A static force (not changing in time) is conservative if the *curl* of the field is zero:

$$\nabla \times \mathbf{F} = 0$$
.

You can find the curl in a manner similar to finding cross-products:

$$\begin{array}{cccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_x & F_y & F_z
\end{array}$$

Determine if the following force fields are conservative.

- a) $\mathbf{F}(\mathbf{r}) = Cy^2 \mathbf{j}$, where C is a negative constant.
- b) $\mathbf{F}(\mathbf{r}) = C\mathbf{y}^2\mathbf{i}$, where C is a negative constant.
- c) Sketch the fields to see if you can make a more direct argument to support your result from a and b.