6-9)

a)

 $\mathbf{F} = Cy^2 \mathbf{j}$. Any displacement in the x or z directions will result in no work. Any displacement in the y direction (from a given y_i to a given y_f) will result in the same amount of work. F is conservative.

b)

 $\mathbf{F} = Cy^2 \mathbf{i}$. Any displacement in the y or z directions will result in no work. Any displacement in the x direction (from a given x_i to a given x_f) could result in different amounts of work, depending on the value of y. **F** is non-conservative.

There is a short and easy way to tell if a field is conservative: take the *curl* of the field. If curl $\mathbf{F} = 0$, then \mathbf{F} is conservative.

Now, curl $\mathbf{F} =$

i	j	k
d/dx	d/dy	d/dz
$\mathbf{F}_{\mathbf{x}}$	F_y	F_z

 $= (dF_z/dy - dF_y/dz) \mathbf{i} + (dF_x/dz - dF_z/dx) \mathbf{j} + (dF_y/dx - dF_x/dy) \mathbf{k} =$

For a) curl $\mathbf{F} = (0 - 0) \mathbf{i} + (0 - 0) \mathbf{j} + (0 - 0) \mathbf{k} = 0$, so \mathbf{F} is conservative. For b) curl $\mathbf{F} = (0 - 0) \mathbf{i} + (0 - 0) \mathbf{j} + (0 - 2Cy) \mathbf{k} <> 0$, so \mathbf{F} is not conservative.