = 37^{\circ}.$

Use WE Theorem:

 W_{N} = 0, since the normal force is always perpendicular to the path of the mass. W_{g} = cons W_{SP} = cons

So, $W_{NC} = 0$ and we have conservation of mechanical energy.

$$0 = K_f - K_i + U_{gf} - U_{gi} + U_{SPf} - U_{SPi}$$

a)

The initial situation is when the spring is compressed, the final situation is when the spring is relaxed and before the mass hits the incline.

 ${}^{1}\!/_{2}m{v_{i}}^{2}+gmy_{i}+{}^{1}\!/_{2}k\chi_{i}^{2}={}^{1}\!/_{2}mv_{f}^{2}+gmy_{f}+{}^{1}\!/_{2}k\chi_{f}^{2}$

Here, y refers to altitude of the block above the plane at the bottom and χ refers to the compression of the spring, not to the location of the block in the horizontal direction. Some terms we realize are zero, in particular, v_i, y_i, y_f, and χ_f .

 $^{1}/_{2}k\chi_{i}^{2} = ^{1}/_{2}mv_{f}^{2}$

So,

 $v_f = [k\chi_i^2/m]^{1/2} = [400*0.22^2/2]^{1/2} = 3.11 \text{ m/s}$

b)

For (b), we can take the initial point to be when the spring is compressed, or the 'final' point from (a). I'll do the first, so that v_i , v_f , y_i , and χ_f are all zero:

$${}^{1}\!/_{2}mv_{i}{}^{2}+gmy_{i}+{}^{1}\!/_{2}k\chi_{i}{}^{2}={}^{1}\!/_{2}mv_{f}{}^{2}+gmy_{f}+{}^{1}\!/_{2}k\chi_{f}{}^{2}$$

 $^{1}/_{2}k\chi_{i}^{2} = gmy_{f}$

$$y_f = k\chi_i^2/2mg = 400*0.22^2/2*2*9.8 = 0.49 m$$

but, we want the distance up the incline, L:

 $y_f/L = \sin 37^\circ$ -> L = $y_f/\sin 37^\circ = 0.49/0.6 = 0.82$ m